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The presence of phase and amplitude modulation in the signals of a
varactor frequency multiplier is analyzed, and some general multiplier
properties are derived. The following summarizes one of the most important
results of this paper.

Consider a frequency multiplier which has the following characteristics:
() a varactor which has a square-law characteristic, (%) the order of multi-
plication is N = 2" = 2, 4, efc., (747) the minimuwm number of idlers, and
(wv) t is lossless and tuned. It is shown that for this multiplier there is no
conversion between small-index, low-frequency amplitude and phase modula-
tion. Therefore, since narrow-band noise from external sources will be
present at the input and oulput of the multiplier, the noise components
corresponding to phase modulation of the carriers can be treated inde-
pendently of the noise components corresponding to amplitude modulation.

Consider now the input and output noise sidebands corresponding to
phase modulation (PM). It is shown that the multiplier behaves with
respect to these sidebands as an amplifier with the following properties: (z)
a forward voltage transmission equal to N, (77) unity reverse transmission,
(i7i) an output reflection of 1, —1, 3, respectively, for N = 2, 4, 8, and
(7v) no input reflections. As a consequence of these properties the multiplier
1s ““potentially” unstable with respect to PM.

The utilily of the mulliplier properties derived in this paper will be
illustrated by the discussion in a companion paper in this issue which
shows how, in practical cases, instabilily arises and how <t can be avoided.

I. SUMMARY OF RESULTS

The frequency multipliers to be considered are harmonic generators
which use varactor diodes as nonlinear elements. Noise produces un-
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wanted amplitude and phase modulation in the signals of a frequency
multiplier. In this paper, the presence of these modulations is analyzed
and some general multiplier properties are derived. The following
summarizes one of the most important results of this paper. Consider
a frequency multiplier which has the following characteristics:

(1) a varactor which has a square-law characteristic,
(77) the order of multiplication is N = 2",
(#77) the minimum number of idlers, and

(7v) it is lossless and tuned.

It is shown that for this multiplier there is no conversion between
small-index, low-frequency amplitude, and phase modulation. Therefore,
since narrow-band noise from external sources will be present at the
input and output of the multiplier, the noise components corresponding
to phase modulation of the carriers can be treated independently of the
noise components corresponding to amplitude modulation.

Consider now the input and output noise sidebands corresponding
to phase modulation (PM). It is shown that the multiplier behaves
with respect to these sidebands as an amplifier with the following
properties:

(7) a forward voltage transmission equal to N,

(74) unity reverse transmission,
(#it) an output reflection of 1, —1, 3, respectively, for N = 2, 4, §, and
(#) it has no input reflections.

As a consequence of these properties the multiplier is ‘‘potentially”
unstable with respect to PM. This summarizes one of the most important
results of this paper. Now let us consider the results of this paper in
more detail.

This paper is concerned with the presence of amplitude and phase
modulation in the multiplier signals. Suppose, for the moment, that
these two types of modulation are independent of each other. That is,
suppose that the multiplier does not produce AM-to-PM conversion,
and vice-versa. Suppose, furthermore, that only PM is present. Then
each signal will consist of a carrier and of a pair of sidebands in quad-
rature with respect to the carrier. Since either sideband can be obtained
from a knowledge of the other, then one may consider only one of the
two sidebands and ignore the other one. For example, let the upper
sideband be chosen as the variable, and let it be described in terms of
propagating waves. Then the input variables of the multiplier are the
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—

two waves* vy, , v5. ., which constitute the upper sideband of the input
carrier w, . Similarly, the two output waves v3, .., , Vyv.,., represent the
output variables. w, is the input ‘‘carrier” frequency of the multiplier
and p is the frequency of the fluctuations. At this point, the scattering
formalism furnishes a convenient way of describing the properties of the
multiplier. More precisely, one may define the PM scattering param-
eters of the multiplier as the reflection and transmission coefficients
which relate the ‘‘scattered” waves v .,, vy..., to the “incident”
ones v, ., , Vyu.., - In this way one obtains the PM scattering matrix
8, defined by

Vaorn _ —Vousp — UNwasp
v = pg v -I— Tg Vv
wo Nwo

wa (1)
VNeoin - Vuoip — UNuoss
v =T V + ps vV y

Nuo wWo Nuwo

where V,,, is the Fourier coefficient of the input carrier w, , and Vy,, is
the Fourier coefficient of the output carrier Nw, . Note that the side-
bands have been normalized with respect to the relative carriers. Equa-
tions (1) are equivalent to (8).f

In a completely similar way one defines the AM scattering matrix S, .

It has been found that a multiplier with characteristics () through
(#v) above does not produce AM « PPM conversion and that it has
the following scattering matrices:

s Ty 0 (=D"

8 = = © (2a)
S ;1= (=D"
T N (3 )'"N
o T N—-(=D" (=1

" a a ]’

S, = = 3N N (2h)
T, o 1 0

if the modulation frequency p is small enough.

Notice that (2a) gives the properties stated at the beginning of this
summary. As a consequence of (2a), the multiplier is potentially un-
stable with respect to PM. AM instabilities cannot oceur. This follows
from (2b).

* 0%, v, designate the Fourier coefficients of the voltage components of fre-
quency w. They propagate in the directions indicated by the arrows.

t Note that vy, 4+,/Ve,, ete. correspond to the modulation indexes j6", etc.
defined in the next section.
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Equations (2a), (2b) also have some other interesting consequences.
For instance, if one injects a single tone Nw, + p into the output port
of a multiplier, then the multiplier will reflect a pure PM wave. That
is, the multiplier behaves as an ideal reflection-type limiter in the vi-
cinity of the output carrier. This property is common to all types of
multipliers [see (19)] and may be useful if one wants to modulate the
output phase of a multiplier without generating AM. Note that
| p5 | > 1 for N > 4. This means that, if N > 4, then the output port
of the multiplier reflects amplifying the PM components of the output
sidebands.

Tt is also shown that some of the properties expressed by (2a), (2b)
are common to all lossless multipliers. A consequence of this is that
most of the results obtained for a multiplier with the characteristics
listed above can be qualitatively extended to all efficient multipliers.

II. INTRODUCTORY REMARKS

This paper is concerned with the presence of small amplitude and
phase fluctuations in the electrical variables of the networks to be
considered. By using the familiar terminology and concepts of modula-
tion theory, the problem can be defined as follows.

The electrical signals will consist of sinusoidal carriers which are
both amplitude- and phase-modulated. The amplitudes of the modulat-
ing waves* will be supposed to be small enough to guarantee superposi-
tion to hold, and to allow the modulated waves to be approximated
by the sum of the carriers and their first-order sidebands. Furthermore,
since superposition holds, consideration will be limited to sinusoidal
modulating waves. Then, if p is the frequency of the modulating waves
(i.e., of the fluctuations), each carrier frequency w will be surrounded
by two small side-frequencies @ + p, @ — p representing the sidebands
of w. One can say that the object of this analysis is to study the presence
of these side-frequencies around the carriers. A pair of sidebands is
completely specified either by its spectrum or by the spectrum of the
modulating waves associated with it. More precisely, consider a small
voltage v(f) consisting of two side-frequenciesf w + p, @ — p

* The “modulating waves” are the “fluctuations” and will be clarified later.

t Through this analysis a real function g(Z) consisting of sinusoids will be repre-
sented by the complex Fourier series

g(t) = _i Clw;) exp [juwif] = 2(Re) iﬂ C(wi) exp [juidl.

The complex coefficients C will be called “the Fourier coefficients’ of g(t). Further-
more, only positive frequencies will be considered, as illustrated by the second
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v(t) = 2(Re)(vurn exp [ilw + P)1] + va_, exp [jlw — p)t]) ®3)

and let V,(f) be the carrier associated with v(f). Let w, V, be the carrier
frequency and the Fourier coefficient of V.(t), respectively. Then the
Tourier coefficients of the modulating waves a(f), 0(f) associated with
v(f) are given by

1 (v,e, , v5_,
a=g +
2 ( V. V# )
4)
0 = 1 (lﬂ _ vw—r)
25\ V, V*
In fact, if one uses (4) to express »(f) in terms of a, 8, one obtains*
v(t) = 2(Re)[(a + jO)V. exp [jlw + p)i]
+ (@ = OV el — Pl

Il

a0V + L2 v,

Since it is supposed | v,4, | € | V. [,onehas | a | < 1, | 8 | < 1. There-
fore, the last equality of (5) gives

o) + V) = [1 + a(z)m[z n ?] ©)

Equation (6) shows that a(f), 6(f) are the modulating waves which
produce the sidebands »(¢).1 a(f) is the amplitude modulating wave,
and 4(t) is the phase modulating wave.

a, 6, the Fourier coefficients of a(z), 6(f), will be called, respectively,
the AM index and the PM ndex of v(f). Extensive use will be made of
the AM, PM indexes to represent a pair of sidebands.}

summation. This convention will not be followed in the Appendix where (and only
there) both positive and negative frequencies will have to be considered for con-
venience. Note that C(w;) = C*(—w;) because g(t) is real. The asterisk ( )* will
alwaysf Endicate the complex conjugate of a complex quantity. (Re) means ‘“real
part of”.

* a(t) = 2(Re) (a exp jpt), 6(t) = 2(Re) (8 exp jpl), V() = 2(Re) (V. exp jot)
according to the preceding footnote.

t When a(t), 6(¢) are applied to the carrier V.(¢).

1 As already noted, a, 8, represent the spectra of the modulating waves relative
to »(t). It should also be noted that the representation of »(¢) by means of a, 6 cor-
responds to the familiar representation of a pair of sidebands by means of the so-called
“in-phase’’ and “quadrature” components about a given carrier. This is shown by
(5) in which aV., a*V, are the “in-phase’” components and joV., j0*V. are the
“quadrature”’ components. Therefore (a) can also be regarded as the normalized
(with respect to jV.) amplitude of the “quadrature’” upper-sideband.
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2.1 The Variables of the Interconnection Between Two Stages

With reference to Fig. 1 consider now the interconnection between
two general stages. Let V(f) be the interstage voltage and assume that
V() consists of a sinusoidal carrier V,(¢) and a pair of sidebands v(Z).
Now suppose that a short piece of line of characteristic impedance
Z. is inserted between the two stages. Its electrical length is assumed
to be so short that it may be inserted without altering the electrical
properties of the cascade connection of the two stages. This should be
regarded as an artifice made to allow the signals of the interconnection
to be described in terms of propagating waves.* The sidebands v(t)

Velt)+V (L)

V(L)

Vit)= Ve (t)+vit) =ve(t) +vft) +th}

Fig. 1 — Description of the interstage voltage in terms of propagating waves.

now consist of two waves v~(¢), " () propagating in opposite directions,
as indicated by the arrows —, «, and

() = v'(t) + o7 (). @)
Finally, consider the respresentation of v»7(f), v"(f) by means of their
PM, AM indexes with respect to the carrier V,. By using (4) one
obtainsT two pairs of modulation indexes
a”, 6, the indexes of »7()
a”, 6, the indexes of »7(#)

(a”, ete.) provide a complete description of the fluctuations present at
the generical interconnection, as illustrated in Fig. 2.

2.2 Definition of the PM, AM Scattering Matrices of a Slage
In most cases to be analyzed} each stage will have two basic prop-
erties:

* 7. will always be chosen such that only one propagating wave exists at the
carrier frequency. Therefore, the voltage of the interconnection consists of a modu-
lated wave propagating in one direction, and of a pair of sidebands without carriers
propagating in the other direction, as it is illustrated in Fig. 1. The carrier V(t) is
used as a reference for deriving the modulation indexes of both sets of sidebands.

t By replacing o(£), vy +p, vu—pWith v7(2), v5 45 , v -, one obtains a”, 6. Ina similar

way one obtains a”, 67,
{ In Ref. 1, AM = PM conversion is considered.
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() it will be linear with respect to the modulating signals (since they
are supposed to be small)
(#2) it will not generate any AM-to-PM (or vice versa) conversion.

As a result of property (iz) the PM indexes of a stage are independent
from the AM indexes, and vice versa. Therefore, the two cases AM,
PM can be treated separately.

Consider for instance the PM case. With reference to the stage of
Tig. 3, let 67, 67 be the input (¢ = 1) and output (7 = 2) PM indexes.
Then, because of (i), the scattered indexes 85, 6, can be related to
the incident ones 67, 67 through a set of linear equations of the type

6 = pobly + 1706,
0 = 1567 + p4b-.

(8)

- -

a,f

-
a,f

Fig. 2— Description of the interstage sidebands in terms of modulation in-
dexes.

Notice that (8) are equivalent to (1). The scattering matrix S,

s, = | o 5 ©
‘T? Py

will be called the PM scattering matriz* of the stage. T, will be called
the PM forward transmission coefficient. T", is the PM reverse trans-
mission coefficient. p,; is the PM inpul reflection coefficient. p’; is the
PM output reflection coefficient.
In a completely similar way the AM scattering matrix S, of a stage
is defined f
- —
“ TG
S., = | Pa
|77 pa
* Note that the complex coefficients p~, T, T, p— correspond to the familiar co-
efficients Sy, Si2, Su, S which are usually employed to represent scattering
parameters. (See Ref. 2). As can be directly verified from (8), if a unit index is
incident on either port, 7' gives the index transmitted out of the otherJJort, and p
gives the index reflected at the same port. The arrows —, «— are applied to 7', p to
indicate the directions of the incident waves to which 7', p refer.

T The convention of using the letters a, 8 for designating the AM, PM cases will
always be followed through the analysis.

. (10)
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S'L—:DT Te"7::D 92‘
[ [y
/ T =t

9:‘@:

Fig. 3— Description of the PM properties of a stage by means of the PM
scattering coefficients.

In conclusion in this analysis: the variables are the PM, AM indexes;
the frequency of the variables is p; the parameters specifying the behavior
of the various networks are the PM, AM scattering coefficients.

11I. GENERAL PROPERTIES OF A LOSSLESS MULTIPLIER WHICH DOES NOT
PRODUCE AM & PM CONVERSION

It is important to emphasize that this analysis applies both to a
multiplier consisting of a single stage and to a chain of multipliers.

Furthermore, in this paper, the analysis will be limited to the case
of a lossless multiplier which does not produce AM < PM conversion.
This is the most important case for the following two reasons. The first
reason is that, in general, a multiplier which is tuned does not produce
AM = PM conversion if the sidebands are close enough to the carriers
(see Appendix). Note that it is assumed that the bias network is properly
designed so that effects such as those described in Ref. 3 are absent.
Turthermore, results obtained for the case of no AM & PM conversion
can be extended to the general case of AM = PM, as it is shown
in the second paper. The second reason is that the question of stability
generally arises only when the losses of the multiplier are small. Further-
more, if the losses are small, the results which are obtained by neglect-
ing them can be readily extended to include them, as is pointed out in
the second paper.

In this section it is demonstrated that a lossless multiplier of order
N has the following properties:

T3T7* = N(1 — popa™)
A 1 -
T.T.* = ﬁ(l — papa™) (11)
pa* ps pe* | pe .
-4 N—= =0, N =+ = =0.
T.* Ty * Ty
The equations of (11) have three important properties.
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One is that they depend on only one multiplier parameter: the order
of multiplication N. They do not depend in any way on the actual
circuit configuration or on the type of varactor, etc.

Another property is that they are frequency independent. That is,
they do not contain p explicitly even though T, etc. will in general
be frequency dependent.

The last important property of (11) is that they represent 4 in-
dependent relations among the 8 unknowns T, ete. For instance,
if the AM coefficients are known, then the PM coefficients can be
calculated by means of (11), and vice versa.

3.1 Demonstration of (11)

Consider the multiplier of order N shown in Fig. 4(a) connected to a
load By and driven by a voltage generator having impedance R, .
Let V.(f) (r = 1, N) be the voltage of the input port (» = 1) and out-
put port (r = N) of the multiplier in the absence of fluctuations. It
will be supposed that the input of the multiplier is matched to the
generator. Therefore, the input impedance of the multiplier is R, .
The multiplier is assumed to be lossless and without AM = PM.
The characteristic impedance associated with the rth (r = 1, N) port
is B, , according to the footnote on p. 780.

Assume now that two small waves »,”(f), vy~ (f) are arriving towards
the multiplier, and that they consist of the frequencies w, &= p, Nw, == p,
respectively. The problem to be considered is to find the scattered

Rg=R, \:'1 xN \':N Ru
1 )
V,

9 (@)

v {t) Vu(t)
GENERATOR xN LOAD

V(L) V(L)

(o)

Fig. 4— (a) Multiplier of order N. (b) Input and output sidebands of the
multiplier.
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waves v, (f), vy~ (1), as illustrated in Fig. 4 (in which the carriers V.(1),
Vx(t) are not shown).
Let (67, 67), (a7, a7) be the indexes of »,(f) with respect to the

r?

carrier V,(t). Then, according to (5),
v,”() = 2(Re){(a; + j67)V, exp [j(rwo + p)!]

+ (a* + j&9)V, exp [j(rwo — p)il} (12)
and similarly for »,7({) (just change the arrows directions). V., is the
Fourier coefficient of V() (r = 1, N).

Now let P7,, ., be the power carried by the forward wave of frequency
rwo + p, and let Py, _,, P, »s Pru.,+, have similar meanings. Then

the total power at the frequency o (@ = rw, = p) is the sum of the two
components (—), («):

P, =P, 4+ P;. (13)

Consider now the fact that the multiplier is lossless, and that there-
fore Manley-Rowe relations hold.* That is,

P... P.._ ) ( Pyuisn Pyoi )
[ L [ ] _ oty _ o=p — 0' 14
(Wu+p C!Jn_p lel+p Nﬂdn_p ( )

From (12) one can caleulate P., P, (v = rw, & p). For instance,

/72
VL 4 e

SR, " P, (15)

P:’u.ﬁrp = | ﬂ',:. + jB:

in which | | indicates the absolute value. P, is the power delivered by
the generator to the multiplier at w, and transferred by the multiplier
to the load R, . (The input carrier power is equal to the output carrier
power because the multiplier is lossless.)

After caleulating P7, P, one obtains P, (v = 7w, &= p) by means
of (13). Then, by substituting P, in (14), one obtainsf

(IM)[N(67a* — 67a7*) + Ovay* — yay*] = 0, (16)

where (IM) indicates the imaginary part.
Now if one considers the multiplier PM, AM scattering matrices

* The minus sign in front of the second addend of (14) occurs because power is
assumed positive when it is flowing towards the right. This, at the output port, is
opposite to the usual convention of assuming positive the power absorbed by the
varactor. See Ref, 4.

% In deriving (16) the approximation rawy % p 2 re, has been made so that (14)
becomes:

NP,,ip — NP,,—p — Pyoyi» + Pyye—p = 0.
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S., Sy defined in the previous section

9‘1_ _ & N a, & a,
J v | = gy a’ | Sa ay (17
and substitutes (17) in (16), one obtains
(IM)[87a7*(N — Npop.* — T7T.%)
+ G:G"\—*(l - p‘;P:* - ATT.;T:I_*) (18)

+ 0lav*(—NpTo* — p.*T75)
+ Ova,*(=NT5p,* — p3T.*)] = 0.
A relation which has to hold for any choice of (67, 87, ete.) and
therefore it has to hold for any choice of (8a *,0yay*,ete.). This is

possible only if (11) holds. Note that the approximation rw, 4= p = re,
has been made in deriving (18).

IV. SLOW-VARYING FLUCTUATIONS

Suppose now that the input generator V, is phase modulated and that
its amplitude is kept constant. If the modulation frequency p is small
enough, then the output phase deviation will be just N times that of
the input generator. Furthermore, all amplitudes will remain constant.
These properties are common to all multipliers and are well known.®'®
Therefore, they will not be demonstrated here. As a consequence of
these properties one has*

Iim7, = N lim p;" = 0.

p—0 n—0

By combining these two results with (11) one obtains

Ty =N pe =0
T, =1 pa =0 (19
e .

NTY NTy

which apply to the limiting case of slowly varying fluctuations. From
(19) one can see that 7", = 1. This has the meaning that if one amplitude
modulates the input generator, then the output voltage will have an
identical (percentage-wise) modulation.

* The multiplier is matched at the carrier frequency wp . Therefore, there is no
reflection present at the input of the multiplier if modulation is absent. Consequently,
input reflections will remain absent if the input phase is slowly modulated. Therefore,

pg =0if p=0.
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Note that (19) leaves only two coefficients to be determined: two
of (p7*,05,T5) or two of (p;*,p7,T:%). Both (11) and (19) represent
quite general properties of ideal (i.e., lossless, tuned) multipliers. They
do not depend on the actual cireuit configuration of the multiplier,
on the type of varactor characteristic, on the power level, ete.* Note
that from (19) one has

(TH*T*)(T5T) = 1.

This means that either the “PM round-trip transmission” (75T%)
or the “AM round-trip transmission” (7,7",) is larger than unity.f
Therefore, reflections of the external circuit (the output load and the
input generator) can produce instabilities.'

n

V. MULTIPLIER OF ORDER N = 2
In this section the following type of multiplier will be considered:

(7) the nonlinear capacitance has a square-law Q-V characteristic,
(77) the order of multiplication is N = 2", and
(#%%) it has the least number of idlers’ (2w, , -~ , 2" "wo).

This type of multiplier is most important because it can be exactly
treated with little difficulty and it is realistic at the same time. In fact,
abrupt-junction varactors exactly satisfy (i); graded-junctions ap-
proximately satisfy (i); most practical designs are based on (i) for
reasons of simplicity. Condition (#%) excludes from this treatment two
important cases: N = 3, N = 5. On the other hand, the (exact) results
which will be obtained for N = 2, N = 4, N = 8, N = 16, N = 32,
etc. may be qualitatively extended to the remaining cases N = 3,
N = b5, etc.

In the Appendix, it is shown that, because of (i), (¢7), and (77%), one
has T = (=1)", p. = [N — (—1)"]/3N. Therefore, by combining
these results with (19), one has

g = |m T 0 (=D (2a)
7 o] (N LGN

o N = (=) (=

pa T.

8, = | & N (2b)
T, pa 1 0

* They are valid both for a single stage and a multiplier consisting of many stages.
+ Neglecting the possibility that they are both unity. See the next section.
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Therefore, the multiplier scattering matrices are uniquely determined
as functions of only the order of multiplication N.

The physical meaning of the scattering coefficients (2) may be il-
lustrated by the following two examples.

5.1 First example.

Let a small signal Nw, + p be injected into Ry by means of a direc-
tional coupler connected as shown in Fig. 5(a). Then the voltage across
Ry will be both amplitude and phase modulated, and the AM, PM
indexes will have equal amplitudes according to (4). Let « be their
amplitude. Next, reverse the connection of the directional coupler,
as shown in Fig. 5(b). Now the following facts will be observed:

(z) The voltage of Ry contains only PM. That is, the AM component
of w + p s absorbed without reflection by the output of the multiplier
(because p, = 0). The PM component, on the contrary, is reflected
back into the load Ry . The PM index across Ry is pa with p’; given
by (2). Note that | p5| = 1 for all values of N, and that | p5| > 1
for N > 4. Therefore, the PM component is reflected with amplifica-
tion for N > 4. For instance, if N = 8 the gain is 3. All this indicates
the circuit of Fig. 5(b) as a possible scheme for modulating the output
phase of a multiplier without producing any AM (and with gain if
N > 4).

(#2) The voltage across R, has both AM and PM. The PM index
is Tha = (—1)"a and the AM index is Ta= (—1)"/N-a.

Nwq+p

DIRECTIONAL
7 COUPLER

R y P
[T
= (a) =

Nwy+p

R Rn
f@—w» N W 1
= (b) =

Tig. 5 — Injection of a tone at the output port of the multiplier,
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5.2 Second example.

Now let the previous experiment be repeated at the input side of
the multiplier, as shown by Fig. 6. Let a be the amplitude of the indexes
generated across R, when the generator w + p is connected as shown
in Fig. 6(a). Then, after connecting @ + p as shown in Fig. 6(b), one has:

(7) The AM index across Ry is Ta = a and the PM index is T =
Na. These are general properties which have already been found and
discussed in the more general case of the preceeding section [see (19)].

(#) Across R, there is only AM and the AM index is pje with p,
given by (2).

In practical applications it is important to bear in mind the following
meaning of (2). If only phase modulation is present, then one can cal-
culate the upper sidebands by simply replacing the multiplier with a
linear and time-invariant amplifier whose scattering properties are
given by (2a). Similarly, if only AM is present then one can calculate
the upper sidebands by using (2b). All this is true provided the upper
sidebands are normalized with respect to V, , in the AM case, and with
respect to §V, , in the PM case.

Consider now the PM case. From (2a) one obtains that the round-
trip PM transmission 7377 is

| 7315 | = N. (20)
w°+p
R, Ry
W XN F—AAA
Wo+p
R, Ry

Sl

= (b) -

Fig. 6 — Injection of a tone at the input port of the multiplier.
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Therefore, interactions between the multiplier and the other stages
can cause phase instabilities.*Furthermore, from (20) one can see that
the possibility of instabilities increases with the order of multiplication
N. However, the presence of loss will decrease the round-trip trans-
mission. More precisely, if 5 is the multiplier efficiency,{ then the round-
trip power transmission will become approximatelyi

[T [ = N @

and the possibility that interactions of the external circuit cause PM
instability exists when approximately

1
=, 29
n> N (22)
Note that amplitude instabilities cannot oceur.§ In fact, if the output
port. of the multiplier is connected to an arbitrary passive stage, then
the input AM reflection of the multiplier is always less than¥

[pa |+ 17315, (23)

which is never greater than unity, as one may verify from (2b).

APPENDIX

Demonstrations for the multiplier of order 2" which has the minimum
number of idlers and uses a ‘“‘square-law”’ varactor. Slowly varying modula-
tions.

Let S,(f) be the total elastance of the varactor. It can be separated into
the sum of a time-varying component S(t) and an average component S,

Si(t) = 8() + S, .

The “‘external circuit’” connected to the varactor can be represented
by an impedance Z, in series with a voltage generator V, , as it is shown
in Fig. 7.

Let Z(w) be the total impedance in series with S(f). Then Z = Z, +
So/je.

* This is discussed in detail in the second paper.

1 Output power divided by input power.

t #? is the round-trip transmission through an attenuator which has a forward
(power) transmission 5. Equation (21) has been obtained by representing the
multiplier as the caseade connection of such an attenuator and a lossless multiplier.

§ It is important to note that it is assumed that the ‘‘bias cireuit” is properly
designed, so that low-frequency fluctuations of the average varactor ecapacitance C,
are avoided.

¢ This can be obtained by using standard techniques.
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The hypotheses are:

Z =0 if w=2%, s=1,---,n—1) (24a)
Z =R if w=uw (24b)
Z =Ry if o2=Nw = 2%, (24c¢)

Z = o if w isfarfrom 2%w, (s=0,:-,m). (24d)

Equation (24a) requires Z = 0 in the neighborhood of the idler fre-
quencies 2wy, --- , 2" 'w,. Equations (24b), (24c) require Z to be
equal to the input impedance R, for v = w,, and to be equal to the
output impedance Ry for @ = Nw, . In (24d) it is required that current
flow be limited to the frequencies of (24a), (24b), and (24c). Because

Ze
o
1
V=F(Q) V+v, :Q +q
\, 1
(viv)=A(a+q)?
(a) (b) (c)

Fig. 7 — Equivalent circuit of the frequency multiplier.

of this last requirement, the variable component Q() of the charge
of the varactor (when the sidebands are absent) is of the type

Q) = 2 Q. exp (o). (25)

=0, =,
r=4+2°

Since the varactor has a square-law Q-V characteristic F(Q), the
total voltage* V() across the varactor is related to @(f) through a
relation of the type

FQ®) = V() = AQW’ + Q()Sy + Vo . (26)
Therefore, the time-varying part of ¥, will consist of two components:
one component V(¢) due to AQ(t)*

_ * The sign convention in this appendix is that power is positive when flowing
into the varactor.
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Vi) =4 Z Q.Q. exp [j(r + Dwil] = 2 V, exp (jlwl)
iET (27)
(G =42 r==22" s,h=0,--,n)

and another component V' = @Q(t)S, which represents the contribu-
tion of a constant capacitance C, = 1/8, . The total elastance is obtained
by taking the derivative of (26) with respect to Q():

S,() = SW) + Sy = 24Q() + é— (28)

and one finds a constant capacitance C, in series with a time-varying
elastance component S(f) originating from AQ(¢). Therefore, the
equivalent circuit of the multiplier becomes that of Fig. 7(b) in which
the nonlinear element has a Q-V characteristic of the type AQ®, and
V), Q(t), S(I) represent its voltage, charge, and elastance, respectively,
when the sidebands are absent. From (28), (25) one has

S(f) = 24Q(1) = 72 S, exp (jrwot) (29)
with -
S, = 240, . (30)
Let now
o) = 25 g exp [ + )] @31)

i=+1

be the sideband components of the charge of the varactor. Then the
voltage sidebands across S(t) are

o(t) = S(q(t) = 2 v..; exp [jlrwe + ip)t]. (32)
By substituting (29), (31), in (32) one obtains* », ;
Uy a1 = Eﬂ SuGirmw,er  (r=1,--,2". (33)
u=+21
But from (24d) and from the fact that Z(w 4+ p) = Z(w), one has
Qir-wy, 21 = 0 for (r —w) # £1, ---, £2". (34)

In (33), therefore, one has to consider only those values of u which
satisfy (put: r = 2")
2 — = 1, -, 2" (35)

* Note that ¢,,: = ¢*- i, vr.i = v*,_;, (see footnote on p. 780). Therefore, con-
sideration can be limited to the case » > 0.
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Then, the only possible values of u are
w=2"" w = 2" u = —2" (36)

because all other values of u (remember that « has to be of the type
u = =+2°) would cause | r — wu | to be either zero or odd. Therefore,
remembering that r = 2" one finds that (33) consists of only three
terms:

Ve x1 = Qr/Z.ilSr/2 + (]zr,ils—r + G‘:—k.ﬂSw {"" =1, ;2")- (37)*

In conclusion, in order that ¢(t), v(f) represent sideband components
produced by sources located only at the input and the output of the
multiplier, it has to be (necessary and sufficient condition)

0,0, =0 for r= 2 --- £2"" (38a)
Gr.sn # 0 onlyfor r= &1, -, £2" (38h)
Vys1 = Qrz.s1502 F QoS- + qF 21 Se, for r=1,---,2" (38¢)

Equation (38a) follows from (24a); (38b) follows from (24d); (38c) is
(37).

Note that (38a) and (38b), are the constraints given by the “‘external
circuit” (which includes Co), and (38¢) is the constraint given by the
elastance S(¢) of the varactor.

The “equilibrium equations” for the "carriers” @, , V. are obtained
in a similar way. They are

V,=0 for r= =+2,---, £2"" (39a)
Q. =0 onlyfor r = +1, ---, £2" (39b)
Vi = jw@l2, (39¢)
Vy = —iNw@Q.E., (39d)
V, = A[Q.Q.» + 2@Q:,Q%] for r=1,.--,2% (39¢)

Equations (39a) and (39b) follow from (24a) and (24d), respectively.
(39¢) follows from (24b) and the hypothesis that the input generator
is matched to the multiplier. Equation (39d) follows from (24¢). Equa-
tion (39¢) can be derived from (27) by using the same procedure used
to derive (38c¢) from (32).

* Note, if r = 1, the first term of the second member is zero; if » = N, only the
first term of the second member is nonzero.
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A.1 Demonstration of T, = (—1)"/N
Theorem 1: If ¢ b satisfies (38) and if

Gros1 = {r.21 €XP []1‘;(—1)']
) (40)

Bp,41 = —D, 21 XP [j%(—l)'] r=2%s=20,--,n)

then also q, v satisfles (38), i.e., it gives sidebands produced by sources
at Wy + p, ng =+ p.

Proof: §, © clearly satisfies (38a) and (38b) because §, # does. Therefore,
it remains to be demonstrated that (3Se) is satisfied.
By substituting (40) in (3Sc) one obtains

—b, 41 exp [Jg (_l)l:| = {r/2,415,/2 €xXp I:Jg (_1}'_1:|

o | i5 0|+ s ew [ <51

which is satisfied because 4, 7 satisfies (38), and because

—exp [ig(—l)'] = exp [jg(—-l)m} — exp [—jg(—l)'}-
Suppose now that ¢, ¢ is produced by a PM source located at the
input of the multiplier. Therefore, remembering that p; = 0 because
of (19), the input components of §, # represent a PM forward wave,
and also the output components constitute a PM forward wave. Con-
sider now the input (r = 1) components of §, 5. From (40) one has

Uy,o1 = — i1, o1 Gr.s1 = j91.¢i (““-)

from which one can see that, since #, .,, ¢ .., is an M “forward”
wave, then #; ., .-, is an AM “backward” wave. In a completely
similar way one finds that also the output components oy,.,, v,
represent an AM ‘“backward wave”. Finally, remembering (4) and
the definitions of T, , T, , one has
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By combining this result with (40) one has

el i/ N GV

Ui Uwp
But T; = N. Therefore, one obtains the desired result
- _ =0
T, = v
A.2 Demonstration of p = [N — (—1)"]/N-3
L~ N —(=D"
pa = __N(3—) (42)
First it will be shown that the charge ¢(f) defined by
Q“'r.l = ér‘—l = (1 - P(S))Qr (T = 2.,5 =0,--- ,ﬂ) (43)
with
2"—! — —1 n-—as
p(s) = —2;3—)— - (44)

gives the charge sidebands produced by an AM wave of amplitude
a; = 1 arriving at the input of the multiplier.

Let first the fact that ¢(f) satisfies (38) be demonstrated. Substitute
(43) in (37) and take into account (30). One obtains #, the voltage
associated with g,

U0 = 24{Q2Q.2(1 — pls — 1)
+ Q.Q-,[1 — p(s) + (1 — s + 1)}
r=2s=1---,n—1). (45)
From (44) one has
2 —p@ —ps+ 1) = 2(1 — p(s — 1)).
Therefore, by using (39¢), (45) gives
b =401 — ps — 1))V, =0 for r=2,..-,2""

because of (39a). Therefore, g, » satisfies (38). Furthermore, it represents
AM because the sidebands ¢,,.; are “‘in-phase” with the carriers @, .
This is shown by (43).

Now let the output indexes ay, ay of ¢, v be calculated. Consider
the following expressions: (38c) with r = N; (30) with r = N/2; (43)
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with r = N/2; (39¢) with » = N. From them one obtains

5,\',1 = VN -
From this first relation, by using (39d) and (43) with r = N, one obtains
?n).v.l = ‘—RN(iju&N.l)-

This second relation gives ay = 0, because jNwogn ., is the current
at Nw, + p. Then the first relation gives at once ay = 1.
From the fact that ay = 0, ay = 1 and from the fact that (19) gives
T, = 1, the input indexes must be
a =1, a, = p, .

Therefore, the input voltage sidebands must be

5I.il = (1 + P:)Vl . (46)
But, by substituting (43) in (37) with r = 1, one has

5’1.1 = (1 - P(D)Q'.’S—l + (1 - P(O))QﬁS:z

from which, remembering that Q,S_, = Q%S, = V, because of (39)
and (30), one has

bia = (2 = p(l) = p(ONV: = (1 + p(O) V, (47)

in which use has been made of (44). Finally, by combining (47) with
(46), one obtains

N - (=D

pa = p(0) = 3N

which is the desired result.

A.3 Demonstration of the fact that the multiplier does not produce AM <
PM conversion, if p is small enough.

An input PM source does not cause AM if p is small enough. In
fact, one may verify that the sidebands produced by an input PM
forward wave of amplitude 67 = 8 are

Qr.l = er,.ﬁ, qr.—l = erra* (48)

which are in “‘quadrature” with respect to the carriers @, . To dem-
onstrate that there is no PM — AM conversion it therefore remains
to be shown that an output PM source does not produce AM. This
can be done by applying transformation (40) to the AM sidebands
given by (43). In fact, in this way one obtains PM sidebands. They are
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produced by PM sources located both at the input and the output
of the multiplier. Therefore, one concludes that there is no PM — AM,
if p=0.

By using the same procedure one can show that there is no AM —
PM conversion. In fact, the discussion following (43) shows that an
input AM source does not produce PM. Then, by applying (40) to (48),
one finds that an output AM source does not produce PM. This con-
cludes the demonstration.
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