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Efficiency Varactor Frequency Multipliers of
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A general analysis of the stability conditions of frequency multipliers
of order N = 2" is presented. The frequency multipliers to be considered
are harmonic generators which use varactor diodes as nonlinear elements.
The type of instability investigated is that which causes spurious tones
lo appear at the outpul of a multiplier in the vicinity of the desired harmonic.
It arises because an efficient multiplier is potentially unstable with respect
lo the quadrature components of its sidebands.

This paper shows how tnstability arises and how it can be avoided.
One of the main results is that, to obtain stability in practical cases, it
is sufficient that the bandwidths of the various resonant circuils satisfy
some simple condilions.

I. SUMMARY OF RESULTS

A general analysis of the stability conditions of frequency multipliers
of order N = 2" is presented. The frequency multipliers to be considered
are harmonic generators which use varactor diodes as nonlinear elements.

That stability is one of the most serious problems in high-efficiency
multipliers is a widely known experimental fact.'**

At the present time little is known of the restrictions placed by the
condition of stability on the available circuit econfigurations. Con-
sequently, present design procedures leave the problem of stability
to be solved experimentally, and this is often done at the expense of
efficiency. Furthermore, multipliers which are individually stable may
become unstable when connected together to form a chain. As a result,
isolators are often needed. The isolators will guarantee stability but
will lower the overall efficiency.

The practical importance of the problem to be analyzed is illustrated
by the following example.
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Suppose that one has designed a stable and very efficient octupler,
and that one wants to reduce the output noise by using a bandpass
filter consisting of a high @ resonant circuit connected in series with the
load. In general, one will not obtain the desired result. In fact, the out-
put noise will, in general, increase rather than decrease. Furthermore,
if the bandwidth of the filter is too narrow, then the multiplier will
become unstable.*

This example illustrates the important fact that, as the circuit
approaches an unstable condition, the output noise level increases
indefinitely. Then, when the multiplier is on the point of becoming un-
stable, the output noise becomes very large at some frequencies. Further-
more, when instability arises, spurious tones appear in the vicinity
of the carriers. Therefore, not only is it important that a multiplier be
stable, but it is also important that it be far from instability, if one
wants a low-noise multiplier.

This paper shows how instability arises, and how to avoid it. It also
shows how to derive the output noise from a knowledge of the various
noise sources. Some of the results which have been obtained are sum-
marized by the following statements.

1.1 Doubler
Consider the doubler first.

(4) The stability of the doubler will not, in general, depend on the
impedance presented by the input circuit (to the varactor) in the
“vicinity” of the input carrier w, . More precisely, in the design of the
input circuit, consideration can be limited to those frequencies whose
distance from the carrier w, is larger than half the bandwidth of the
output circuit [roughly; see (44), (45), (46)]. At those input frequencies
which are not in the “vicinity” of the input carrier,

(%) the impedance presented by the input circuit to the varactor
should be large rather than small, as compared to E, [see (13), Theorem 2,
Theorem 3], where R, is the impedance presented by the input circuit
at wy . Furthermore:

(433) The output bandwidth should be large compared to the input
bandwidth [see (35), ete.]. Furthermore:

(iv) An efficient chain of more than two doublers which are in-
dividually stable will, in general, be stable if each doubler has been
designed according to (¢7) and if, in addition, each doubler is sufficiently
broadband with respect to the preceding one [see (58)]. Furthermore:

* This example is derived at the end of this paper. See (51), (52), etc.
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(v) Those circuit configurations should be preferred which produce
PM = AM conversion [see (55)]. Therefore, low-pass circuit configura-
tions at the input, and high-pass circuit configurations at the output,
are, in general, preferable to bandpass circuit configurations.

1.2 Multiplier of Order N = 2

Consider a multiplier of order N = 2" > 2 which has the minimum
number of idlers. This memorandum shows that such a multiplier is
equivalent to a chain of doublers.* Therefore, results obtained for the
doubler can be extended to this type of multiplier. For instance (iv)
gives:

An efficient multiplier of order 2* which has the minimum number
of idlers should have

B|<<Bz<< i <<Br|—l<<Bn,

where B, is the bandwidth of the input circuit, B, is the “equivalent”
bandwidth of the first idler, etc.

Note that the above resultst apply to the case of a lossless multiplier.
The presence of losses reduces the restrictions placed by the condition
of stability. If » < 1/N, then the question of stability does not arise
any more, in general. This has been shown by Ref. 3.

II. PRELIMINARY CONSIDERATIONS

2.1 Method of approach of the mathematical description of the multiplier
and ils signals

This paper is concerned with the presence of amplitude and phase
fluctuations in the multiplier signals. Suppose, for the moment, that
these two types of fluctuations are independent from each other. That
is, suppose that the multiplier does not produce AM-to-PM conversion,
and vice-versa. Suppose, furthermore, that only PM is present. Then
each signal will consist of a carrier and of a pair of sidebands in quad-
rature with respect to the carrier. Since either sideband can be obtained
from a knowledge of the other, then one may consider only one of the
two sidebands and ignore the other one. Let then, for instance, the

* See Theorem 1 of the second section. Note that the equivalence is exact only
if the varactor has a square-law @Q-V characteristic.

T These results implied that the impedance presented by the circuit (to the
variable capacitance) is “large’’ at the frequencies which are far from the various

carriers. Therefore, subharmonic oscillations and bias instabilities are not included
in this analysis.
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upper sideband be chosen as the variable, and let it be described in
terms of propagating waves.

Then the input variables of the multiplier will be the two waves*
..y Vo.., Which constitute the upper sideband of the input carrier
wo . Similarly, the output waves vy,,.,, Vy..+, represent the output
variables. w, is the input “‘carrier’” frequency of the multiplier, and p
is the frequency of the fluctuations. At this point the scattering formalism
furnishes a convenient way of describing the properties of the multiplier.
More precisely, one may define the PM scattering parameters of the
multiplier as the reflection and transmission coefficients which relate
the “scattered” waves v7,.,, Uww.:p, to the ‘‘incident” ones 7., ,
Uyw.sp - One obtains in this way the PM seattering matrix S, of the
multiplier.

Through the analysis v,.,, Vesin) UNuosn s UNuatn» hAVE been nor-
malized with respect to the carriers. In this way the variables become
the dimensionless coefficients

R s Vgt L UNuos o UNwotn
Jol = 1/”a ] ]gl - Vw. ’ JG.\' - ]‘,’NMQ ] ]67\' - V,\-‘“ ]
which represent ‘‘modulation indexes”. Note that V., is the Fourier
coefficient of the input carrier w, , and Vy,, is the Fourier coefficient

of the output carrier Nw, .

In a completely similar way the AM case is treated. By normalizing
the AM upper sidebands with respect to V.., V., , one obtains four
modulation indexes a7 , a7, ay , ay which represent the AM variables.
Furthermore, by considering how these waves are scattered by the
multiplier, one finds the AM scattering matrix S. which describes the
multiplier AM properties.

2.2 General Scattering Properties of an ''Ideal” Multiplier

Consider a multiplier of order N = 2" which has the following prop-
erties: it is lossless, it has the minimum number of idlers (n — 1), and
it uses a varactor having a square-law Q-1 characteristic. The first
paper (See Ref. 3) has shown that, if the fluctuations are slow enough
(p = 0), then such a multiplier does not produce AM PM conversiont
and it has the following scattering matrices:

* 47, v2 designate the Fourier coefficients of the voltage components of fre-
quency w. They propagate in the directions indicated by the arrows. For more
details on the mathematical deseription of the multiplier and its signals see Ref. 3.

t It is important to note that it has been assumed that the “‘bias circuit” of the
multiplier is properly designed, so that low-frequency fluctuations of the average
capacitance C are avoided. See Ref. 4.
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A multiplier for which (1), (2) apply will be called “ideal”. According
to the preceding discussion, one has that, if only PM is present and if
a multiplier is “ideal”, then
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If only AM is present, the relations existing among the upper sidebands
are similar to (3) (Replace p5, T, ete. with p7, T, , ete.).

In conclusion, one can calculate the sidebands present in an ‘“‘ideal”’
multiplier in the following way. First, separate the PM components
from the AM components. Next, solve separately the two cases AM,
PM. The PM case is solved by means of (3). That is, one replaces the
multiplier with a linear amplifier which has

() a forward transmission coefficient 7',
(#7) a reverse transmission coefficient 77 ,
(777) an input reflection coefficient p7 , and
(fv) an output reflection coefficient p; .

Then one supposes that the variables consist of the PM upper side-
bands only, as it is illustrated by (3), and one readily calculates them.
In a completely similar way one caleulates the AM upper sidebands.

2.3 (eneral Considerations on Stability

The frequency response of an unstable circuit which is on the point
of becoming stable is infinite.* Hence, if the parameterst of a circuit
are continuously varied, a circuit ean go from a stable to an unstable
situation if and only if its frequency response becomes infinite. There-
fore, a certain situation A is stable if{

* See Ref. 5, p. 316, or Ref. 6, p. 112,
f These parameters are discussed in the next sections.
1 Note that there are stable circuits for which (4) is not satisfied (conditionally
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one can cause the circuit to pass from situation A to a stable
situation B by continuously varying its parameters, without (4)
causing its frequency response to become infinite.

For instance, consider a multiplier which is individually stable and
which is connected to a generator and a load which have reflections.
Suppose, furthermore, that one is concerned about the possibility that
these reflections cause instability. Then, according to (4) one may find
out whether or not the circuit is unstable (or conditionally stable) by
examining whether or not the circuit response becomes infinite as the
reflections are decreased in amplitude. This can be done by inserting
attenuators between the multiplier and the other stages (the load and
the generator). In this example, situation B occurs when all reflections
become zero. The importance of (4) and of this example will be better
understood in the next sections.

Consider now the case of a multiplier which does not produce AM =
PM conversion. Then only phase instabilities can occur, as has been
shown by Ref. 3. Therefore, one is concerned about its behavior with
respect to PM only.

In general, when the multiplier is on the point of becoming unstable,
all four PM scattering coefficients (7~,7",p",p") become infinite si-
multaneously.* Therefore, one may choose any one of them to study
the stability of the multiplier. However, since the forward transmission
T~ is of special interest because it gives the output response to input
PM signals, it will be selected as the multiplier frequency response to
be analyzed.

The stability of a multiplier depends on the values of certain param-
eters which will be discussed in the following sections. Those values of
these parameters for which the circuit is stable constitute the so called
“region of stability”’. At the boundary of the region of stability the PM
forward transmission becomes infinite at one or more frequencies, as
has already been pointed out. Therefore, in order to find the stability
region, one must find those “critical” values of the parameters for
which T~ = . Then, once the boundary is found, one must identify
which one of the two regions separated by the boundary is stable. This
can be done by applying the stability test (4) or any of the usual stability

stable circuits. See Ref. 6, E 162). However, for practical reasons, one is interested
in designing a multiplier which does not become unstable if the losses are increased.
(i.eiﬁ, which is unconditionally stable.) For such a multiplier (4) is necessary and
sufficient.

* See Ref. 6, p. 164. Since the discussion will be mostly confined to the PM case,
the subscripts a, 0 used in (1), (2), and (3) to distinguish the AM case from the
PM case will be omitted unless necessary.
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tests (such as the “Nyquist plot”, etc.) to one point of either one of
the two regions.

As will be seen, a multiplier can be represented by means of a chain
of stages which are individually stable. The analysis of such a chain
may be carried on as follows. Consider the cascade connection of the
two stages (b), (c), shown in Fig. 1. If the two stages are individually
stable the overall forward transmission becomes infinite if and only if

pupe =1, )]

where p', is the output reflection of the first stage* and p7, is the input
reflection of the second stage. Equation (5) may be obtained in the

- Pp —=
1 — e
(b) (c) (b) (c)
-— pb pc

(a)

Fig. 1—“Loop transmission” at the interconnection between two stages.

following way. Consider the interconnection between the two stages
(b), (¢), and suppose that the reverse path is separated from the forward
path, as illustrated in IFig. 1(a). Next, break the reverse-path connec-
tion as it is shown in Fig. 1(b). In addition, terminate P, in the char-
acteristic impedance Z, of the interconnection, and apply a unit voltage
to P,, as illustrated in Fig. 1(b). Then the voltage which appears
at P, is p,p . Therefore, p%p- represents the ‘“‘return voltage” (i.e.,
the familiar loop transmission p8)f of the loop indicated in Fig. 1(a),
and (5) is demonstrated.

In some cases, one will be interested in knowing the reflection p"’
presented by the output of a stage when its input port is connected
to a generator which has an output reflection p; # 0 (see Fig. 2).
The output reflection p™ is given by

* Which oecurs when the other port of the stage is terminated in its characteristic

impedance.
T See Ref. 6, p. 44.
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Fig. 2 — Effect of o7 on the output reflection of a stage.

- - T7T" -

P =p — oot (6)
1—»pp

where p~, p=, T~, T" designate the scattering coefficients of the stage

when its ports are terminated in the respective characteristic impedances.

Equation (6) may be obtained by using standard techniques.”

111. EFFECT OF INTERACTIONS BETWEEN A MULTIPLIER AND TWO
PASSIVE STAGES

Consider a multiplier connected between two stages as shown in
Fig. 3(a). Such a problem is encountered in two practical cases. One
is the design of the input and output networks of a multiplier, as will
be seen in the next section. The other case occurs when the load and the
generator have reflections and one is concerned about the possibility
that these reflections may cause instability. This is the case considered
here and it is illustrated in Fig. 3(b). It should be clear, however, that
results obtained for either case can be extended to the other one.

In this section it is supposed that the multiplier is lossless. Further-
more, it is assumed that interaction only occurs in the vicinity of the
carriers* so that one can approximate the multiplier properties by means
of (2) (which is valid if losses are absent and if p = 0). It is assumed,
in addition, that the generator and the load do not produce AM #= PM
conversion. This is the worst case, as is explained in the next section.

Since there is no AM = PM conversion, one is only concerned about
phase instabilities and, therefore, it will be assumed that there is only

* This will be justified by the results obtained in the next section. In fact, the
next section shows that, if the multiplier is “properly” designed, then its PM trans-
missions (7=, 7*) are maximum for p 2= 0 and decrease monotonically with p.

Therefore, interaction is in general more likely to oceur for p = 0 (i.e., for those
values of p for which (2) holds), in practical applications.
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PM. Therefore, consideration can be limited to the upper sidebands only
as it is indicated in Fig. 3 where Z,(wy 4+ p), Z.(Nw, + p) are the im-
pedances of the generator and the load at the upper-sidebands, respec-
tively. Let p, , p.* be the reflection coefficients of the generator and the
load, respectively. Then

_ Z (e, + p) — R, _ Z,(Nw, + p) — Ry 7
P Z(wy + p) + R, P Z.(Nw, + p) + By’

where R, , Ry are the values of Z, , Z,, for p = 0.7 Now let p’ indicate*
the reflection presented by the multiplier to the load when the input

2,: = p‘ Zc= RN
e et —a
R|=Rg
! xN 2 §RN=RL

— e O] e

(a)
29(w°+pj
xN Z, (Nwg+p)
ey e’

(b) A

Fig. 3 — Multiplier connected between two stages.

port is connected to the generator. From (6), taking into account the
fact that now p~ = 0 [see (2)], one has
p'=p + T T, (8)
where p~, p~, T, T designate the multiplier PM secattering coefficients.
From (2) one has
. W N — (=1 N R
o= - M =S e o oy )

* The arrows will be omitted, unless necessary.
t R, is the input impedance of the multiplier at «, (the multiplier is assumed to
be matched: Z,(w) = Ri).
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According to (5), infinite transmission occurs if (and only if)
prp’ = 1. (10)

Equation (10) is obtained from (5) by considering the cascade con-
nection of the generator and the multiplier as stage (b), and by con-
sidering the load as stage (c). By substituting (8) in (10), and by taking
into account (9), one obtains

prp’ = (—1)"pL(Npa - N_—_éi)") = 1. (11)

According to the stability test given by (4), one has that the circuit
is unstable depending on whether or not at some frequencies*

(Re)(PLP’ - 1) = 0 (12)
(IM)[prp’] = 0.

This can be shown by applying (4) as illustrated by the example of
the preceding section. In fact, consider a circuit for which (12) occurs
at some frequencies. Next, insert an attenuatorf between the load and
the multiplier. Then, as the attenuator is varied from zero to infinite
attenuation, the forward transmission becomes infinite, because of (12),
(11). Therefore, (12) guarantees instability. Next, consider a circuit
for which (12) never occurs. In this case, as the attenuator is increased,
the forward transmission never becomes infinite. Therefore, one con-
cludes that the circuit is stable if and only if (12) never occurs.

3.1 Discussion of (11)

Let the effect of p, on p’ be considered first. Since both N and
[N — (—1)"]/3 are always positive, one has from (11) that the mag-

nitude of o’ is maximum when p, = —1. Therefore,
The output reflection (p’) is maximum when
| Z, | R, . (13)

Since | p, | £ 1, the first relation of (12) gives that instability can occur
only if

3 _
lﬂnlém=pm. (14)

* (RE) means “Real part of”. (IM) means “Imaginary part of”.

t The attenuator is supposed to be ideal, i.e., without phase delay. Note that
the ecircuit is stable when the attenuator provides infinite attenuation. In faet, in
this case | pr, | = 0 and therefore (12) is never satisfied.
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Therefore,

In order to guarantee stability it is sufficient to require

lp.] < |prol- Note that, in a practical case, it will suffice to
require (14) in the vicinity of the output carrier only.* That  (15)
is, consideration can be limited to those frequencies which

fall within the pass-band of the output cireuit.

Now put (11) into the form

ol =) o

By considering the imaginary part of (16) one finds that (11) [and
therefore (12), also] is satisfied only if either

prr = pgr =0 (17)

0. (16)

or

(_l)nﬂﬂupu > 0; (18)

where p.;, p,; are the imaginary components of p, , p, . According to
(17}, (18) one can say

Instability can occur only if at some frequencies p either
one of the following two situations occur: (19)

(7) both Z, , Z,, are real.
(7)) X . X,(—1)"' > 0 (N = 2.

Consider now the imaginary part of (11). After some manipulations
one obtains

N — (-1) —Np}
PLR[NPM - .?E ; :| - szR (Porprr). (20)
Prr

Therefore, if p,; , pr; # 0, then (20), (18) give

(—1)"m[Np.R - N—:%] > 0. (21)

Note that, if p,; = p,; = 0, then (21) follows directly from the first
relation of (12). According to (21) one can say

Instability can occur only if, at some frequencies,

(21) is satisfied. (22)

* See footnote on p. S06.
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It is recalled that p,z > 0 or p.r < 0 depending on whether or not
| Z, | > Ry (and similarly for p,z , | Z, |, R:). The importance of (19),
(22) follows from the fact that they allow the question of stability
to be answered in many cases simply by looking at the signs of X,
X, and at the magnitudes of | Z, |, | Z. | (more precisely, of | Z, |/R: ,
| Z,,|/Ry). This will be illustrated by the examples of the next section.
Note that the presence of (—1)" in (11), (18), (21), follows from the
fact that there is a reversal in the sign of both p~, 777" each time N
is increased by a factor of two. This is explained by Theorem 1 of the
next section which shows that a multiplier of order 2" is equivalent
to a chain of doublers. Since the round-trip transmission of a doubler
is negative, each doubler gives a contribution of 180° to the phase of the
overall round-trip transmission (from which (—1)" follows).

Consider now some special cases. If N = 2, 4, then (11) becomes

prp’ = (—1)"p(Np, — 1) = 1.

Therefore,

if N = 2 or4, instabilities ean occur only if both the generator

and the load are interacting (i.e., both p, , p, # 0). (23)
If N > 4, on the other hand, then | p’ | > 1evenif | p, | = 0. Therefore,

if N > 4, then instability can arise even if the generator

does not interact (i.e., p, = 0). (24)
This discussion of interactions will be concluded by emphasizing that

if p,, = 0 there is no interaction at all. Therefore, one may
say that the load reflection p, is the primary cause of in- (25)
stabilities.

IV. ANALYSIS OF THE FREQUENCY DEPENDENCE OF THE PROPERTIES OF
A MULTIPLIER OF THE TYPE (26) AND DISCUSSION OF THE STABILITY
CONDITIONS

Consider a multiplier which has the following characteristics:

The order of multiplication is N = 2". It has the minimum
number (n — 1) of idlers. It is tuned. (26)

The analysis of the frequency dependence of the properties of such
a multiplier is based on the following theorem which is demonstrated
in the Appendix.
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Theorem 1:* A multiplier of the type (26) is equivalent to the chain of
stages shown in Fig. 4. The doublers of Fig. 4 are “‘ideal”. More precisely,
they are frequency independent and lossless, and they do not produce
AM & PM conversion. Their scattering matrices are given by (2) (with
N = 2). That 1s,

0 -1

S = f (If only PM is present)
2 1
| | a@n
PUN I S .
S = ’ * (If only AM is present).
1 0
Va2 Ze Co Vor Ze Co
O e »@r_—Heo- oo
° rwg, Vgn
Ze x2 x2 T wotp x2
(IDEAL) (IDEAL) (IDEAL) Ze
Co
“ R R — -o---o:r
\
\ LTH DOUBLER (L+1)TH DOUBLER
Vg + Vg (r=24

Fig. 4 — Chain of doublers equivalent to the multiplier of order N = 2" shown
in Iig. 5.

Note that this theorem applies to the general case of a multiplier which
is lossy and produces AM = PM conversion. Fig. 5 shows the equivalent
circuit of the actual multiplier from which the chain is derived. Z,
is the impedance presented by the external circuit to the varactor.
R, is the series resistance of the varactor. (', is the varactor average
capacitance. The generator V,; consists of a carrier voltage V, of
frequency w,, and of noise terms v, , v,,, ---, v,y which
correspond to the various sidebands w, & p, 2w, = p, ete.

The impedance Z, resonates with €, at the “desired” carriers W ,
2wy, -+ -, Nw, . Furthermore, Z is so large for w far from w, , 2wy, - -+ ,
Nw, that current flows through the varactor only at the desired carriers
and their sidebands.

Let now the chain of Fig. 4 be examined. Consider the impedance

* In deriving (27) the approximation wy =& p = « has been made. For more
details, see the considerations made in the Appendix on the frequency dependence
of the properties of the “ideal” doublers of Fig. 4.
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1

.
Sr,
> ‘
€ c TIME VARYING
0~ COMPONENT OF THE

VARACTOR CAPACITANCE
- -

Vg +Vg,+ Vg, t *++ Vg

Fig. 5— Multiplier equivalent circuit.

connecting the output of the ith doubler to the input of the (7 + 1)th
doubler (i < n). Current is flowing only at the frequencies 7w, , Two £ p
(r = 27, through this impedance. Furthermore, at w & rw, (i.e., =
T , Twy &= p) Z, gives the impedance presented by the rwe-idler circuit
to the varactor. Therefore, the impedance connected to the output of
the ith doubler corresponds to the zth idler and can be represented by
means of a series resonant circuit (resonant at rw,) as illustrated in Fig. 6.
The resistance R, shown in Fig. 6 represents the losses of the idler circuit
and it is equal to R, , the series resistance of the varactor, if the varactor
is the only lossy element. The chain of Fig. 4 can be represented by
the diagrammatic circuit of Fig. 7 in which, according to the preceding
considerations, S;,, represents the ¢th idler circuit and can be approxi-
mated as illustrated in Fig. 6. The impedance Z{*" is the characteristic
impedance of the input port of the ( 4 1)th doubler. It is equal to the
impedance presented by the input port of the ( + 1)th doubler at the
carrier frequency rw, . 2 is the characteristic impedance of the output
port of the 7th doubler and it is related to Z{;’ through the formula
ZG = 79 4 R (with r = 27). Z{) is calculated in the Appendix.

At @ =2 Nuw,, the impedance Z, is the impedance presented to the

2 B
= L H o W e
—_—
T | |
x2 x2 = x2 | l x2
LH (L+1) TH INTERSTAGE
DOUBLER
(r=24) NETWORK S|,

Fig. 6 — (i + 1)th interstage network S
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varactor by the output circuit of the multiplier. Accordingly, the
impedance connected to the output of the last doubler of Fig. 4 can be
represented as shown in Fig. 7, where S,,, corresponds to the output
circuit of the multiplier. The input circuit of the multiplier is represented
in Fig. 7 by means of a network S, connected between the generator
and the first doubler. Note that S, , S,.; include R, and C, . Further-
more, they are tuned at the carrier frequencies and therefore they
provide unity transmission at the carriers if losses are absent.

(L-1 (i) (i) (L+1)
ZOUT) ZIN ZOUT ZlN
- Ot — —_— =0 = = —0—1
R, 5
X
Sl si. (IDEAL) Si+ SnH RN
O o s e —O— —— O e e sG]
LTH LTH
INTERSTAGE DOUBLER
NETWORK

Tig. 7—Schematic representation of the chain of doublers equivalent to the
multiplier of order N = 2".

1.1 Analysis of the Worst Case (No Losses, No AM = PM)

Assume that the multiplier does not produce AM = PM conversion,
and that it is lossless. (That is, S, , S., - -+, S.+, are lossless and do not
produce AM = PM conversion.)

Let the doubler be examined in detail. It is the most important
multiplier because it represents the elementary constituent of any
multiplier or chain of multipliers.

4.2 Discussion of the Doubler

According to the preceding discussion, the equivalent circuit of a
doubler consists of three stages: an input stage S, , an “ideal” doubler,
and an output stage S, . Therefore, the general considerations of the
preceding section on the interactions between a multiplier and two
other stages are applicable to the analysis of a doubler. Suppose that
the scattering coefficients of the input and output stages are labeled
1 and 2, respectively. Then the overall forward PM transmission is
given by*

* (28) can be obtained by means of standard techniques. See for instance Ref. 7.



812 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1967

R (28)
1 — p2+ 2p\p:

Since in this section it is assumed that S; does not produce AM = PM
conversion and is lossless, its PM scattering parameters are simply
given by its reflection and transmission coefficients at the frequency
w~+ p (@ = w, or 2w, depending on whether ¢ = 1 or ¢ = 2). The char-
acteristic impedances of the two ports of S; are equal because S; is
lossless; they will be denoted Z{”. If, for instance, S, is either one of the
two simple circuits of Fig. 8, then

,§. _ Pi T
T Pi
L CL
_—’UUU‘——iHO o 5]
Li ==Ci
= 0 O . _—0
(a) (b)
Tig. 8 — Single-tuned resonant cireuits.
witht
B.
T. =T =T; = -
B; + 1w
pi =pi =pi = (1 —T) (29)
Zi”
Be="100

where the negative sign applies to the case of Fig. 8(b). Note that B;
is the 3-dB bandwidth of T, . Note, furthermore, that the only difference
between the two circuits is that they have opposite reflections. If p # 0,
«, the signs of the real and imaginary components of the reflections are

circuit (a) oir > 0, pir >0 (30)
circuit (b) pir <0, pa <0,

t The approximation w = w + p has been made in deriving (29). That is, the
resonant eireuit has been supposed to be very narrow band.
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where p,; is the real component of p,; , and p,; is the imaginary com-
ponent.

Suppose now that both S,, S, can be approximated by either one
of the two circuits (a), (b) of Fig. S. From (18), (21) one has that
instability may occur only if

piiper > 0, par(l — 2PIR) > 0. (31)

From the first of (31) and from (30) it follows that the circuit is unstable
only if p,gpsr > 0. Therefore, by combining this result with the second
inequality of (31), one has that instability requires

per >0, pix > 0. (32)

Therefore, the only case in which instability may ocecur, is that in
which both S, , S, are of the type (a). Let now this case be examined
in detail (see Fig. 9).

4.3 Discussion of the Case in Which Both S, and S; can be Approximated
by Means of a Single-Tuned Series Resonant Circuit

This case is most important for two main reasons. A first reason is
that the equivalent circuit of a varactor includes the series connection
of Cy and the inductance of the diode mount. Therefore, in most practical
cases it will be possible to represent both the input and output circuit
of a multiplier by means of a series resonant circuit, by first approxima-
tion. The second reason is that, in the case of an idler circuit, it has
already been pointed out that the equivalent circuit is a series resonant
circuit, to a first approximation.

Let the frequency p be normalized with respect to the output band-
width (that is, B, = 2) and lety = B,/B, . From (28) and (29) one has

9
Ty o= — . 33
(o — 2% + ip (33)
B, B,
—— oo —
Ry
(ID):EiL) Ra

Fig. QfCase in which both‘ the input nnd output circuit of the doubler can
be approximated by means of single-tuned series resonant circuits.
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By analyzing (33) one finds that the behavior of T is different de-
pending on whether y < } ory > }. More precisely,

(@) if ¥ < %, then maximum transmission (7'y) occurs at p = 0;
therefore, Ty = 2; and

(#%) ify > 1, then maximum transmission occurs at p = V/(4y — 1)/8
and it is given by

- 2y

Ve e ]

Alllthis is illustrated in Fig. 10, where 20 log,, |7 | is plotted as a
function of p for different values of (= B,/B.). One can see from Fig. 10
that if the output bandwidth is enough greater than the input bandwidth
(i.e.,y < 1), then the transmission curve decreases monotonically with
p. On the other hand, if ¥y > %, then

a peak appears in the transmission curve, and the maximum

transmission increases indefinitely with . (34)
14
12 /

20106y, | T¢|
N »
L~
7
—d

]
1

L~
/

L~
e

JERENIA
\TY N

-6
o 0.25 0.50 0.75 1.0C¢ 1.25 1.50
P

fPi_i‘g. 10 — Effect of v (=B:/B:) on the forward PM transmission of the doubler
of Fig. 9.
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. Fig. 11 — Effect of ¥ (=B:/B:) on the input PM reflection of the doubler of
ig. 9.

This is in accordance with (2). One concludes from (34) that small
values of B,/B, are desirable if large values of | T; | are to be avoided.
Small values of B,/B, are desirable also for the following stability con-
siderations. If B,/B, is large, then the input PM reflection p7 becomes
larger than unity, as shown in Fig. 11. In addition, large values of B,/B,
enhance the reverse overall transmission 7, as shown in Fig. 12.
Consequently, one may conclude

Large values of y(B,/B,) deteriorate the stability of the
doubler and enhance the PM forward transmission (i.e., the

output noise) of the multiplier in the vicinity of the carriers, (35)
if both S, , S; are of the type shown in Fig. 8(a).

It is important to note that the circuit becomes unstable only in the
limiting case y = . Remember that it has been pointed out in the
preliminary considerations of the first section that all scattering coeffi-
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. I\
AN
C<V_-\ \ \

F I WAVERANERY

Fig. 12— Effect of v (=B,/B:) on the reverse PM transmission of the doubler
of Fig. 9.

cients become infinite when the multiplier is on the point of becoming
unstable.

4.3.1 Remaining cases

In the remaining cases, [in which both S, , S, are of the type (a), (b)
and at least one of S,, S. is of the type (b)], the overall transmission
T, decreases monotonically with p for all values of B,/B,. This is in
accordance with (32) and it can be directly verified by using (28), (29).

4.4 Discussion of the General Case

In most practical cases the output and input circuits of a multiplier
are far more complicated than the simple cases considered in the preced-
ing discussion. For instance, the impedance of the external circuit
Z, + 1/juC, may have spurious resonances at the sidebands, ete.
It is therefore important to consider the case in which the input and
output circuits of a multiplier have more complicated configurations.
Let first the input circuit be considered in detail.
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4.5 Discussion of the Case in which only the Output Circuit can be
Approximated by Means of a Single-Tuned Series Resonant Circuil

According to the terminology of the first section, let Z, be the im-
pedance presented by the input circuit (i.e., by the cascade connection
of 8, and R,) to the “ideal” doubler of Fig. 13. Similarly, let Z, be the
impedance presented by the output circuit to the output port of the
“‘ideal”” doubler.

Consider now the two cases illustrated in Fig. 14. The parameters
B,. , By, B, represent the bandwidths of the various resonant elements
(when they are considered individually). In order to investigate the

Ry
x2

S (IDEAL)

-
|

’[ |

| |
‘4‘29 ZL‘I"

Fig, 13 —Impedances Z, and Z. presented by the input and output cirenits to
the “ideal” doubler,

possibility of instabilities, consider the reflections p, , p,, defined in
the previous section (p, = p7, pr. = p3). Then

pr = ﬁg (36)
p, is different in the two cases (a), (b). In case (a), p, is given by

J— —pﬂ(ﬁflu + B.) — jp(Bl. — B, + 2p°) .
' [BLB, — p'(3B.. + B.) + jp2B.. + Bl. — 2p"))
Case (b) can be obtained simply by changing the sign of (37) and by
interchanging B,, , B, .
Consider now the infinite gain condition*

1 — po + 2pp, =0 (38)

which is obtained by letting the denominator of (28) equal zero. Those
values of B,,, B, , B, for which (38) is satisfied at one or more fre-

* Note that (38) is equal to (11) (n = 1, N = 2).

(37)
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quencies furnish the “boundary” of the region of stability (see the
general considerations on stability of the first section).

Consider now the circuit of Fig. 14(a). By substituting (36), (37), in
(38) one finds that the circuit becomes unstable under certain conditions.
These conditions are illustrated in Fig. 15. One can see from Fig. 15
that, if both B,;/B1. , B2/Bi, are too small, then the circuit is unstable.

If B,, > B.., then the input circuit does not have spurious resonances,

B2

|50

x2 R,

(a)

—
R
Bib x2 §R2

(b)

Fig. 14 — Two typical examples in which only the output circuit can be ap-
proximated by means of a single-tuned series resonant. circuit.

+—
000 -

as one may verify from (37).* But Fig. 15 shows that the circuit may
still be unstable. Therefore, one can say

instability may occur even if the circuit does not have
spurious resonances. (That is, even if the circuit impedance
is real only at the desired carriers wo , 2wp .) (39)

Fig. 15 shows that if B,, >> B,,, then stability is secured. This can
be explained by noticing that for B,, 3> B,, the circuit reduces to that
of Fig. 9, which has already been found to be stable.

Fig. 15 shows also that stability is secured if B, > 1.2B,, (approxi-
mately). This can be explained as follows. Consider first the following
theorem.

*If By > Bia, then p;y # 0for 0 < p < o,
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Theorem 2: If at all frequencies p either one of the following two conditions

[ or | < | pro | (40)
| Z, | >R, (41)

1s satisfied, then the doubler is stable. | pLo | is 5 if losses are absent, and
it is greater than § if losses are present.

Proof: The preceding section has shown* that the first condition
guarantees T # «. Consider therefore, the second condition. Note

2.5

o
m
~
o
m
1.0
STABLE
0.5
ol B o
0 0.5 1.0 1.5 20

Bz/Bla

Fig. 15 — Stability region of the doubler of Fig. 14(a).

that | Z, | > R, is equivalent to p, = 1. Therefore, by substituting
p, = 1in (38) and neglecting the exceptional case p, = —1, one finds
that (41) also guarantees T # . One concludes therefore, that either
one of (40), (41) guarantees T, # <. Consider now a circuit which
satisfies (40), (41). Next, decrease the amplitude of | p; |. Since, as
| pr | is decreased, the forward transmission never becomes infinite
one concludes that the circuit is stable, according to (4).

Consider now the circuit of Fig. 14(a) and suppose B,, < B, . Note
that condition (40) is satisfied for

1
p < ;“%Bg , 42)

* See (14). Note that | p, | < 1 corresponds to the worst case (no losses; p, = 1).
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as one can verify from (36). Furthermore, since B,, << B, , one has that
condition (41) is satisfied at the frequencies p

» > ﬁg& > B, . (43)
Therefore, the circuit is stable, as shown by Fig. 15.

The preceding demonstration used the fact that the condition of
stability places restrictions on only those values of p, (i.e., of Z,) which
occeur at those frequencies p for which | p, | < | pLo |- This property
is most important and will be further emphasized by stating

the condition of stability places restrictions only at those
frequencies p which are rejected by the output filter. There-

fore, at those frequencies which are passed by the output (44)
filter, the impedance Z, produced by the output filter can be

quite arbitrary (all this applies to the case of a doubler).

In this statement, the frequencies which are "‘rejected” by the output

filter are given by the complement of (42)

1
> —=B (45)
PZove
if losses are absent. The frequencies which “pass through” the output

filter are given by (42)

1 .
<o B (46)

Consider now the circuit of Fig. 14(b). Consider first the following
theorem.

Theorem 3: If R, > R, , then infinile lransmission never occurs.
Proof: Let Z, = R, + jX,, and assume

R,>R,. (47)
Then, after some manipulations one finds

11— 25 | = | (R, + R) — 2(R, — R) — iX,
" (R, + R) + iX,
Therefore, (38) is never satisfied for all values of p, . This demonstrates
Theorem 3.

Consider now the circuit of Fig. 14(b). Since X, > 0, from (19)

= 1.
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one has that infinite gain occurs only if

X, > 0. (48)

But one can directly verify that the cireuit of Fig. 14(b) has the fol-
lowing properties

R, > R, when X, > 0,

Therefore, infinite transmission never occurs because of Theorem 3.
This demonstrates that the circuit is always stable. Theorem 3 has a
very important consequence.

Spurious resonances which occur at the input sidebands

do not produce instability, provided they produce high im- (49)
pedances (R, > R,) at the varactor terminals (this is valid

for a doubler).

Note that (49) is valid for any arbitrary output circuit.
4.6 Case in which the Input Circuil can be Approximated by Means
of a Stngle-Tuned Series Resonant Circuit

Suppose now that the input network consists of a series resonant
cireuit and that the output cireuit is quite arbitrary (see Fig. 16).
Then one has

B, — ip
f =] — 9 = ot I,
P Pg Bln + }P
Therefore, | p’ | = 1. Consequently instability may arise in the limiting
case | p, | = 1. If one neglects this limiting case, one can say

If the input cireuit of the doubler can be approximated by a
single-tuned resonant ecircuit in series with the generator, (50)
then stability is secured for any arbitrary output circuit
configuration (in the case of a doubler).

o T —] >

X2 Sa

Fig. 16 — Case in which only the input cireuit can be approximated by means
of a single-tuned =eries resonant cireuit.
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Note that (50) is in agreement with (13), (41) which show that it is in
general desirable that | Z, | > R, .

4.7 Discussion of a Frequency Multiplier of Order N > 2 (both a Single
Stage and a Chain of Stages)

The following discussion is concerned with the problem of designing
a stable chain of doublers. This problem arises both in the design of a
single stage multiplier of order 2" > 2, and in the design of a multiplier
of order 2" consisting of many stages. That the chain may be unstable
even if each doubler is individually stable, is a widely-known experi-
mental fact. It will be shown here that if N > 4, then unstability may
arise even if: each doubler is individually stable and it is, in addition,
of the type shown in Fig. 9 (which is the simplest case which may occur).

Consider an octupler and suppose that both its input and output
circuits consist of single tuned resonant circuits connected in series
to R, and R, . Then, according to Fig. 6, its equivalent circuit is that
shown in Fig. 17 and the bandwidths B, , B, , B; , B, are the parameters
on which the frequency dependence of 7, (and therefore, also the
stability of the circuit) depends. To simplify the analysis assume the
following conditions:

B _b_Rho, (51)

and let the frequency p be normalized with respect to B,/2 (i.e., By = 2).
In this way T depends on the parameter v, only. T7 has been cal-
culated for different values of ¥ and the results are shown in Fig. 18.
One can see from Fig. 18 that the multiplier is unstable if

v = 1.425 (approximately). (52)

This result is in agreement with (35), which pointed out that small values
of v are desirable. The conclusion from (52) is that

B, B, B, B4
Ry
x2 x2 x2 R
(IDEAL) (IDEAL) (IDEAL) 8
Fig. 17 — Equivalent circuit of an octupler in which both the input and output

cireuits consists of single-tuned series resonant circuits.
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if three or more doublers of the type shown in Fig. 9 are
connected in cascade, the chain will be unstable unless each (53)
stage is broadband enough with respect to the preceding one.

Consider now a doubler which is individually stable, and suppose
that the input circuit is made more narrowband than the output circuit.
Then, if a stage is connected to the input port of the doubler, instability
will not occur. In fact, according to (44), instability may arise only
from interactions occurring at the frequencies which are rejected by

70 |
y=1425
60 ﬂ
1.42 ﬂ
50 {
- 4 [\\
t o a0
= 28 / \
o 10
o
9 a0 ¥ 1'3*/-\ \
o
“ vl \
1.2 \ \\
- N
10
0
0 ol 0.2 0.3 0.4 0.5 0.6

p

Tig. 18 — Effect of v (=B(/Bi.1) on the forward PM transmission of the octu-
pler of Fig. 17.

the output circuit. But these frequencies are also rejected by the input
circuit. Therefore, the input filter prevents these ‘“‘dangerous” interac-
tions. Note that if a broadband* stage is connected to the output of
the doubler, then instability does not occur because the output circuit
of the doubler will reject those frequencies at which the broadband
stage presents reflections. The conclusion can be stated as follows.

Consider a chain consisting of doublers which are individually
stable and which have B, << B, (where B, , B, are the input
and output bandwidths of the general doubler, respectively). (54)
The chain will be stable, provided the input circuit of each

* Broadband with respect to the output circuit of the doubler.
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doubler is broadband with respeet to the output circuit of the
preceding doubler.

This is also in accordance with (52) and with the conclusions derived
from it.

4.8 Discussion of the Effect of AM = PM conversion

Consider a doubler and suppose, for instance that the output circuit
S, produces AM < PM conversion. Then, if a unit PM wave is incident
to the input port of S, , two waves will be reflected back,

PipyM,PM) » P(PM,AM)

where the subscript ( , ) indicates the type of incident wave and the
type of reflected wave (in this order). Conservation of energy requires

| P(rPM,.PM) ‘ =1- \ PL(PM,AM) |

which shows that the amplitude of the reflected PM wave will in
general be decreased by the presence of PM — AM conversion. This
is a desirable effect. Note that the AM wave generated by S, may be
reflected back and converted again to PM by S.. However, for this
to happen, the AM wave must travel through the “ideal” multiplier
in the reverse direction, be reflected back by S, , and travel through
the multiplier in the forward direction. Through this path the AM wave
is attenuated because the AM round-trip (power) transmission of the
“ideal’” doubler is %, (see (1)). The conclusion is that, when the AM
wave is converted back to PM by S, , it has small effect in most practieal
cases. Similar arguments can be applyed to the case in which S, has
AM = PM conversion. The conclusion is

input and output circuits which produce AM = PM con-

version are in general preferable to those which do not (55)

produce AM < PM conversion.
Because of the qualitative nature of the discussion leading to (55)
a more convincing argumentation may be desirable. A rigorous demon-
stration requires considerably more space and is beyond the scope of
this paper.

V. CONCLUSIONS ON THE DESIGN OF A STABLE MULTIPLIER
Consider first a doubler. From (35), (44), and (54), one has

the output bandwidth should be broadband with respect
to the input bandwidth. That is, (56)

B, > B, .
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The input circuit can have any arbitrary frequency dependence at
those frequencies p which correspond to the passband of the output
filter [see (44)]. In fact, this will not cause any instability.

Instability may arise only if both the input circuit and the output
circuit satisfy simultaneously certain conditions. For instance it must
be

‘\'FXL P Oy Rn < Rl ’ i Pr I > % (57)

for some frequencies in order that instability may occur. From (57)
one can see that spurious resonances of the input circuit do not produce
instability if they cause

R, >R, .

Furthermore, in the design of the input and output circuits, those
circuit configurations should be preferred which produce AM = PM
conversion. Therefore, low-pass circuit configurations at the input,
and high-pass circuit configurations at the output, are preferable to
bandpass cireuit configurations.

Finally, under certain circuit conditions, instability may arise even
in the absence of spurious resonances. However, instability can be
avoided by making the output circuit broadband enough with respect
to the input circuit. This last part of the statement follows from (44).

The need for condition (56) is further emphasized by considering
the stability conditions for a chain of doublers (or for a multiplier of
order N = 2", which has been shown to be equivalent to a chain of
doublers).

A chain of doublers will be stable if the following conditions

are satisfied: each doubler is individually stable and satisfies (
(56); furthermore, each doubler is broadband enough with
respect to the preceding one [see (54)].

Ut
0
~—

If (58) is not satisfied, (53) shows that instability may arise even in
the simplest case in which the input and output cireuits of each doubler
consist of (single-tuned) series resonant cireuits.

Note that (56), (57) ete. apply also to the design of a multiplier of
order N = 2", In this case, one should design the input circuit by con-
sidering the doubler which consists of the cascade connection of: the
input cireuit, an “ideal’” doubler, the first idler (connected in series to
the output of the ‘‘ideal” doubler). The output circuit should satisfy
the stability conditions of the doubler which consists of the last idler
connected in series to the input of the “‘ideal doubler”’, and of the output
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circuit connected to the output of the ‘‘ideal” doubler. Note that
requirement (56) gives

B, 4« B, & --- «B,«< B, , (59)

where B, is the input circuit bandwidth, B, is the first idler bandwidth
[see (29) and the Appendix], B, is the last idler bandwidth, and B..,
is the output circuit bandwidth.

It is important to emphasize that all these requirements have been
derived in the case of no losses. The presence of losses reduces the
limitations [such as (56) and (59)] placed by the condition of stability.
If the losses are so large that the multiplier efficiency is less than 1/N
[see (24) of Ref. 3] then the multiplier will be in general stable.

Note that it has always been implied that the impedance presented
to the varactor terminals by the external circuit* is ‘‘large” at frequencies
very far from the carriers. If this is not true, other types of instabilities
may arise, such as subharmonic generation, etc.

APPENDIX

Equivalence of a Multiplier of Order N = 2" to a Chain of Doublers

Consider a multiplier of the type defined by (26). Its equivalent
cireuit is shown in Fig. 19. V, is the input voltage generator of frequency

Z=Ze+ |/j wCo+Rg
1
L

Vg
£ v=nq?= F(Q)

~i

Vg= Vg, +Vga+ *** +VgN

Fig. 19— Multiplier equivalent circuit.

@o . Vg1, Vg, *** , U,y aTe the noise terms present at the various side-
bands w, & p, 2ws == P, -+ , Nw, == p. The series resistance E, and
the average capacitance C, of the varactor are included in the impedance
Z(w). Therefore, the nonlinear capacitance shown in Fig. 19 represents
the nonlinear part of the capacitance of the varactor and it has a Q-V

. *The external circuit includes €, the average capacitance of the varactor, the
inductance of the varactor, ete.
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characteristic of the type: V = F(Q) = AQ® (see the Appendix of
Ref. 3 for more details).
The hypothesis are

Z(rwy) =R, (r=2"=1,2---,N) (60a)
Z(w) = = forwfarfromre, (r=2"=1,2 ---,N). (60b)

In (60a) it is assumed that the circuit is resonant at the idler fre-
quencies and at the input and output frequency. R, is the impedance
of the input generator; R, , --- , Ry,. represent the losses of the idlers;
Ry is the impedance of the load at Nw,. In (60b) it is required that cur-
rent flow be limited to the frequencies w,, 2wy, -+ , Nw, and their
sidebands. In this appendix both positive and negative frequencies
will be considered, as illustrated by the Fourier Series (61), (62), etc.
In (60) consideration is confined to w > 0 because the case w < 0 is
given by Z(w) = Z(—w)*, where ( )* indicates the complex conjugate.

When the sidebands are absent (i.e., whenv,, = vpp = --- = v,y = 0)
the charge of the nonlinear capacitance is of the type
QD = 2 Q. exp (jraod). (61)
e
Notice that @, = @Q*, because Q(l) is real. The elastance S(t) is given by
S(t) = 24Q(1) = 2 8, exp (jrwot) (62)
=127
a=0,*+.n
with
S, = 240, . (63)

Consider now the voltage V{({) across the nonlinear capacitance.
From V = AQ® and (61) one has

V(t) = A 322 Q.Q, exp [jr + Dwit] = 2 Vi exp [jlwyl]

127
(t=42" r=242" s;h=0,---,n)

from which one obtains the Fourier coefficient of V() relative to
W = Twy

V. = A[Q:Qrr2 + 2Q:Q-,] (= £2"5s=0,---,n). (64

The linear circuit connected to the nonlinear capacitance gives an
additional expression for V,

V, = —pre®.Z(rw,) + V,. (r

I

:|:2!;3 = 07 e 7”)1 (65)
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where V,, is the Fourier coefficient of V, relative to w = 7w, . There-
fore, V,, = 0 for | r| # 1. From (65), (64) one obtains

Vor = frae@.Z(rw) = AQ. Q. + 20:,Q-,)
(r==+2"5s=0,---,n). (66)
Equation (66) gives the “equilibrium equations’ of the circuit of I'ig. 19

at the carriers wy, 2wy, -+, =Nwy .
Consider now the sidebands. Let

q(t) = DZ r.s exp [freq + ip)] (67)

+1

In

8
r
i

be the sidebands of the charge of the nonlinear capacitance. Then the
voltage sidebands are given by

v(t) = S()g(t). (68)

By substituting (67), (62) in (68) one obtains v, ; , the Fourier coefficient
of v(¢) relative to w = rw, + p

Vi = Qos2,iSes2 T QeeiSo + qor oSe, (T = =£1). (69)

For more details on the derivation of (69) see the Appendix of Ref. 3.
The linear circuit gives a second expression for v, ;

v = @) — Jlwy + p)g. Zlrw, + ip), (70)

where (z,),,; indicates the Fourier coefficient of v, = v,; + -+ 4+ v,y
relative to w = rew, + ip. By combining (69) with (70) one obtains
the “‘equilibrium equation” of the circuit of Fig. 19 at the sidefrequency
rw, + ip

@o)r,s = jlrwg + tp)g, Z0rwy + ip) (71)

+ Gre,iSe2 + Qer,iS—r + Gor S .

Consider now the chain illustrated in Fig. 20. Let the @-V char-
acteristic of the nonlinear capacitances of Fig. 20 be equal to that of
Fig. 19. Furthermore, let Z,(w) be equal to Z(w) for v = rw, and be
infinite for w far from rw, . That is,

Z.(w) = Z(w) for o =rw,,rw, £p (72)

Z.(w) = o for o farfrom 1w, @ =2"=12 --- N)

where only positive frequencies are considered because Z, (w) = Z*(—w).
Note that because of (72), the spectrum of the charge of the (s + 1)th
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e ?é F(Q) ZNl:]

Twy, Twetp 2wy, 2T Wt p
—n -
[ e
I L T
Zir| Zl2r|

7é(S +1)TH VARACTOR (T = + 25)

Fig. 20 — Chain of doublers equivalent to the multiplier of Fig, 19.

nonlinear capacitance of Fig. 20 is restricted to the carrier frequencies
rwy , 2re, (r = £2') and to their sidebands rw, + p, 2rw, & p. Let the
symbol ( )’ be used to distinguish the variables of the circuit of I'ig. 19
from those of the circuit of Fig. 20. Then the charge components of
the (s 4+ 1)th capacitance of Fig. 20 are Q!, Q4. , ¢/, ¢4, ., with
r=42"and 7 = £1.

It will be shown that, under these hypothesis, the chain of Fig. 20
is equivalent to the multiplier of Fig. 19. More precisely, it will be
shown that the charges and voltages of the two circuits are equal.

Demonstration: Let first the fact that Q,, --- , Qy are equal to Q] ,
-, Q@ be demonstrated. Consider therefore, the ‘“‘equilibrium equa-
tion” of the chain of Fig. 20 for @ = rw, (r = £2°). With reference
to Fig. 21, it is obtained by applying Kirchoff’s law to the (s 4+ 1)th
loop.
Across the first capacitance of Fig. 21, the voltage component of
frequency rw, is

AQ1Ql. (= £2',[r|#=1,N). (73)

The voltage component of frequency rw, produced by the second capac-
itance is

24Q7.Q.,  (r=+2",|r| =1, N). (74)

Since only the current jro,@! is flowing through Z,,,, the voltage
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Ir=jrw,Qk
—

-— —_———
| I |

Zir

Tig. 21 — Sth loop (r = 2*) of the chain of Fig. 20.

across Z,,, is
frwi@lZ | .\ (rwy) = frwe@!Z(rw,) (r=£2",|r|#1,N). (75)

Equilibrium requires that the sum of these three voltages be zero.
Therefore, one obtains

0= jraniz(Twu) + A[Q:/2Q»’-/2 + 2Q:,.Q%,] (76)
which is identical to the “equilibrium equation’ of the circuit of Fig. 19
for w = rw, (withr = £2°, |r| = 1, N).

In a completely similar way, one finds that also for [7| = 1 and
| #| = N the “equilibrium equations” of the two circuits are identical.
If » = 1, for instance, the loop consists of the voltage generator V,
in series with Z, and the first nonlinear capacitance of Fig. 20. One
obtains

Va — j"’aQ{Z(wo) = 2AQ£Q’—1
which is identical to (66) for r = 1. The case r = N is obtained by
considering the last loop and one finds

_ijqu'vZ(an) = AQhRN

which is identical to (66) for » = N. All this demonstrates that @, , - - -,
Qy are identical to Q;, --- , @4 . Therefore, the two circuits are equiv-
alent at the carrier frequencies.

Consider now the sidebands. Notice that the elastance components
of the (s + 1)th nonlinear capacitance of Fig. 20 are S, , S,, (r = £2°).
Therefore, the equilibrium of the (s + 1)th loop for @ = 1w, + 1p
requires

@), = jlrwo + p)q!.Z(rewe + ip) an
+ q:f'Z.\'Srlz + Szrq-’*r.i + S—fQér.i (r = :l:2.,7; = :':1).
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The first term of the second member represents the voltage component
across Z,,, , the second term corresponds to the voltage across the first
capacitance, and the last two terms correspond to the voltage across
the second capacitance. Equation (77) is equivalent to (71). Therefore,
the two sets of charge components (g,..), (¢.,) (vl =1,2, --- | N;
i = 1) are identical. This concludes the demonstration of the equiv-
alence of the two circuits of Figs. 19 and 20. Note that the voltage
across Z,,, is equal to the voltage components of Z due to the frequencies
+7w, and their sidebands.

A.1  Discussion of the Circuit of Fig. 20

The circuit of Fig. 20 can be represented by the chain of doublers
illustrated in Fig. 22. The equivalent circuit of the (s 4+ 1)th doubler
of Fig. 22 is shown in Fig. 23. It consists of an “ideal” input filter F{;*"
connected in series to the input, an “ideal’” output filter F}"’ con-
nected in series to the output, and an “ideal” lossless varactor which
has a Q-V characteristic of the type V = AQ® The filter F{:*" has
zero impedance at the input frequencies 7w, , rwy == p and it has infinite
impedance for w far from rw, (r = =2°). Similarly, F{" limits the
output current to the frequencies 2rw,, 2rw, == p. Consequently, the
series connection of F{:) , Z, F{:*" is equivalent to Z,,,, according to
(72). Therefore, the two circuits of Figs. 22 and 20 are equivalent.
By first approximation, the properties of the “ideal” doublers of Fig.
22 are independent of the modulation frequency p. More precisely, the
frequency dependence of the 'ideal” doublers can be neglected with
respect to the frequency dependence of the impedances Z,, Z,, etc.
This is more precisely explained by the following considerations.

Consider (77). Let 1, ; indicate the Fourier coefficient of the current
flowing through Z,,, for w = rw, 4+ p. Then

Vg 2

Z

N
N

x2 x2 x2
Vg (IDEAL) (IDEAL) (IDEAL)
VgN
Vg1

o—————————— O = = = = Oy

Fig. 22 — Chain of doublers equivalent to the cireuit of Fig. 20.
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i, = jrws + 1p)q. . (@ = +x1). 78)

If one approximates (78) by means of i, ; = jrweg, ., one obtains from
(77)

Z("‘b‘o + zp)lr.f - J_J Sr/i’zn’z‘l‘ + ?1. S2r7'7r.r' - .)77 S—r'LEr.i
- (79)
= (Uu)r.i .

Equation (79) gives the approximate version of (77) which is obtained
by neglecting the frequency (p) dependence of the behavior of the
nonlinear capacitances of Fig. 20. In fact, one can see that the only term
in (79) which depends on p is the first term, and this term is caused by
the impedance Z,, of Fig. 20. In this analysis the approximate expression
(79) is valid because it is assumed Z(w) = o for w far from rw, . There-
fore, at those frequencies p for which the approximation 7, ; = rwig,
becomes invalid, the only important term in (79) is the first, which does
not contain any approximation. However, it is important to notice
that (79) is exact only in the limiting case of a narrow-band multiplier.
That is, when Z,, (w) varies so rapidly with p that it is infinite outside
a very narrow band around w = rw, .

According to the preceding considerations, the properties of the
“ideal” doublers of Fig. 22 can be assumed independent of the modula-
tion frequency p, by first approximation.

In the following part of this Appendix, it will be shown that the
impedance presented to the output of each “ideal” doubler by the
following part of the chain is real at the carrier frequency. Furthermore,
each doubler is lossless. Therefore, according to the results derived in
Ref. 3, one concludes that each doubler does not produce AM = PM

o) is!
—_— —_—

O 0 O = O

= —Z = - 2
x2 = = V=F(Q)=AQ
o 0 O O
(S+1)TH DOUBLER
(r=zt2%)
Z Ze RS CO

—_—t —— = ] }—MA—f—

Fig. 23 — Constituents of the chain of Fig. 22.
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and that it is characterized by the two scattering matrices given by
(27). The characteristic impedances of the input and output ports of
the various doublers are derived in the following part.

A2 Caleulotion of the Output and Inpul I'mpedances of the Doublers
of Fig. 22

At the carrier frequency rw,, the input impedance of the (s + 1)th
doubler (r = 2") is given by

Via™ _ 24Q_,Q,,
(. B Frwn@.
where V{i*"  the input voltage of the (s + 1)th doubler, has been

obtained from (74).
The output impedance of the (s + 1)th doubler is given by

Za = Z(2rw,) + Z3Y (r = £2. (81)

But one also has

Zi[;wl) —

(r = £27, (80)

_ " r{s+1) . “1Q Q
(a4+1) __ out — r¥r . — a
Zow™ = i2rwy(Qs, P21y, @ +2 )’ (82)

where VI is the output voltage of the (s 4+ 1)th doubler and it is

given by (73) with /2 replaced with ». Therefore, from (80) and (82)
one obtains

rrla+1) rplatl)
Ligwe Lsn = =

5 (r = £27). (83)

By combining (81) and (83), one has

LIF ooy @y

r w'.

ZOZY + Z(2rw,)]

The output impedance of the last doubler (s = n) is
Zow = Z(Nw;) = Ry . (85)

LEquation (85) and the recurrent formulas (81) and (84) allow the output
and input impedances of the various doublers to be readily calculated
(Ry, A, ] @, | are known),

Note that Z is real at the frequencies w,, 2wy, -+ , Nw,, because
the ecircuit is resonant at these frequencies. Z(2w,), --- , Z(N/2w,)
represent the idler losses. If, for instance, the varactor is the only lossy
element of the circuit, then

Z(2w,) = Z(dwy) = -+ =R, , (86)
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where R, is the series resistance of the varactor. Therefore, since (85),
(84), and (81) are real, one concludes that Z{;’, Z{, are real.

Finally, according to the convention of the first paper, the input
and output characteristic impedances of the sth doubler are given by
Z Z  respectively.

in ? out 7
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