Coding for Numerical Data Transmission*

By M. M. BUCHNER, JR.
(Manusecript received June 2, 1966)

This paper considers the effectiveness of error-correcting codes for the
transmission of numerical data. In such a situation, errors in the nu-
merically most significant positions of a message are of grealer con-
sequence than are errors in the less significant positions. A measure
of transmission fidelity based upon the average magnitude by which the
numbers delivered to the destination differ from the transmaitled numbers
18 developed and 1is referred to as the average numerical error (ANE). Codes
are compared by comparing the ANE that results from their use.

Significant-bit codes are defined and the ANE resulting from their use
s delermined. For constani-symbol-rate transmission, the relative effect-
weness of various coding schemes 1s analyzed when the error probability
in the channel is small. The ANE resulting from the use of certain specific
codes 18 numerically evaluated and compared.

1. INTRODUCTION

The usual approach to coding is to ignore the actual meaning of the
transmitted symbols and to represent them in a purely statistical
manner. As a result, all message errors are assumed to be equally
costly and codes have been sought that simply reduce the probability
that a message is received in error.

While this may be appropriate for the transmission of some types
of data, there are situations in which other criteria of goodness are
of greater merit. If, for example, one is interested in the transmission
of the temperature of a satellite, the probability that a particular
observation is transmitted incorrectly may have little direct relation
to system performance whereas a measure of the average magnitude
by which the received data differ from the data actually transmitted
could prove useful.

" *The material presented in this paper is based upon the dissertation, Coding
for Numerical Data Transmission, submitted by the author to The Johns Hopkins

University in conformity with the requirements for the degree Doctor of
Philosophy.
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This paper develops a criterion of transmission fidelity for numeri-
cal data transmitted over a binary symmetric channel based upon the
average numerical error which occurs. Significant-bit codes are de-
fined and the average numerical error resulting from their use is de-
termined for a binary symmetric channel with independent errors. For
constant-symbol-rate transmission, the relative effectiveness of various
coding schemes is analyzed when the probability that a symbol is
received in error is small. In order to obtain a feeling for the utility
of coding, the average numerical error resulting from certain specific
codes is numerically evaluated.

II. PRELIMINARIES

Throughout this paper, the channel is taken to include all operations
performed upon the symbols during transmission. A binary symmetric
channel is defined to be a binary channel such that

(7) the channel always gives one of the binary symbols at its output,
(#3) the probability that any particular sequence of errors occurs is
independent of the symbols transmitted.

In some sections, we shall consider a binary symmetric channel with
independent errors. This is a binary symmetric channel for which
the errors occur independently with probability p where 0 = p = §
andp =1—g¢.

The elements of the Galois field of two elements are denoted by 0
and 1. Let the symbol @ denote component by component modulo 2
addition of vectors (or n-tuples) whose components are field elements.
The set of all such vectors forms a vector space T' of dimension n over
the field of two elements. Because a field element can be viewed as a
vector with one component, @ will also be used to denote the addition
of field elements.

A binary group code V is a subset of I' which forms a group. Over
the field of two elements, any set of n-tuples that forms a group is
indeed a vector space. Therefore, a binary group code V forms a sub-
space of T'. The dimension of ¥V is k.

The implementation of a binary group code can be viewed in the
following manner. The encoder receives k& binary information symbols
(called a message) from the source and determines from the message
(n — k) binary parity check symbols (called an ending). The message
and ending may be interleaved or transmitted sequentially to form a
block of length n (called a code vector). The decoder operates upon
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the blocks of n binary symbols coming from the channel in an attempt
to correct transmission errors and provides k binary symbols at its
output. The notation (n,k) is used to denote such a code.

Consider the message (m;, mu—y, --- , m;). The code vector used
to transmit this message will have m, , my_, , -+, m, in the % informa-
tion positions. The (n — k) parity check positions that form the ending
are denoted by €, , €., - -+ , €,—, . The order in which the information
positions and the parity check positions are arranged for transmission
is arbitrary.

Let H denote the parity check matrix for a binary group code. H
is an (n — k) X n matrix whose entries are field elements. An n-tuple
v is a code vector if and only if

oH =0, 1

where H denotes the transpose of H. H can be written in a form such
that each column of H that corresponds to a parity check position in a
code vector is a distinct weight* one (n — k)-tuple. When this is done,
let C;(1 = I = k) denote the column in H that is in the position that
corresponds to position m; in a code vector.

For a binary symmetric channel, the order in which symbols are
transmitted can affect code performance. For the binary symmetric
channel with independent errors, the order in which symbols are trans-
mitted does not affect performance. In the latter case, we can write
H as

H = (Ci: ’ Ck—l y Py ClIvz—i:): (2)
where I, denotes the (n — k) X (n — k) identity matrix.

III. FORMULATION OF A CRITERION OF CODING EFFECTIVENESS

A system for transmitting observations performed upon some physical
process over a binary channel is shown in Fig. 1. So that the relation-
ship between the observed numbers and the code will be clear, a general
formulation will be presented.

If each quantization step is of uniform size, the quantizer output
can be represented as A 4+ B? where 4 and B are constants and the
integer ¢ indicates the quantization level. The “source scale-to-binary
converter’’ receives A + Bi from the quantizer and transmits 7z to
the encoder. The “‘binary-to-source scale converter’” receives some
integer 7 from the decoder and delivers A 4 Bj to the destination.

* The weight of a vector v is the number of nonzero components in v and is denoted
by w[v]. The distance between two vectors u and » is wlu @ v].
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Fig. 1 — System model.

Let Pr {j | 7} be the probability of receiving j at the decoder output
when 1 served as the encoder input and let Pr {z} be the probability
that 7 is sent. The average numerical error (ANE) that occurs is

ANE = 20 2 [(A +Bj) — (A +Bi) | Pr{j[dPrid]. (3

If all values of ¢ are equally likely to be observed and if the range
foriis0 <7 £ 2* — 1, Pr {4} = 27" The range for jis thus 0 < j <
2 — 1 and (3) becomes

2k—1 a2k—]

B . . .
ANE = 3¢ 30 X [j—i| Prijli}.
i=0 =0
Because B is a constant not dependent upon the particular coding
scheme implemented, B may be set equal to 1 when comparing the
effectiveness of different codes. Accordingly, we shall consider the
expression

ak—y 2k_

1 L . L.
ANE:?E,Z]J_”PT'J“}- (4)

For a specified value of k, a given coding scheme is considered perferable
to some other coding scheme if the ANE resulting from the implementa-
tion of the given code is less than the ANE resulting from the alternative
code.

The code enters (4) through the terms Pr {j | 2}. Thus, for a binary
symmetric channel, the ANE will, in general, be dependent not only
upon the error statistics of the channel but also upon the order in which
the symbols are transmitted.
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It is possible to simplify (4) to an expression that involves terms of
the form Pr {j | 0} exclusively. This reduces the number of terms by a
factor of 2* and demonstrates that knowledge of the error probabilities
conditional upon zero being sent is sufficient to evaluate the ANE.
However, it is necessary to develop some notation and to present two
lemmas before proceeding to simplify (4). The proofs of the lemmas are
omitted because the lemmas follow from the group property of the
code.

When the integer 7 is to be sent, let us assume that the message
ultilized is the k-bit binary representation of ¢ (which is denoted by
B(7)) such that

B(i) = (Tnk y Mgy, =77, "‘nl)!

where
. k=1 k—2
1= m-2 + m_ 2+ -+ m, .

The ending E; = (e,, €2, - - , e,—) required to encode B(z) is chosen
so that the resulting code vector C(z) satisfies (1).

Lemma 1: For any values of the integers ¢ and j,0 < 1 < 2* — 1 and
0 £ j £ 2" — 1, there exists an integer | such that Pr {j | i) = Pr |l |0}
where B(l) = B({) ® B(j) and 0 = 1 = 2F — 1.

Lemma 2: Let B(l) = B(i) @ B(j) as in Lemma 1. For fized i(0 <
i £ 28 — 1), as j successively takes on the values 0, 1,2, --- , 2% — 1,
takes on each of the values in the range 0 < 1 = 2* — 1 once and only once.

Theorem 1: Letl all messages be equally likely to be transmitted and lel
the channel be binary symmetric (but not necessarily with independent
errors). For these conditions, the average numerical error is

k 2i—1

ANE = >°27" 3 Pr{i|0}. (5)
Proof: By Lemmas 1 and 2, for each value of 7 and for a specified
value of [, there will be a unique integer j, such that Pr {7, |7} = Pr {{| 0}
where B(l) = B(7) @® B(j;). From (4),

1 ak—1 2k—) ) .
ANE = i 3% 3 | —i| Prit] o}, (©)
=] i=0
where we have used the fact that | j; — 7| = 0 when = 0.
For each value of I (1 = I £ 2 — 1), we wish to determine

D2 Gt — 7| Let a(0 £ « < k — 1) be the largest integer such that
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2% < I. Define 7’ and j; as

B(j)) = B(@) & B(2%) (7a)
B(i) = B(j}) @ B(2*) or B(j}) = B(x) @ B(2"). (7b)

Then
B(1) @ B(j)) = B(") @ B(;%) = B(D). (7e)

Becausel > 0, 7 = j, and ¢’ # j} . Suppose 7 > j; . Then j, = 7' — 2°
and 7, = ¢ — 2% by (7). It follows that j; — ¢ = —2% — 7 + ¢’ and
jl — 4 = —2° + i — . Conversely, if ¢ < ji, ji = ¢ + 2% and j| =
i+ 2° Thus,j; —t=2"—4i+ 7 and j} — 7 = 2" 47— 7.

Therefore,

[jo—d|+|d—d|=|2+i—=0 |+ [|2" =2+ 7] (8)
But B(i) = B(2") @ B(l) @ B(’) by (7). Thus, | 1 — 7' | < 2% and,
from (8),

L= i+ | — | =22
Because of the symmetries involved,

2k—1

2k—1
2 > |h—dil= X li—il+it—a|=2%2""
i=0 i=0

Thus, (6) becomes

2k—1
ANE = > 2°Pr {l|0}
I=1
or
k-1 gati_g
ANE = > 2° Pr {1]0}. QED
a=0 1=2¢<

In (5), notice that Pr {0 | 0} does not appear and that the terms Pr {7 | 0}
are not weighted linearly in 7 but that the weighting coefficients go
in steps as powers of 2 with several conditional probabilities having
the same weighting coefficient. Notice that the weighting coefficient
for Pr {4 | 0} is 2/~* where (j — 1) is the largest power of 2 in 7. All errors
with the same coefficient are of the same seriousness and a good code
must reduce these sets of probabilities rather than simply minimize the
probability that a few very large errors occur.

Because the set of messages B(3) (2" < 7 < 2’ — 1) gives rise to
the set of conditional probabilities whose weighting coefficient in the
ANE expression is 277, we shall call these messages the j-level messages
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and the corresponding conditional probabilities, Pr {2"' | 0} through
Pr {27 — 1|0}, the j-level conditional probabilities. The O-level message
is defined to be B(0) and the O-level conditional probability to be
Pr {0 | 0}.

The j-level messages have the following interesting characteristics.

() Component m; in each message is 1.
(77) Components m;(j + 1 < 7 £ k) in each message are 0.
(i7i) Every possible (j — 1)-tuple occurs once and only once as com-
ponents m, through m,;_, of some j-level message.

For a perfect error-correcting code used with a binary symmetric
channel with independent errors, it is possible to compute the j-level
conditional probabilities and thus the ANE from a knowledge of the
weight distribution of the code vectors on each level (these weight
distributions have been referred to as level weight structures.)’ The
problem of efficiently computing the level weight structures from knowl-
edge of the parity check matrix has been discussed previously.'

IV. SIGNIFICANT-BIT CODES

In order to permit the error-correcting capabilities of a code to
correspond somewhat to the significance of the information positions,
it is possible to formulate a type of code which uses a subcode to protect
the (k — ko) most significant positions of a message and simply transmits
the remaining symbols unprotected. The name significant-bit code
(SB code) is used for this type of code. An SB code is specified by the
parity check matrix Hgs and the ANE resulting from the use of an
SB code is ANEgg .

The code utilized to protect the (k — ko) most significant informa-
tion positions will be named the base code. Because it is confined to
the (& — ko) most significant positions, we can abstract the base code
and study it as a separate entity. Accordingly, the base code vectors
are (n — ko)-tuples of which the first (¢ — ko) positions are the base
messages.

Although the concept of 8B codes is applicable to any binary sym-
metric channel, we shall assume independent errors in the following
analysis. Thus, from (2), the base code is specified by the base parity
check matrix Hy where

Hy = (C’—ko ;Cf-—ko—l y T C{In—k)-

In this case, the code vector C(i) = B(7) | E, where the symbol |
indicates that C(i) can be partitioned into the k-tuple B(:) and the
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(n — k)-tuple E, . Let B(3) be partitioned so that B(7) = B'(?') | B"(2'")
where B’(7') denotes the (k — ko) most significant positions of B(z)
and B”(i'"") denotes the k, least significant positions of B(?). Then

Clt) = B'@) | B"@") | B, .

The range for 7/ is 0 < ¢/ < 2% — land for7”is0 S ¢’ = 2" — L
Let Pry {¢' | j/} denote the probability of receiving ' when j’ is sent
using the base code. By Theorem 1, the ANE for the base code (ANEjg) is

k—ko 2i-1
ANE, = >, 277" > Pry (' |0}. 9)
i=1 ir=2i—1
Because the base code is used exclusively to protect the (k — k)
most significant information positions, H g must have the form

Hen = (Clowe , Clogamr , =+, C5,C1L0 -+ 0 1,)
—_—

ko
columns

where 0 is used to represent an all-zero column of Hgs and where
the C{(1 = I £ k — k) are the columns of Hy . The coset leaders®
in the standard array® for the SB code must be obtained from the
coset leaders in the standard array for the base code by expanding the
base coset leaders in length to n-tuples by inserting k, zeros in informa-
tion positions 1 through k, of the expanded vectors. Because all vectors
in column 7 of the standard array for the SB code will have B"(i")
in information positions 1 through %, ,

Pr {’L i 0} — pu'lﬂ”[in)]qh—w[ﬂ"(,»u:-l Pl‘u hf IOI (10)

We shall now show that ANEgy can be expressed in terms of the
properties of the base code.

Theorem 2: Let the base code be defined as above. For a binary symmetric
channel with independent errors and when all messages are equally likely
to be transmalted,

ka
ANEgn = Pl'u 20 I 0} Z 21-71;0(]“_!. -+ Qku ANEH . (11)
i=1

Proof: Define
ko 2i—1

ANE = X 27" 3> Pr{i|0}

i=1 i=21"1
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and
k ) 2i—1
ANE"” = >, 27" > Pr{i|o0}.
i=ko+1 i=2i"1

From Theorem 1, ANEg = ANE’ 4+ ANE".
Let us first analyze ANE'. For 1 = j £ k,, the sum of the j-level
conditional probabilities is

2i—-1

2f—1
S Pr{i|o) = X, prttegemmtmT Pry [0 ] 0)

i=2i—1 RErTE

where we have used (10) and realized that ¢ = 0 for all messages on
this level. Because every (j — 1)-tuple occurs as components m, through
m;_, of some j-level message and m; = 1 in every j-level message,

them are
? [ ”(.”)]

messages of weight w[B"'(i"")] on the j-level. Thus,

21—

S v o1 - o o £ D

pm2it
= Pra {0 ] 0}pg™™’

and
ka
ANE’ = Pry [0 ] 0} Z 27 pgter

Now consider ANE”. On level k&, + £ (1 £ £ £ k — k), ¢ has the
range 2°*¢"! £ ¢ < 2"*f — 1. Divide this range into 2" sets of con-
secutive integers each of size 2*°. Let the integer & index these sets
where 0 < 3 < 28" — 1. For a particular value of §, as 7 increases
from 2F+E1 4 2% to 20 4 (5 + 1)2 — 1,7 = 287" 4+ s and ¢
runs through the range 0 < 7/ < 2** — 1. Thus, using (10),

kot E—14 (5+1)2k0—1

Pr {7 | 0}
i=2kotE—14p2ke

2ko—)

- Z p.,,ln“g.‘")|qk.,unca":-‘")l PI‘B |2£-| + IO}

(=0

As ¢ runs through the range 0 < ¢/ < 2 — 1, each possible k-
tuple occurs once and only once. Therefore,
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okotE—14(§+1)2k0-]

Pr {7 | 0}

Il

ko -
pra 2+ 810} 3 (%)pta
i=2kotE-1432ke I=0

(12)
= Pry {27 4 5 0}).

Because of the manner in which the sets were chosen, ANE" can be
expanded as

26—1—1 2kotE—14(f41)2k0—]

ANEY — :—Z"v gho+-1 E Z Pr {1,' l O}, (13)

5=0 i=2ko+E—14goko

Substituting (12) into (13), we obtain

k—ko 281
ANE" = 2% 3 2! 2 Pry {7’ | 0}
E=1 ir=2f—:
which, from (9), is exactly 2" ANE; . QED

Notice that the situation & = %, can be included in this formulation
if we define ANE, = 0 and Pry {00} = 1 whenk = k, . Thus, uncoded
transmission can be regarded as an SB code in which k = k&, .

The interpretation of (11) is interesting. The quantity >, 2° 'pg™ ™"
is the ANE that results from the uncoded transmission of k,-tuples.
Thus, ANE g is the ANE for uncoded transmission of k-tuples weighted
by Pry {0 | 0} plus 2*° times ANEy .

(11) enables the computation of ANEgp from the properties of the
base code. Because the base code involves messages of length (k — ko),
it is easier to analyze than the entire SB code.

V. CONSTANT-SYMBOL-RATE TRANSMISSION

Consider two error-correcting codes which are denoted as ¥V, and
V.. Let V, be an (n,, k) code and V, be an (n,, k) code where n,
may or may not be equal to n,. Let & denote the minimum weight
of the m,-tuples that are not coset leaders in the standard array for
V, . Similarly, let &, denote the minimum weight of the n.-tuples that
are not coset leaders in the standard array for V.

For a binary symmetric channel with independent errors, Pr {4 | 0}
for V, is

Pr{i|0} = X rup'g"™’

f=e1

where 7,; is the number of n,-tuples of weight j in the column headed
by C(¢) in the standard array for V,. Thus, for V,, the average nu-
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merical error (ANE,) is
ANE, = > op'g™™,

where

Similarly, for V,,

ANE, = 3 vp'q™,
where the v; are the appropriate constants.
However,

ANE, — o, p"¢"™" as p—0
and
ANE, — vy.,p¢"" " as p—0.

Thus, for p sufficiently small, if ¢ > &, ANE, < ANE, and V,
results in less ANE than V, .

The minimum weight of the vectors that are not coset leaders in an
SB code is 1. Thus, consider two SB codes denoted by V gz, and V gp.
where V gp, is an (n, , k) code and Vgp, is an (n,, k) code. V 4p, protects
the (k — ko) most significant positions and V gp, protects the (k — kq,)
most significant positions of a message. By reasoning analogous to
that above, for p small, if %y, < k. and if the base codes used in Vgg,
and Vg, correct all weight one errors, then Vgg, results in less ANE
than Vgg. .

We thus have the following ranking of codes for p small. The ranking
(in order of increasing effectiveness) assumes that the schemes are
compared for the same value of k.

(Z) Uncoded transmission.

(7) An SB code protecting (k — k,) positions where k& # k, .
(77z) An SB code protecting (k — ko, 4 k') positions where &' > 0.
(i) An e-error-correcting code where e = 1.

(v) An (e 4+ ¢')-error-correcting code where ¢’ > 0.

To obtain a feeling for the utility of coding for numerical data trans-
mission over a binary symmetric channel with independent errors, the
ANE resulting from certain codes for & = 26 will be evaluated for
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constant-symbol-rate transmission. Ref. 3 contains similar information
fork = 1, 4 and 11.

Let ANEyc denote the ANE when no coding is used. Contrary to
the concept of code equivalence that is obtained under the assumption
that all errors are equally costly (i.e., when probability of message
error is used as the measure of code performance), the ordering of the
columns of the parity check matrix can affect code performance. Thus,
for the (31, 26) perfect single error-correcting code (PSEC code), every
ordering of the columns of the parity check matrix could yield a distinct
ANE. Upper and lower bounds on the ANE for this code are obtained
in Ref. 3 and are denoted herein as ANEyp and ANE, 5 , respectively.

By numerical computation, the ordering in (14) was found to result
in as small an ANE as any other ordering tried. The number actually
tried was by necessity a small fraction of all possible orderings of the
26 columns. However, notice that C,, through C,s each have a one in
the same position thus assuring us that the number of weight three
code vectors on levels 12 through 26 will be the theoretical minimum for
this code (by Theorem 9 in Ref. 3). For values of p that are of primary
interest (less than 107"), this assures us that it is not possible to find
a different ordering that will result in a significantly better performance
(although there are other orderings that in fact give equal performance).
Let ANE; denote the ANE that results from the code specified in (14).

11111111111111100000000000
11111111000000011111110000
Hp=1]111100001111000111100011101I,|- (14)
11001100110011011001101101
10101010101010110101011011

If the columns of (14) are regarded as the 5-bit binary representations
of integers, then the ordering from left to right corresponds to decreasing
integer value (with powers of two omitted because they appear in Iy).
Similar ordering was observed to be preferable for the (15, 11) PSEC
code® and, by exhaustive search, actually found to be as good as any
other ordering for the (7, 4) PSEC code’.

Table I compares ANE,,, ANEyy and ANE, . For convenience
(and so that the values given will agree with the data plotted in Figs.
2, 3, and 4), the ANE has been normalized by dividing by 2*° — 1
(i.e., the full-scale value).

The following SB codes are considered. For each, Hy and the nota-
tion used for the resulting ANE in Figs. 2, 3, and 4 is given. Theorem
2 permits the computation of the ANE for these codes from a knowl-
edge of the base code.
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TaBLeE I—VALUES oF ANE, s , ANEys aND ANE,
Divipep BY 2°° — 1

P ANEpg ANEp ANEyp
10-8 0.41992-10"8 0.41994-10°8 0.42993-10°8
104 0.41920-10°¢ 0.41931-107% 0.42932-10-%
103 0.41212-10 0.41310-10 0.42329-10~
10— 0.34850-1072 0.35659-102 0.36894-10*
107t 0.90222-10* 0.10446 0.12817
Base Code 1: (3, 1) PSEC code.
1
-t 1)
i

The ANE is denoted as ANE, ), .

Base Code 2: (5, 1) perfect double error-correcting code.

H, =

1
1
1L
1

The ANE is denoted as ANE ,, .

Base Code 3: This base code uses independent (3, 1) PSEC codes to

proteet the two most significant information positions.

10

10

Hn = 01 14
01

Because the codes are used independently, the required conditional
probabilities for the base code can be readily calculated. The ANE
is denoted as ANE ;3 1y,i.1) -

Base Code 4: (7, 4) PSEC code.

Hl;=

—

— O

——
b

The ANE is denoted as ANE; 4, .

Base Code 5: This base code uses a (3, 1) PSEC code to protect the
most significant information position and a (7, 4) PSEC code to protect



1038 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1067

the next four most significant information positions.

Hy =

OO -

OO

= N = =]

O =OoOOo

-0 o O
o

The ANE is denoted as ANFE; 1y 7.0 -
Base Code 6: (15, 11) PSEC code.

11111110000
11110001110
11001101101
10101011011

The ANE is denoted as ANE 5,11, -

Tigs. 2, 3, and 4 present ANEyc, ANEys, ANEps, ANE;, and
the ANE of the SB codes considered. In each case, the ANE has been
normalized by dividing by 2°° — 1. For clarity, logarithmic scales are
used as p decreases from 10" until p becomes sufficiently small so
that the results for small p apply.

The following observations can be made for constant-symbol-rate
transmission.

Hy = I,

(7) Improvements in transmission fidelity are obtainable by the
utilization of codes. It should be noted that no one code is the most
desirable for all p (0 < p < 1) and in some cases the codes that are
best for small p turn out to be less effective than uncoded transmission
for the larger values of p.

(i) For k = 26, it can be shown that the probability that a message
is received in error when the PSEC code is used is less (for 0 < p < 3)
than the probability that a message is received in error using any of
the SB codes considered. Thus, under the criterion of minimizing the
probability that a message is received in error, the PSEC code is pref-
erable to any of the SB codes considered.

However, when the ANE is used as a measure of code effectiveness
for numerical data transmission, we observe that the SB codes are
preferable to the PSEC code for certain values of p. Thus, when com-
paring codes, the ranking obtained using probability of message error
as the performance index may not correspond to the ranking obtained
using ANE as an index. We can conclude that probability of message
error and ANE are not equivalent measures of code performance and
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0.25
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ANE /2264

0.15

0.05

Fig. 2 — Constant-symbol-rate transmission; &k = 26.

that, in some cases, the ANE can be reduced by using a code whose
probability of message error is not minimal.

(7i2) For k = 26, consider the relative performance of the PSEC
code and the SB codes. When p is small, the PSEC code will be effective
because it can correct all single errors (the only type that have much
probability of occurring) whereas a single error in certain positions
of an SB code will result in a message error. For larger values of p,
there is an increasing chance that an error pattern will occur which the
PSEC code cannot correct. The SB codes become effective in this situa-
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tion. If multiple errors occur during transmission such that the errors
occurring in the (k — ko) most significant information positions and the
check positions form an error pattern correctable by the base code,
this will be corrected leaving any errors in the k, least significant
information positions uncorrected. Therefore, the most costly portion
of a large number of error patterns can be corrected. As p increases,
the number of positions in the base code must decrease so that un-
correctable error patterns in the positions covered by the base code
have a sufficiently small probability of occurrence so that the base code
can operate effectively. In other words, as p increases, more and more
protection must be provided for the significant bits so that the most
costly errors are prevented.
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Fig. 3 — Constanl-symbol-rate transmission; k = 26.
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Fig. 4 — Constant-symbol-rate transmission; k = 26.

(i) For p small, the ANE from uncoded transmission is approxi-
mately (2¢ — 1)p. For small p, the ANE as a fraction of full scale for
uncoded transmission is thus very nearly independent of .
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