Comparison of M-ary Modulation Systems

By IRA JACOBS
(Manuscript received September 22, 1966)

Consideration of large alphabet digital communication systems is of both
theoretical and practical interest. Although performance bounds on optimum
systems for the Gaussian channel are available, constructive methods for
approaching these bounds are unknown, except in a few very special cases.
Specific systems have been proposed and evaluated relative to these bounds,
but exact evaluation of error probability is generally a difficult numerical
task. It is of interest to consider simpler performance eriteria which permit
comparison of various systems without extensive computation.

An easily evaluated criterion (based on the alphabet size and minimum
distance between signal vectors) is shown to yield a simple sufficient condi-
tion for onme system to be better than another (smaller error probability
for the same energy-per-bit). The crilerion is applied to orthogonal, bi-
orthogonal, simplex, and more general permutation modulation systems.
In addition to comparing the various systems, we consider ways of obtain-
ing good special cases of permutation modulation. Finally, we assess a
recently proposed system (‘'N-orthogonal phase modulation”’) and show
that it is generally inferior to more conventional techniques.

I. INTRODUCTION

The choice of waveforms for communicating over the Gaussian
additive noise channel is a classic problem in communication theory.
Orthogonal modulation systems (i.e., digital communications in which
the alphabet consists of orthogonal waveforms) are known to result
in good power efficiency at the expense of poor bandwidth utilization.**
As the alphabet size M is increased, the energy-per-bit E required to
achieve a given error probability P, diminishes, but the information
rate to bandwidth ratio (R/W) diminishes even more rapidly. Bi-
orthogonal and simplex modulation afford somewhat improved per-
formance, but are likewise restricted to low values of R/W.

There is considerable interest in finding large alphabet systems
which have both good power efficiency and good bandwidth utilization.
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Slepian® has given bounds on what can be achieved, but construetive
techniques for approaching these bounds are generally unknown.

Although computer evaluation is ultimately required for precise
knowledge of error probability, it is of interest to consider simpler
performance criteria which permit at least a qualitative comparison
of various systems without extensive computation. It is the purpose
of this paper to demonstrate the utility of the latter approach.

After defining the problem more precisely in Section 1I, some well-
known bounds on the error probability are employed in Section III
to obtain a simple analytic criterion for comparing systems in the limit
of low P, . In Section IV this criterion is applied to systems (PSK,
FSK, biorthogonal, and simplex) for which extensive exact computa-
tions are available and for which the conclusions drawn are already
well-known. After these illustrative examples, permutation modula-
tion* is considered in Section V and N-orthogonal phase modulation®*
in Section VI. It is shown that the former can yield better performance
than conventional techniques, but that the latter is generally inferior.
Finally, in Section VII limits on our performance criterion, obtained
from sphere-packing arguments, are presented.

II. COMMUNICATION SYSTEM MODEL

We consider an M-ary modulation system of equienergy waveforms
S:(),i=1,---,M,on (0,7), having the correlation matrix

Pii = El_! LT S.’(f)Si(!) di. (1)

E, is the energy of each waveform so that p;; = 1, and —1 = p;, = L.
It is conventional’” to define a normalized information rate,
(2 logs M)/n, where n < M is the rank of the correlation matrix (di-
mensionality of the signal space). We choose to call this normalized
rate the “information to bandwidth ratio, B/W” motivated by the
relations

R loge M _ 2log, M

W= wr - an @

where the second equality follows if we set n = 27'W, which is at
least partially justified for large n by the work of Pollak and Landau.®
For our purposes, the right-hand side of (2) may be considered as the
definition of B/W.

It will be assumed that in addition to p;; = 1 that each row of the
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correlation matrix can be written as a permutation of the first row.
Considering the waveforms as vectors in an n-dimensional linear vector
space, this means that each waveform sees an identical environment
of neighboring waveforms. This restriction is a desirable one if it is
desired to transmit each waveform with equal a priori probability.
The restriction is satisfied by the various modulation systems mentioned
in the introduction.* Slepian” has termed such systems ‘“‘group codes
for the Gaussian channel.”

It is assumed that the receiver observes a waveform z(f) on the
interval (0,7)

2(f) = S« + n(d), ®3)
where n(f) is a sample function from a white Gaussian noise process

of spectral density N, ; i.e.,

(1)) = N2 5 — 1). @)

On the basis of this observation we wish to decide with minimum prob-
ability of error (P,) which of the M waveforms was transmitted. The
optimum (minimum P,) receiver is known'® to consist of M matched
filters which give

2 = fn 2(D)8;() dt = E,(p.; + ), (5)
where
o = 2 [T oS, ar ®)

and decision that the kth waveform was transmitted is made if z, > z;
for all j # k; i.e., the decision is made on the basis of the largest matched
filter output.

From (6), the x; are zero-mean Gaussian variates with covariance

(@e) = ]—12 fnT f "t n()S, (DSt

N,
= 5 Pit - (N

* The only commonly employed M-ary system (known to the author) which does
not satisfy this restriction is M-level amplitude modulation.
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The error probability of this system is given by*

P.=l—fi---fdx1---dxﬂ,p(a:l,---x,"), (8)

where p(z,, --- , T») is the multi-variate zero-mean Gaussian dis-
tribution with covariance given by (7), and the region of integration
; is defined by the condition

Q; = region in which 1 4+ z; > p;; + z; for all j = 4.

Clearly P, is a function of M parameters: E,/N,, pia, pra, 5 P,
the first of which is a signal-to-noise ratio, the remainder of which
describe the correlation properties of the modulation system.

Landau and Slepian'' have proved the long-conjectured result that
P, is minimized for a given M (but n unrestricted) by the simplex
configuration in which the correlation matrix has the formf

1 i=j
= simplex. 9

Pi; —
1 . .
—M_11753‘

The rank of this matrix is » = M — 1 so that

_ 2 log, M
(R/W)aimplex - M _ ] (10)

For this case the expression for P, may be reduced to a single integral™
and numerical results are readily obtained.”

Weber'* has derived locally optimum configurations when M /2 =
n < M — 1. Forn = M/2 a local optimum is the biorthogonal con-
figuration in which the signal vectors are located along the coordinate
axes (+ and —) of the n-dimensional vector space such that

1 i=3
pii =3—1 i=j— (=1  biorthogonal. (11)
0 isj,j— (=1

* Actually this is the error probability assuming the sth signal is transmitted.
However, under the assumption of equal a priori transmission of all signals, and the
permutation property assumed for the correlation matrix, this probability is inde-
pendent of ¢ and is equal to the system probability of error.

+ The “local optimality” of the simplex configuration (viz.,, that P, has a local
minimum) had been proved previously by Balakrishnan.!*
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The rank of this M X M matrix is M /2 so that

Ii) _ 4log, M
(]’,I," biorthogonal N ﬂ{ (12)

In this case P, may also be expressed as a single integral which is
readily evaluated by machine techniques. Although for a given value
of M, biorthogonal modulation requires slightly more energy-per-bit
to achieve a given P, than simplex,* it is noted that (for large M)
R/W for biorthogonal is essentially twice that of simplex. Further-
more, for biorthogonal half of the waveforms are the negatives of the
remaining half; consequently, M /2 rather than M matched filters are
required. For these reasons biorthogonal is generally preferred to sim-
plex, and indeed has been employed for deep-space communications.*®

The disadvantage of both simplex and biothogonal modulation is
that good power efficiency is associated with large values of M (as it
must be for any modulation system) whieh from (10) and (12) imply
small values of B/W. Weber’s'* results indicate locally optimum sys-
tems with R/W between simplex and biorthogonal, but these are then
also restricted to relatively small R/W.

Optimum systems (in the sense of minimum P,) are not known for
n < M /2. However, bounds on the error probability of optimum sys-
tems have been obtained’™ and evaluated.® (The upper bound is ob-
tained by random coding arguments, and the lower bound by sphere
packing arguments.) These bounds are extremely useful in assessing
the performance of specific systems; however, to do so involves ex-
plicit evaluation of P, for the specific systems of interest. This is at
best a difficult numerical task. Furthermore, we may find in comparing
two systems that one is better if we are interested in P, ~ 107°,
whereas the reverse is true when P, & 10-%. Also, in comparing sys-
tems with different values of M it may be unrealistic to compare P,,
since P, is the word error probability, and the systems contain a dif-
ferent number of bits per word. Comparison on the basis of bit error
probability involves a difficult conversion from word to bit error
probability which involve coding arguments separate from the modula-
tion system performance.’® For all of these reasons it is desirable to
find a simpler criterion than P, which permits at least a gross com-
parison of modulation systems.

*Tf the comparison is made for a fixed R/W rather than M then biorthogonal

requires less energy per bit. The simple unqualified statement that simplex is
the optimum modulation system is misleading.
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III. BOUNDS ON ERROR PROBABILITY

One approach to comparing modulation systems is to obtain lower
and upper bounds on the true error probability*

P, =P, =P, (13)

and to say that system 1 is better than system 2 if P,y < Pa.

If two systems are close in performance, the above procedure may
not enable us to determine which is better unless the bounds are close.
On the other hand, close bounds may be difficult to evaluate and may
not lead to a simple performance criterion. We adopt the viewpoint
here that it is desirable to have bounds, which although quite loose,
lead to a simple sufficient condition for determining when one system
is better than another.

Let

p = max p;; = max py; . (14)
i i>1

That is, p is the largest non-diagonal entry of the correlation matrix.
It is readily established thatt

@(- N p)) <P, < (M- 1)@(— N ,,)) . )

where

#a) = = [ dy ew (~//2). (16)

The lower bound is obtained by observing that P, for an M-ary system
can be no less than that of the binary system containing nearest
neighbor waveforms. The upper bound follows from

P.s (- yia- 00) s 0r = va(- B - n) an

where the first inequality in (17) is a consequence of the symmetry
property of the system and the fact that the probability of a union of
events is less than the sum of the probabilities of the events. The

* We consider here bounds on word error probability, which, however, may be
easily converted to bounds on bit error probability. For example, if a word is in
error at least one bit is in error, and at most all bits are in error. Hence,
Pi/log:M and P. are lower and upper bounds on the bit error probability.

1 These bounds are generally well known and appear widely in the literature;
e.g., Refs. 7, 17, 18, 19. Also, as noted in the previous footnote, these bounds on
word error probability are readily eonverted into bounds on bit error probability.
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second inequality in (17) follows simply by observing that a sum of
(M — 1) terms is no greater than (M — 1) times the largest term.

In comparing modulation systems with different alphabet size it is
more appropriate to consider the energy per bit E rather than the
signal energy E,, where

E = E./log, M. (18)

Indeed, the parameter E/N, is an appropriate measure of the power
efficiency of a modulation system. The Shannon channel eapacity
formula requires that E/N, > log.2 to achieve arbitrarily small P,,
conventional systems generally require values of E/N, at least 4 times
the Shannon minimum.*

In terms of the parameter E /N, the error probability bounds may
be rewritten

q:(— ﬁ K) <P <M - 1)q>(— ﬁ K) , (19)

where
K=(1 — p) log. M. (20)
We will say that system 1 is “better” than system 2 if

o, — 1):1:(— \/KE;) < cp(— ﬁ Kz)- 1)

Several conclusions are apparent from (21).

(z) In the limit of large E/N,, Ky > K. is sufficient to ensure that
system 1 is better than system 2. (If K; > K. we will say that sys-
tem 1 is “asymptotically better” than system 2.)

(1) If system 1 is asymptotically better than system 2, then there
exists a value of E/N, above which system 1 is better than system 2.
Below this value of E/N, our formalism is generally inadequate to
determine which system is better. (The eritical value of E/N, may
be obtained by replacing the inequality in (21) by an equality.)

(112) A binary system that is asymptotically better than an M-ary
system is always better than the M-ary system.

Thus, we can always determine quite simply which of two systems is
asymptotically better, and may, in many special cases, be able to make
comparisons at specific £/N, of interest.

It should be emphasized that the above comparison is on the basis
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of the P, obtained with the two systems when operated at the same
average power and information rate. To complete the comparison, the
handwidth requirements of the two systems should also be considered.
Thus, the parameter B/W, as well as K should be used in comparing
systems.

In the following sections of this paper specific systems will be con-
sidered and represented by points on a K, R/W plot. This will enable
an immediate comparison of the asymptotic performance of systems
having the same R/W. It should be noted that Gilbert'” used a simi-
lar plot in his 1952 paper which addressed the same subject con-
sidered here. Gilbert employed a (SNR, B/W) plot in which the effec-
tive signal-to-noise ratio (SNR) was obtained for a given P, by using
the upper bound in (19). Since the SNR is related to our 1/K, better
systems correspond to smaller SNR. Our purpose in writing this paper
is not to argue that our plot is a better way to present the results
than Gilbert’s. (Indeed, since in general, P, is much closer to the upper
than to the lower bound, his method of comparison is somewhat bet-
ter, although somewhat less convenient to use.) Our purpose rather is
to resurrect these old methods which have been largely discarded
since the advent of high-speed computation, and to illustrate their
applicability to recently proposed modulation systems.

1V. PHASE, FREQUENCY, BIORTHOGONAL AND SIMPLEX MODULATIONS

4.1 Phase-Shift Modulation

For M phasors uniformly spaced on the unit circle, p = cos 2r/M.
Therefore,

m

K=2 IogzMsiIfM

(22)

Note that K = 2 for both M = 2 and M = 4* and falls off thereafter.
Since the dimensionality of the signal space is n = 1 for M = 2 and
n = 2 for M > 2, it follows that B/W is given by

w - (23)

g_{ 2 for M =2,
log, M for M > 2.

* K is maximized (for integer M) when M = 3. In practice, it is generally
desirable to consider only those values of M which are integer powers of 2 (i.e.,
each symbol conveys an integer number of bits). We shall restrict our numerical
examples to such cases.
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TABLE I —PHASE-SHIFT MODULATION

M K R/W

16
64

]
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Table I lists the K and R/W values for phase-shift modulation, and
these are denoted by dots in Fig. 1. It is apparent that M = 2 and
M = 4 are asymptotically better than the higher-order systems, and
from our previous results this implies that the binary system is always
better than the general M-ary case with M > 4.* Recall that we are
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TFig. 1— (K,R/W) plot for phase-shift, orthogonal, biorthogonal, and simplex
modulations.
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consistently using the term “better” to mean smaller P, for a given
E/N,. Large alphabet phase modulation may still be desirable because
of the larger R/W.

4.2 Frequency Shift (Orthogonal) Modulation
For M orthogonal signals (e.g., frequency-shifted signals with es-
sentially non-overlapping spectra), p = 0 and
K = log. M. (24)

The dimensionality of the signal space is the number of orthogonal
vectors, n = M, so that

R _ 2log, M

WM 25)
Table IT lists the K and R/W values for orthogonal modulation, and
these are denoted by circles in Fig. 1. Larger values of M correspond to

TaBLE II—OrTHOGONAL MODULATION

M K R/W
2 1 1

4 2 1

8 3 3/4
16 4 1/2
32 5 5/16
64 6 3/16

systems which are asymptotically better, at the expense, however, of
smaller values of R/W. It is clear that binary orthogonal is inferior
to binary and quarternary PSK both in terms of a smaller K and
smaller E/W.i

4.3 Biorthogonal Modulalion

A biorthogonal system consists of 1//2 orthogonal waveforms and
their negatives. The maximum correlation coefficient is p = 0 for M =
4, but p = —1 for M = 2. Therefore,

_ | 2 for M =2,
hog2 M for M =z 4 (M even).

* This conclusion is confirmed by the exact calculations of P, for M-ary PSK
by C. R. Cahn 20

 Binary FSK may still be employed, of course, for simplicity reasons or
because the channel phase coherence may not be consistent with phase-shift
modulation.

K (26)
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Since n = M /2,

R 4log, M
W M

Table IIT lists the K and R/W values for biorthogonal modulation,
and these are denoted by ['s in Fig. 1. Note that M = 2 and M = 4
biorthogonal are equivalent, respectively, to binary and quarternary
PSK.

Clearly, for fixed R/W, biorthogonal is asymptotically better than
orthogonal. For example, consider M = 4 orthogonal and M = 16
biorthogonal, both of which have R/W = 1. From (21), the biortho-
gonal system is better than the orthogonal system for all /N, > 2.5,
which corresponds to all P, of practical interest. (P, < 3(10)72).

(27)

4.4 Simplex Modulation

In simplex modulation, the M code veetors form a regular simplex
in M — 1 dimensions. (All veetors are equally spaced from all other
vectors. This corresponds to an equilateral triangle in two dimensions,
and a regular tetrahedron in three dimensions.) All correlation coef-
ficients are equal and are given by'***3 , = —1/(M — 1). Therefore,

M

K= M —

i log, M. (28)

Sincen =M — 1,

= (29)

R 2 log, M
I 4

W M-—1

Comparison of (28), (29) with (24), (25) indicates that for large M
simplex modulation is essentially identical to orthogonal modulation.
Table IV lists the K and R/W values for simplex modulation, and
these are denoted by A’s in Fig. 1. A quick glance at Fig. 1 indicates

TaBLE III— BirorTHOGONAL MODULATION

M K R/W

2 e 2 2

4 2 2

8 3 3/2
16 4 1
32 5 5/8
64 6 378




854 THE BELL SYSTEM TECHNICAL JOURNAL, MAY—JUNE 1967

that depending on the R/W of interest, biorthogonal or PSK modula-
tion offers the best asymptotic performance of the systems considered
so far. (The dashed line in Fig. 1 is drawn through these “best”
points.) Note that although simplex provides the largest K for a fixed
value of M, it does not do so for fixed R/W.*

TABLE IV —SiMpLEX MODULATION

M K R/W
2 2 2
4 2.67 1.33
8 3.43 0.86
16 4.26 0.53
32 5.16 0.32
64 6.10 0.1

V. PERMUTATION MODULATION

Slepian* has recently deseribed an exceedingly general modulation
system (permutation modulation) for which all of the systems con-
sidered in the previous section are special cases. The optimum de-
modulation algorithm is particularly simple, but the actual evaluation
of P,, and the finding of good special cases is somewhat more complex.
We restriet ourselves here to a special subclass of permutation modula-
tion. This subclass is suggested both as the simplest generalization of
hiorthogonal systems, and because perusal of Slepian’s results indicate
that systems taken from this subclass are amongst the better of the
moderate-sized alphabet examples which he considers.

Following Slepian we define an (n,m) permutation modulation sys-
tem as follows. The time interval T is divided into n subintervals (n =
2T7W). The first waveform of the alphabet consists of a signal with
amplitude unity in the first m subintervals (m < n), and zero ampli-
tude in the remaining subintervals. The remainder of the waveforms
consist of all possible permutations of the subintervals, allowing also
all combinations of plus and minus amplitudes. For example, the
(3,2) system contains twelve waveforms which we may represent as

(1,1,00, 1,—-1,0), (—1,1,0), (—1,—1,0),
(1;011)! (110’_1)! (_11011)1 (—1,0,—1),
(0,1,1, (0,1,—1), (0,—1,1), (0,—1,—-1).

*For the special case M = 2, simplex, biorthogonal and PSK are all
equivalent.
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In general, it is easily seen that the alphabet size M is given by

mr
a[_zLJ. (30)

It is also noted that the special case (n,1) corresponds to biorthogonal
modulation.*

This (n,m) modulation clearly satisfies the symmetry requirements
of our theory. All members of the alphabet have equal energyt and the
correlation matrix has the desired permutation property. It is readily
seen that the maximum correlation coefficient is given by

m — 1
P=" (31)
Thus,
K = (log, M)(1 — p) (32)
1 n
=14 P log, (m)
so that (n,m) modulation always achieves K > 1. Also
R _ 2log, M
w n (33)
_mp
n

Equations (32) and (33) suggest that (n,m) modulation may achieve
both large values of K and large R/W, which was not possible with
any of the systems deseribed in the previous section.

5.1 (n,2) Modulation

Since m = 1 leads to biorthogonal modulation which has many de-
sirable properties, it is natural to look next at the special case m = 2.
From (32) and (33) it follows that for (n,2),

K = }[1 + log,n(n — 1)) (n=3) (34)
and
R 41K
WS 3%

*In Slepian’s terminology, the (n,m) modulation described here is a variant
IT system in which m; =n —m, ma=m and us =0, . = 1.

T With the normalization employed above, the signal energy is m. However,
all code words may be multiplied by a constant to achieve any desired E..
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values of the K and R/W are given in Table V and are plotted as W’s
in Fig. 2. (For reference, Fig. 2 also contains the hiorthogonal and
PSK results from Fig. 1.) Thus, similar to biorthogonal, as n becomes
large K increases but R/W decreases. It is seen from Fig. 2 that (n,2)
modulation gives better performance (larger K for a given R/W) than
biorthogonal or PSK.*

52 (2m,m) Modulation

(2,1) corresponds to M = 4 biorthogonal, which from our earlier
results gives K = 2, R/W = 2. It is seen from Table V that (4,2)
gives K = 230, R/W = 230 which corresponds to both better
asymptotic performance and better bandwidth utilization. It is ap-

TaBLe V— (n,2) MoDULATION

n M =2an — 1) K R/W
3 12 1.79 2.38
4 24 2.30 2.30
5 40 2.66 2.13
6 60 2.95 1.97
7 84 3.19 1.82

parent from (33) that whenever n = 2m, R/W = K, and an im-
mediate question is how large can we make these two quantities.
With n = 2m, it follows from (32) that

2m) ) (36)

1
K = 1+Elog2(m

Use of Stirling’s approximation when m > 1 gives

2m ~ 1 2m
()~ e
so that for large m, K — 3. It is easily shown that K increases mono-
tonically towards this asymptotic value as m is increased. Thus,
(2m, m) modulation does not permit attainment of arbitrarily large
values of K, and hence cannot attain arbitrarily low P, with finite
E/N,. This is consistent with Slepian’s statement* that permutation
modulation cannot approach channel capacity arbitrarily closely at
non-zero &/W.

* This is, of course, achieved only at the expense of a larger alphabet size. It
may also be noted from Table V that the alphabet size is not generally. a power
of 2 which may also be a practical disadvantage.
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Tig. 2 — (K,R/W) plot for permutation modulation.

5.3  (kmm) Modulation (k > 1)
As an immediate generalization of the above, consider the more
general case n = km where k > 1.* Then, from (33)

R 2
W K (38)
and from (32)
. 1 Am)
K=1+4 po log, (m (39)

Again using Stirling’s approximation for large m, (assuming also that
(k—1)m>1)

Icm)N 1 \j-r( 2 )r.-... ] i
("" ¥ Vom Ni=1\r—1) ®=D" (40)

* Of course k should be chosen so that km is an integer.
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Thus, in the limit of large m, for fixed k > 1,

K—1+4Fklog. (E,—ET) + log, (k — 1). (41)

For large k, the right-hand-side of (41) increases as log k; however,
as seen from (38) R/W diminishes as k. The locus of K, R/W values
obtained with different values of k& (but large m so that the approxima-
tion (41) applies) is shown by the solid curve in Fig. 2. In the limit
as k = 1 (but m always sufficiently large such that (k — 1) m > 1),
K - 1and R/W — 2. As k increases, both R/W and K increase until
k =~ 1.5 at which point R/W ~ 3.2 and K = 2.3. Further increases in
k result in a reduction in R/W but continued increase in K.

The above results indicate that (n,m) codes can be found with
R/W as large as octary PSK (R/W = 3) and with considerably better
asymptotic performance.

VI. COMBINED PHASE-SHIFT AND ORTHOGONAL MODULATION

In the previous examples we have compared by approximate meth-
ods modulation systems which have already been analyzed exactly.
Although perhaps additional insight into the relative performance of
these systems has been obtained, many of our conclusions may be
inferred from existing exact calculations, We now wish to consider a
new system, recently proposed by Reed and Scholtz,* which (to our
knowledge) has not yet been evaluated numerically.

Consider an alphabet M divided into M, groups, each group con-
taining M, members. Thus,

M=MM,. (42)

The different groups may be considered to be sufficiently separated in
frequency so that waveforms from different groups are orthogonal.
Within a group the waveforms have the correlation properties as-
sociated with phase-shift modulation. Thus for M, = 4 the maximum
correlation coefficient is p = cos (2=/M,), and

T

M,

K = 2sin’ (log. M, + log, M,). (43)

Since each group requires a two-dimensional sub-space

n=2M,. (44)
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Thus,

log. M, | log, M,
M, M,

In the special case of M; = 1 it is apparent that this system reduces to
simple phase-shift modulation (Section 4.1). In the special case of
M, = 4 it reduces to the biorthogonal case (Section 4.3). A question
of interest then is whether choices of M, > 4, M; > 1 lead to better
performance than either phase-shift or biorthogonal modulation.*

In Fig. 3 the K and R/W values (obtained from 43 and 45) are

R/W = + (45)

5 '
\
\

\

4 r\
\Mp=4
\ P

w

3
R/W
Fig. 3— (K,R/W) plot for combined phase-shift and orthogonal modulation,

shown for the combined phase orthogonal modulation. The solid curves
are for constant values of M, (noted on the curve); the uppermost
point on each such curve corresponds to M, = 4, and each lower point
corresponds to M, increased by a factor of two. The dashed curve
goes through the M, = 4 points (biorthogonal). It is apparent from
this figure that in this class of systems, for R/W = 2, the M, = 4
biorthogonal systems give the largest value of K. For B/W = 2, the
M; = 1 phase-shift systems give the largest value of K. Thus, in terms

*Reed and Scholtz6.8 are concerned largely with an algebraic method of

generating waveforms with the above correlation properties, rather than in a
comparative evaluation of performance.
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of asymptotic performance, choice of M, > 4, M; > 1 always gives
poorer performance than systems which achieve the same R /W with
either M, = 4 (biorthogonal) or M, = 1 (simple phase shift).

For example, consider M, = 2, M, = 8. This yields /W = 2 and
K = 1.17. However, R/W = 2 is also achieved with M, = 1, M, = 4
(quaternary PSK), and for this case K = 2. From (21) we can con-
clude that the latter system is better than the former for all E/N, >
2.5, which includes all P, of interest. The significance of these results
is that we ecan make this comparison with only a simple slide-rule
calculation.

In the above comparison we considered only M, = 4. The case of
M, = 1, M; > 1 is the orthogonal modulation previously considered.
The case of M, = 2, M, > 1 gives the same performance as biorthog-
onal but achieves only % the R/W and consequently is of little in-
terest. The case of M, = 3, M; > 1 consists of orthogonal combina-
tions of two-dimensional simplexes (equilateral triangles). Reed and
Scholtz® conjecture that for M = 3M;, the three-phase orthogonal
system gives a smaller P, than any other collection of 3M, signal func-
tions in a space of dimensionality 2M;. Although this conjecture may
well be true, we wish to point out that if the comparison is made on
the basis of fixed R/W (rather than fixed M) then hiorthogonal is
asymptotically better than three-phase orthogonal. One way of seeing
this is by noting that three-phase orthogonal has the same K but
smaller R/W than the four-phase (biorthogonal) system of the same
dimensionality. To increase the R/W of the three-phase system re-
quires a reduction in K which makes it asymptotically poorer than
the corresponding biorthogonal system.

VII. BOUNDS ON K

It has been shown that the (K,R/W) plot provides a useful tech-
nique for comparing the performance of various modulation systems.
Although our main concern here is in the comparison of specific sys-
tems, it is still natural to ask whether there are bounds on what may
be achieved in the (K,R/W) plane.

It is apparent from the definition of K

K= (1 — p) log. M (46)

that if no constraint is placed on alphabet size or signal space
dimensionality, K can, in principle, be made arbitrarily large for any
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R/W. This corresponds to the fact that the Shannon channel capacity
formula implies that arbitrarily small P, may be achieved at all
(finite) R/W with finite E/N,.

If M is held fixed but n is unconstrained, then the maximum K is
achieved by the simplex modulation® (Section 4.4) for which case
K= [M/(M —1)] logaM and R/W = (2 log.M)/M — 1.

Perhaps of more practical interest is the opposite case where the
signal space dimensionality n is fixed, but M is unconstrained. Here,
sphere-packing arguments may be used to show that?

M < 2/1(,_,,,2(”——2—1 , %) , 7)
where I,(p,g) is the incomplete beta-function which is extensively
tabulated.”* Thus, for a given p and n, an upper bound to M may be
calculated from (47). Since I.(p,q) i1s monotonie increasing in z, this
also gives a lower bound on p for fixed M and n. Considered in this
latter context we can then determine an upper bound on K with which
is associated a given value of R/W = (2/n) log.M. This upper bound,
K,, is plotted in Fig. 4 as a function of R/W for n = 5 and n = 10.
Both curves indicate that K, achieves a maximum value. This is un-
derstandable since for large B/W, 1 — p decreases more rapidly than
logaM increases. On the other hand, as R/W decreases, logaM keeps
decreasing, whereas 1 — p is of course always less than 2. Thus, it is
not surprising that there exists an R/W at which K, is a maximum.

It should be noted, however, that K, is an upper bound which likely
cannot be achieved. For example, when B/W = (2/n) log:2n, cor-
responding to M = 2n, the optimum configuration iz widely con-
jectured to be the biorthogonal case.* The corresponding K and E/W
values for biorthogonal with n = 10 and n = 5 are shown by the
points marked (10,1) and (5,1) on the dashed curves of Fig. 4. These
points lie well below the upper bounds.

Biorthogonal is a special case (m = 1) of the (n,m) permutation
modulation considered in Section V. Fig. 4 (dashed curves) shows the
K and R/W wvalues for the (10,m) and (5,m) cases. As must be,
these curves lie below the upper bounds given by the solid curves.

Finally, we note from Fig. 4 that (n,m) permutation modulation
possesses the interesting feature that as m is increased (for a fixed n)
a maximum R/W is achieved. Both the properties of the maxima of
K, and the maxima of the R/W of (n,m) modulation are probably
worthy of further study.
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Tig. 4 — Bounds on (K,R/W) for fixed n and comparison with permutation
modulation.

VIII. CONCLUSION

The main conclusion to be drawn is that the K, R/W plot provides
an exceedingly useful technique for comparing modulation systems.
We have restricted ourselves to modulation systems in which the
signal alphabet consists of equienergy waveforms for which all rows
of the correlation matrix are permutations of a given row. (Geo-
metrically, the alphabet consists of M points on the surface of an n-
dimensional sphere such that all points see exactly the same environ-
ment.) This class of systems, although somewhat limited, is sufficiently
broad to cover most systems of theoretical and practical interest.
Given two systems in this class such that K; > K; then in the limit
of large E/N, (low P.) P < Pes for the same E/N,. Furthermore,
we have obtained a simple sufficient condition on the E/N, above
which this inequality is valid. These results are in reality not new.
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They are implicit in the results of Shannon” and in many other works.*
What is perhaps new is that many interesting results and comparisons
can be obtained by such simple techniques,

Considerably more precise comparisons can of course be made by
exact computation of P, rather than by comparison of K. The latter
procedure however is considerably quicker and allows ready con-
sideration of entire classes of systems (e.g., the (n,m) permutation
modulation and the combined phase-shift orthogonal modulations
considered in the previous sections). The comparisons discussed here
are not meant to supplant exact evaluation, but rather as a coarse sieve
for delineating systems worthy of more extensive calculation.
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