Combinatorial Solution to the Problem of
Optimal Routing in Progressive Gradings

By V. E. BENES
(Manuseript received June 10, 1966)

The grading or graded multiple proposed by E. A. Gray is a cerlain
kind of one-stage, two-sided, partial access telephone connecting network
for swilching customers’ lines to trunks all having the same destination.
Its essential feature is that traffic from lines not having identical access
palterns can be offered to a common trunk, and so pooled. In a progressive
grading the trunk groups are partially ordered in a hierarchy, i.e., some
provide primary routes, others function as secondary routes which handle
traflic overflowing from primary routes, as well as originating iraffic, ete.,
up to final routes.

A call which 1s using an overflow or “later” trunk when it could be using
a primary or "‘earlier’”’ group is said to make a ‘‘hole in the multiple.
It was recognized early in the development of gradings that such holes were
undesirable.

The problem of oplimal routing in telephone networks, considered in
general in the author’s earlier work, is here specialized to progressive grad-
ings. It had been shown that for networks with certain combinatorial
properties the oplimal choices of routes for accepted calls (so as to minimize
the loss under perfect information) could be described in a simple and in-
tuitive way in terms of these properties. The present paper gives a proof
that all progressive gradings have such a combinatorial property, associated
with the hierarchical nature of the grading. The optimal policy for routing
accepted calls is related to the phenomenon of ‘“‘holes in the multiple”,
and can be paraphrased in the traditional telephone terminology thus:
filling a hole in the multiple 1s preferable to using a final route, and filling
an earlier hole is preferable to filling a later one.

I. INTRODUCTION

The term ‘hierarchical’ has often been used to deseribe connecting
networks in which the possible routes for a call are ordered, with the
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order determining the routing decisions in that the earlier routes are
hunted over before the later. The Bell System’s toll network is often
cited as an example of a hierarchical network. Recently, J. H. Weber
has used the word ‘hierarchical’ in a more technical sense to describe
trunking networks “. . . in which at least some of the trunk groups are
high usage; i.e., traffic which is not carried can be overflowed to other
groups, at least some of which are finals, which have no alternate
route.”

In this paper, we consider some ways in which the concept of a
hierarchy of routes is relevant to the problem of optimal routing as
formulated in previous work.? Naturally, such a hierarchy can be
relevant to routing only if it is in a suitable way related to those
combinatorial properties of the network which distinguish the ‘good’
from the ‘poor’ ways of completing calls. (Examples of such properties
were given in Ref. 2.) It shall be shown that natural hierarchies as-
sociated with certain gradings hold the key to the routing problem in
these one-stage networks.

It is now known? that if a network possesses one of certain com-
binatorial properties, then this property can be used to describe in a
simple way the optimal choices of routes for accepted calls so as to
minimize the loss under perfect information. The next natural ques-
tion is, then, what networks possess some of these properties? We
shall prove that the members of an important subelass of connecting
networks, that of progressive gradings, all have a combinatorial prop-
erty similar to the strongest of those of Ref. 2; this property is as-
sociated with a natural hierarchy of routes, and leads to a solution of
the routing problem for accepted calls.

II. GRADINGS

We first discuss and clarify some of the usage and terminology as-
sociated with gradings. Since about* 1905 the noun ‘grading’ and the
adjective ‘graded’ have been used in telephony to desecribe a certain
kind of one-stage two-sided network for connecting customers’ lines
to trunks all having the same destination. Roughly speaking, a grading
has this property: some trunk is such that two lines have access to
it which do not have access to the same trunks. The essential feature
is that traffic from distinguishable lines (i.e., ones not having identical
access patterns) can be offered to a common trunk.

*T. A. Gray proposed the “graded multiple” in 1905, and was granted a
patent for it (No. 1002388) in 1911.
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It appears, though, that the word ‘grading’ has been used in a wider
sense in Europe than in the United States. In particular, the American
usage® implies a certain order in the pattern of access that the lines
have to the trunks, whereas in the European meaning this implication
is absent. The order implicit in the American usage amounts to this:
the trunks are partitioned into groups which are so partially ordered
that no group has more than one successor in the ordering; a line that
has access to one group has access to all groups that follow it in the
ordering. (This ordering usually determines the order in which the
lines hunt over the trunks.) Thus, e.g., a trunk group with no predeces-
sors in the ordering can be used by exactly one group of lines, for
which it is the “primary” route. In one European sense of “grading,”
however, a trunk group which is the first one hunted over by one line
group may be the nth one (n > 1) hunted over by some other line
group.* The distinction drawn here is of some importance, inasmuch
as the order structure implicit in the American usage gives rise to a
natural hierarchy of routes that is directly relevant to routing, whereas
in the more general case this hierarchy is not necessarily present.

Recently, in an effort to establish a uniform terminology, the
nomenclature committee of the International Teletraffic Congress de-
cided® that the terms ‘grading’ and ‘graded multiple’ should be in-
terchangeable, and the structures deseribed in R. I. Wilkinson's paper®
as graded multiples be called, more specifically, progressive graded
multiples or progressive gradings, the word ‘progressive’ here re-
ferring to the order structure we have described as characteristic of
the American usage. The usage recommended by this committee is
adopted herein.

Since the present work can be viewed as a continuation of Ref. 2,
we take the liberty of assuming familiarity with the notations and
concepts used there, and we include only occasional reminders of the
meanings of important notions.

II1. HIERARCHIES OF ROUTES

It will be convenient to have a notation for roufes. A route r for a
call ¢ is just a way in which ¢ can be put up or realized in a network »,
and so it can be identified with the state in which the only call in pro-
gress is ¢ using route r. Thus, a route for ¢ is any element of v '(c).*
We use the variables ¢ and r (over the set L, of states with one call in
progress) to denote routes.

* We recall that if zis a state,y(z)is the assignment of inlets to outlets realized by z.
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By a hierarchy of routes we mean a partial ordering 2 contained in
Uy el

It is apparent that 2 can hold only between alternative routes for
the same call. (Of course, not every hierarchy of routes is relevant to
routing; only those that have a suitable relation to the ways in which
calls in progress block new calls will be of interest. The problem is
to clarify the meaning of ‘suitable’.)

A hierarchy of routes, being a partial ordering of the states with one
call in progress, can be extended to, or can induce, a partial ordering
of the whole set S of states in several natural ways. Since 2 can hold
only between alternative routes for the same call, it is reasonable to
confine attention to extensions which hold only between states that are
equivalent in the sense of ~ in Ref. 2, i.e., are (possibly) different ways
of realizing the same assignment. An obvious first candidate for such
an extension is given by the condition

z~vy and r<z,q¢g=y r~gq imply r2gq 1)
However, we eschew this definition in favor of a stronger one: let us set

2 D y = z is reachable from y by sequentially moving calls in pro-
gress from routes that are lower (later) (in the sense of
D on L,) to routes that are higher (earlier).*

It is intended here not merely that, as in (1), each call have a higher
route in z than in y, but that it should be possible to pass from y to z by
a sequence of equivalent states each differing from the previous one
in that one call has been rerouted on a higher route. This stronger
condition is rendered formally by first defining

tQy=|zny|=|z|— 1andeither
c—(@ny) 2y —(@uyor
|z]|=1landz Dy
and then setting
D2=IuQu@u - @)

= transitive closure of €.

* Tn an attitude prejudiced and justified by the Princi al results (Theorems 1 and
2) we are working toward, we use the words ‘lower’, ‘earlier’, and their antonyms so
as to suggest consistently that lower routes are less desirable than higher, earlier ones
are preferable to later, etc.
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IV. PROGRESSIVE GRADINGS

In a one-stage connecting network » = (G,1,2,S), with [ the set of
customers’ lines (inlets) and € that of trunks (outlets), the graph G
giving network structure is determined entirely by the access relation
A such that

[Al = line [ has access to trunk &.

The set S of states of » can be represented by the set of all subsets of
A which are one-to-one correspondences. The range of z, rng (z), is
the set of trunks which are busy in z.

The access relation A can be used to give a simple definition of a
progressive grading. We use X X Y for the Cartesian product of X
and Y, i.e., the set of pairs (z,y) with x ¢ X and y ¢ V. If X is a set,
| X | denotes the number of elements of X.

Definition: v is a progressive grading if and only if it is a one-stage
network for which there exist partitions IT and E of @ and I, respectively,
and a partial ordering = of II, such that for 7, U, V el and L ¢ E

(#) (LXT)nAs=6implies (I, X T) C A4,
(@) (LX U)C A, V= Uimply (L X V) C 4,
@) Uz T, VzTimplyUZ2VorV U
@lLiz] U T

T:(LXT)SA

The first condition simply says that if a line has access to some trunk
from a group 7', then all lines in its line group have access to every trunk
in 7. The second condition says (roughly) that a line with access to
a trunk group 7' has access to all groups that are later than 7' in the
partial ordering. The third condition says that a trunk group is followed
(in the partial ordering) by at most one other group; if the “‘later”
groups are thought of as overflow groups, this means that each group
has at most one group to which to overflow traffic. Finally, the fourth
condition rules out the relatively uninteresting cases in which some line
group has access to more trunks in tofo than there are lines in the group.

It is apparent that if a trunk group 7', is later than one T, , then every
line with access to 7', has access to T, . This is the “‘progressive’’ prop-
erty. In analogy with the intuitions expressed in Ref. 2, it should be
better to use an earlier trunk group than a later one, if both are available.
Thus, the structure of a progressive grading at once suggests the con-
jecture that optimal routing will consist of using the early routes in
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preference to the later or (to anticipate a bit) overflow groups. This
conjecture is true and follows from Theorem 2. In traditional telephone
terminology (see E. C. Molina’s appendix in Ref. 3) it states that filling
a hole in the multiple is preferable to using a final route, and that
filling an earlier hole is preferable to filling a later one.

A line group L is said to be a bye if it has access only to “‘overflow”
trunk groups, i.e., if

inf (T:LAT}

is not minimal in <, where we have written LAT for (L X T) C A.

It is easily seen that in a progressive grading a hierarchy of routes
can be defined by this rule: D ¢ if and only if » ~ ¢ and g(q) =2 ¢(r),
where g(r) is the trunk group used by route »* This is the natural
hierarchy of routes associated with a progressive grading; here r O ¢
if and only if 7 ~ ¢ and r is on an “earlier”” trunk group than ¢. In this
instance, = is also a simple ordering on each g(y~"(v(r))). These simple
orderings forming the hierarchy of course correspond exactly to the
preference relation among routes suggested by the natural intuition
(already mentioned) that there is no point in using a later or “overflow”
trunk when an earlier one is available, because possibly fewer lines have
access to the latter. The relation D defined above on L, extends by
(2) to all of S.

V. PARTIAL ORDERING OF PROGRESSIVE GRADINGS

In a proof to be given later we shall use the fact that the set of pro-
gressive gradings can be partially ordered by a relation 2 according
to the following definition of covering: », covers », if and only if »; is
obtained from », by removing, for some line group L, either (case 1) a
trunk from the first (in =,) trunk group to which L has access together
with one line of L if L has access to more than one trunk, or (case 2)
the trunk to which L has access together with L itself if L has access
to exactly one trunk. That is, if v, is defined by partitions II, , &, , a
partial ordering =, of II, , and an access relation A, , then v, covers v
provided that there exist ¢ ¢ II, and [ ¢ L ¢ E, with

T =inf {U ell,(L X U) C A}

21

such that v, is defined by (case 1)

* Note the shift to the converse.
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&
[

o, — (T} + {T — {t}}
» = E — [L} + L — (i}

Ix]
Il

2, =2, with T — |t} for T throughout
A, = A4, — I X {t)) — ({1} X 9),
if T # {t}or A, n (L X Q) ¢ (L X {t}), and by (case 2)
o, =1, — (T}
B, = E, — |L}
2. = 2, — (I, X {T})
A, = A, — I X {t}) — (L X 9),

f7T = {t}and 4, n (L X Q) C (L X {t}).

For practical purposes a network in which some line group has access
to no trunks is in all respects equivalent to the same network with those
lines omitted. For this reason the definition of covering was divided into
cases 1 and 2, so as to build this equivalence right into the definition.

As we have said, », covers », if and only if », results from », by ripping
out (7) some trunk from a “primary” group, (¢Z) a line with access to
it, and (477) all crosspoints associated with these terminals, with the
proviso that if this leaves some lines with access to no trunks, then these
lines are also to be removed. Because of this, there exists a natural or
canonical map u of the states S(»,) of », into those S(v;) of »,, defined
roughly by the condition that ux is what is left of z after the line and
trunk that define the covering of v, by », have been ripped out. The
canonical map can be defined formally very simply, as follows: A state
z of », is representable as a subset of A, which is also a one-to-one cor-
respondence; similarly, a state of v, is just a one-to-one map contained
in A,; what is left of = after the ripping-out process is just

M =T N Az .
Thus, if 4 corresponds to ripping out line [ and trunk ¢, and z = HDIE
then uz = 6 = zero state. If z = [(L,t,)} or z = {(I,, &)} with [, = [
and #, 5 ¢, then again uz = zero state. If v = {(I, ,1,)} v y, withl, = I
ort, = i, then yz = py. It is easy to see that if u rips out [ and ¢, then
S is isomorphic with the ‘‘cone”
tve S z {(LO},

because it does not make any difference whether ! and ¢ are present in
the system and connected to each other, or are just absent. That is,
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uS is essentially the set of states of S that remain available if I is con-
nected to ¢ with a holding-time of + .
This notion of a canonical map provides many useful notations.
It is convenient to extend the p-notation as follows: For T' ¢ II

T — {t} if teT and T # {t},
pT = T n range (4;) = T if t¢T,
]B if T = {t}.

Clearly, u7 is what is left of the trunk group 7' after the line [ and the
trunk ¢ associated with x have been ripped out. Also, we set

p= = (T, , uTo)T, = To, uTy # 0, and uT, # 6}

p= {(uz,py):x Dy, px = forz = 60, and py # fory = 6}.

I

The relation u = can be seen to be identical with =, ; it is a useful
mnemonic; it defines the hierarchy of routes in the “reduced” system
v, ; the partial ordering induced in S(v.)[= wS(v:)] by this hierarchy is

precisely p 2.

VI. PRELIMINARY RESULTS
In Ref. 2, for a general partial ordering R, the notation

sup A,
¥4

was used for the set
{yz € A,, implies yRz} n A..

whenever this set was nonempty. The notation was chosen to denote
a set of R-maximal elements of A.,, rather than an actual R-maximal
element itself, so as not to prejudge the question as to how many there
were. It will be shown that if the network » under study is a progressive
grading, and R = D = natural hierarchy, then unless ¢ is blocked in
x (and A,, is empty) A.. always has a C-maximal element which is
unique to within equivalence under permutations of lines within their
line groups and trunks within their trunk groups.

Let now z be a state and let ¢ ¢ = be a eall which is not blocked in z.
It is apparent that for y, z € A,. we have either g(y — ) = gz — )
or g(y — x) < g(z — ). Hence, there is a y, € 4., such that

glye — ) = gw — 2)
Yo — T 2W — X
Yo Qw
Yo 2 W
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forall w ¢ 4., , and y, is unique to within equivalence. (Recall the con-
struction of @ in Section III, and the fact that 2 is I u @.) Hence,

sup 4,, (sup 4., for short when the context permits)

exists, and equals 7(y), 7(+) being the natural homomorphism of S
into the quotient S/(2 n C). (See Ref. 2.)
We now consider policies ¢(-,-) such that

[—x— h if eis a hangup h,
ole,x)

®3)

le sup A,, if eis a new call ¢ not blocked in z.

Such a policy expresses the routing rule of always choosing the earliest
available trunk in the natural hierarchy characteristic of a progressive
grading.

The relation B (for “‘better’”’) was defined in Ref. 2 by the condition
z By ifandonlyif =z~ yand every call blocked in z is also blocked
in 7.

By Theorem 1, to be proved shortly, it will follow that x 2O y implies
z B y, which in turn implies s(z) = s(y). Thus, the policies ¢(-,-) coin-
cide with the “maximum s(-)” policies suggested in Ref. 2. (See Ref.
2 for notations.)

Lemma 1: If the line of ¢ is mot involved in the canonical map u, and
A.. # 0, then

p(sup A..) S sup A, .
2 re=

Proof: Let I* be the line of ¢, and suppose that
yesup A, .
Let I and ¢ be the line and trunk, respectively, associated with x. There

exists a trunk ¢* such that
Y

x v {(I*, 7))
py = px v [(I*,0%)}
t* e inf [T:T & rng (x) and I*AT}.
o
Let T* denote the set (trunk group) achieving the infimum on the right.
Since ¢ is busy in x and t* is not, ¢ # ¢*. Thus, T* = {¢}, and u(T*) 5= 6.

We first observe that I*AT implies I¥*A4,uT, since ¢ is not involved
in u.
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We next show that uT & rng (ux) implies T & rng (z). If not, then
there exists ¢, € uT, hence ¢ T such that {, ¢ rng (uz) and ¢, ¢ rng (z).
But

rng (ux) = rng (¥) — {t}.
Hence, t, = t = trunk removed by u. But this is impossible since ¢, € u T,
while ¢ ¢ uT.
Now T* £ T for every T such that 7' & rng (z) and I*AT. From the
two previous paragraphs, it follows that
WT*)(u=)uT

for every T such that uT &€ g (uz), *ApT, pT # 6. That is,
uT* = inf {T:T E rng (uz), ¥AT}.

Now t* ¢ T*, t* £ t,s0 t* ¢ uT*. If now w € 4., , then
(w — p2)WS)((1,1%)]
wpS)ur v (%))
wpS)py.
Thus,
Ky £5UD Acuny

and since ¥ was arbitrary within sup A.., the lemma is proved.

Lemma 2: In a progressive grading, Q C B.

Proof: Let x @ y. This implies that there exists z ¢ B, n B, such that
xT—z2y — 2z ie,
gly —2) = glx — 2).

Now let ¢ be a call from line [ which is blocked in z but not in 3. Then
¢ is not blocked in z either. The only trunk which is busy in 2 and not
in z is that used by the call v(z — 2). Thus, since ¢ is blocked in z and
not in 2z, g(z — z) is a trunk group usable for the call c. However, by
property (i) of progressive gradings, {I} X g(y — 2) € 4, i.e, [ has
access to the group g(y — z) as well. Hence, some trunk of g(y — 2)
is idle in z, since the call y(z — z) has a choice of routes in state 2, one
of these being on g(y — z). Thus, ¢ is not blocked in z, and 2 B y.

Theorem 1: In a progressive grading, the partial ordering 2 induced by
the natural hierarchy of routes is contained in B.
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Proof: Immediate from Lemma 2 and the facts that O is the transitive
closure of 7 v @, and that B is transitive.

Lemma 3: If x 2 y, then x is obtainable from y by moving calls to earlier
routes in such a way that each call s moved at most once.

Proof: The result is true if only one move is made. Suppose it to hold
if n moves 7n toto are made. Let z be obtainable from y by sequence of
(n + 1) moves. The trunk groups available for a given call ¢ form a
set simply ordered by =, and so can be indexed 1, 2, - - - , the <-earlier
receiving the lower integer. For ¢ £ (), let n(e,x) be the index of the
group used by ¢ in . Some call ¢ that is moved in obtaining = from y
achieves

min {n(c, , 2) | ¢, moved in getting 2 from y}.

Starting in state y it is possible to move such a call (once) directly to
its route in z, to get a state z in which it is still possible to carry out
exactly each of the moves that take y into x except those involving e.
These are at most n in number, so each call involved need be moved at
most once.

A policy ¢(-,-) is said to preserve a relation R C ~ if x R y implies

el(e,x) B ele,y)

for every event e that is either a hangup or a new call not blocked in
either z or y. It has been shown in Ref. 3 for a general network that if
¢ preserves B then it embodies the optimal routing policy for accepted
calls.

The main theorem we prove (Section VII) states that a sup 4..
policy, i.e., one satisfying (3), preserves 2. The method to be used in
the proof of this result is illustrated in part by the following remarks:
consider linear arrays z, ¥, 2, - -+ each of n urns, n = 2, each urn con-
taining at most one ball, with fewer than » nonempty urns per array.
Let 2 © y mean that x is obtainable from y by moving balls to the left.
Let ¢z denote the result of adding a ball in the leftmost empty urn.

Observation: If x D y, then gz D ¢y.

Proof: The result is obviously true for n = 2 by enumeration. Let it
hold for a given value n = 2, and consider arrays x, y of n urns satisfying
the hypotheses. Let ¢z denote the result of removing the leftmost urn
from 2z, and bz that of adding an urn containing one ball at the left of
z. There are two cases: (7) the leftmost urns are empty in both z and
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y, or both nonempty in z, y; (%) in ¥, but not in z, the leftmost urn is
empty.

Case (7): oz = by, oy = bjy, ya 2 Yy; hence, oz 2 ¢y.

Case (¢7): In obtaining x from y some ball moved into the leftmost
urn. Obtain z from y by moving just this one ball to the leftmost urn.
Thenz D z 2 ¥y, ¢t 2D ¢z, oy = byz, ¢z = beyz. Since gz is obtained
from yy by removing some ball, and replacing it in the leftmost empty
urn of the resulting array, we have ¢z 2 Yy, and so ¢z 2 ¢y.

In cases 3 and 4 of the proof of the next theorem, the analog of the
inductive index n will be the partial ordering of the set of progressive
gradings.

VII. PRINCIPAL RESULT

Theorem 2: In a progressive grading v let 2 be the partial ordering in-
duced by the natural hierarchy of routes in v, and let ¢ be a policy with the
property that

o(e,x) € sup A, ¢ € x, ¢ not blocked in x.
2

Then ¢ preserves 2.

Proof: The proof is by induction over the partial ordering 2 of the
set of progressive gradings which is defined by the definition of covering
given earlier. A grading » that is minimal in 2 has no “‘overflow groups”,
i.e., = = identity relation, so that no trunk group has a successor in

the order = characteristic of ». Thus, v consists entirely of trunk groups
serving line groups on a one-to-one basis, so that for some n

A=V (L XT),

i=1
where
g = {L,—,=1,"- 1“[
m=i{T,,=1,---,n}, with |[T;|=1.

In this minimal case 2 is the identity relation, and ¢ obviously preserves
it.

As a hypotheses of induction, we now suppose that every progressive
grading covered by » has the property that any sup 4., -policy preserves
D. Let now & 2 y in » and let e & 2. The induction argument will have
four cases, the last two of which are analogous to the observation made
earlier.
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Case 1: x D vy, and e is a hangup h. There is a sequence x = 2, , 2, , - -,
2, = y with
zinHl ]=1,,ﬂ—1

This sequence indicates how one would get y from = by moving calls
to “preferred” routes. By Lemma 3 it is no restriction to assume that
no call is rerouted more than once. Let the route of A be r in 2 and ¢ in 3.
If h is one of the calls whose route is changed in the above sequence, say
to take 2 into 2,., by changing the route of h from r to ¢, then

T—1r =2 —0a&8 — 028 T =241 — Q38 —q=1Y — ¢

is a sequence which shows that (x — r) D (y — ¢). If the route of & is
not changed, then » = ¢ and the same conclusion follows.

Case 2: © 2O y, and e ¢ x is a new call ¢ blocked in z. By Theorem 1,
z B y, so ¢ is also blocked in . Then,

A= {I}, A, = {y]
ele,x) = = eley) =y
elc,x) 2 ole,y).

Case 3: 2 y, e is a new call ¢ not blocked in either x or y, and the line
group L of ¢ is not a bye. Let

T = ir<1f {S:LASY}.
Subcase 3.1: T is full in neither x nor y. Then there exist routes r, ¢
such that g(r) = g(q) = T,
plex) =xzur, oley) =y v g,
r = g modulo trunk permutations within 7', and clearly
olc,x) 2 ¢ley)

since ¢ was put up on group 7' in both cases. To see this, if 2 =

20,2, ", 2 = Yy is a sequence with
2; Q 24y j=1,---,n—1,
showing that & 2 y, then
TUTr=zUNLRUY,2, Ur=yuUry U gisasequence which
shows that

@unQyvg.
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This is because we can assume without loss of generality that the trans-
formations which change y into z reroute a call at most once, and thus
move no calls onto 7. (Lemma 3.)

Subcase 3.2: T is full in both z and y. Since L is not a bye, there exist
I,m e Landt, u e T with

(I,t) ez and (mu) ¢y.

Because I, m and t, u are respectively interchangeable, i.e., since lines
and trunks are permutable within their respective groups, no loss of
generality is incurred if it is supposed that [ = m and ¢ = n. Let pu be
the canonical map corresponding to ripping out [ and ¢.

Then » covers », , where », is defined by ripping [ and ¢ out of », i.e., by

ull = H'leH_{T}-'_{T_“” in case 1
— T} in case 2,
JE = E { — (L) + (L — (1) in case 1

== & =
— {L} in case 2,
{g with T — {¢} replacing T throughout, in case 1

p= = =, =
=z — (I X {T}), in case 2,
HA=A1—{ — (I X {th) — (i} X ) in case 1
A— (I X {th—(LXQ in case 2,

with

casel=T # {t] or A n (LT) E (L X {t})
case2 =T = [t} and A n (LT) S (L X {t}).

The line of ¢ is not involved in g, and 4., # 6, A,, # 6. Hence, Lemma
1 gives
j.l.ﬁO(C,I) £ 8up Ac(n)
B2

#‘P(C,y) Esup Ac(ml) .
=]

Since z 2 y, and either both uz = 0, py = 0, or neither, we have

(ww,uy) € p2. )
Let £ be a policy for », with
t(d,pz) esup Aagsy , Vi & pz. 5)
fre=3
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The hypothesis of induction and (4) give

Ee ) (2)E(c,uy) . (6)
However, by (6) and (5)
pe(e, ) (u2)e(c,px)
(w2)E(e,ny)
(u2)nele,y).

But ¢(c,x) differs from pe(c,z) and ¢(e,y) from pe(c,y), only in having
an additional line [ and an additional trunk ¢ connected to each other.
Hence,

ele,x) 2 ole,y).

The argument of subcase 3.2, basic to Theorem 2, can be appreciated
by looking at it thus: + 2 y means Jz,, --- , z. with z; @ 2,4, , 7 =
1, -+ ,n—1,2 = 2,2z, = y. Since

e={h} =z ny

we have r < 2,,¢ = 1, --- , n because we can assume that the call

using 7 i1s not moved as y is transformed into by moving calls. Thus,
(2 — 1) Q (2is1 — 1), =1, ,n—1
—nQk—rm.

the proof) covered by » and the isomorphism, »iz., u restricted to the
cone, has the basic property, for z, y in the cone

But the ‘‘cone” {z:z = r} is isomorphic to the states of a grading (v, of

a2y if and only if (ux)(22)(uy).

Subcase 3.3: T is full in z, but not in y. Since L is not a bye it is <-
minimal, and hence there exists a call d with d = v(z) n y(y) such that
dison T in x is not on 7' in y, and can be moved to 7' in state ¥ to give
rise to a new state z without rendering impossible any the remaining
moves which transform y into 2. Thus, z D 2z D y. Since z n z # 0,
subcase 3.1 gives ¢(¢,x) 2 ¢(c,z). Further, the route of ¢ in ¢(e,2) is
no higher (later) in = than the one in y left by d as it was moved to
T to give rise to state z. Hence, to within equivalence

elc,z) 2 ole,y).

Case 4: v 2 y, e is a new call ¢ not blocked in either of « or y, and the
line group of ¢ is a bye. There is at least one other line group L which
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is not a bye. Let
T = inf [S:LAS}.
s

Subcase 41: LX T naz# 0L XTny#0orLXTnz=049,
L X T n y = 0. Since L is not a bye, there exist [, m ¢ Land ¢, u ¢ T

with

(L) ez, (mu) €y
or

L gz,  (mu) gu.

(In the second instance, property (i) of the definition of a progressive
grading has been used to conclude that there must be idle lines on L
if there are idle trunks on 7'.)

As in subcase 3.2, no loss of generality is incurred if it is supposed
that I = m and ¢ = u. Let x be the canonical map corresponding to
ripping out I and t. The argument now continues as in subcase 3.2.

Subcase 4.2: (LXT) na#8,(LXT)ny=0SinceLis =<-minimal,
there exists a call d with d £ y(z) n ¥(y) such that d is on T in z, is
not on 7 in y, and can be moved to T in state y to give rise to a new
state z without rendering impossible any of the remaining moves which
transform y into z. Thus, z D z 2 y. Since z n z # 6, subcase 3.1 gives
o(e,x) 2 e(c,2).

Let I* be the line of ¢, r be the route of d in y, Ta = g(r), and

T. = g(inf {S:1*4S,S & mg (}).
=
Here T, is the earliest group ¢ could be put on in y. Let also ¢ denote
the operation of moving d from 7'y to T, and for any call f

Ay = [g(r):f = v(r)}
{S:the line of f has access to S}.

Case (1): Te e A, n Ay, Ty £ T. . Then moving d from Ty to T means
that ¢ can use T in 2, s0 ¢(¢,2) 2 ¢(e,y), because ¢(c,z) results from
o(c,y) by moving first d to T; and then ¢ to T, s0 actually

olc2) 2 Yelc,y).
Case (11): A, n Ay = 6, 0r A, n A, # 6 and either
Tc,TdEAcAAd,
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or
T:eA. n A, T.e A, AA,;,
or
T.e A, n A, , T:e A. A A,;,
or

T.,Tie A, n Ay, T. <T,.
In all these cases Yo(c,y) = ¢(eyy) = ¢(c,2), whence
elez) 2 eley).
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