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Let K\ (s,t) and K,(s,t), —T < s,t = T, be real, symmetric, conttnuous
and strictly positive-definite kernels, and denote by K, and K, the cor-
responding inlegral operators. Let x(t) be a sample function of either of
lwo zero-mean processes with covariances K,(s,t) and K,(s,t). We prove
a generalized version of the following: If the integral equation

(Kﬂlﬁ.')(t) = }\a‘(Kllfli)([): —-r'=1=T,

has formal solutions \; and ;(t) which may contain &-functions, and
if {K.:} forms a complete set in £,[—T,T), then (7) the two kernels have
the following simultaneous diagonalization:

K.(s,t) = Z (K\) (8) (K ) (1),
Ko(st) = 22 MK )& E ) (D),

uniformly on [—T,T] X [—T, T\, and (ii) the sample function has an
expansion

x(t) = .Z (@, ) (K ) (D)

in the stochastic mean, uniformly in t, and the coefficients are simul-
taneously orthogonal, i.c.,

E,{(:t‘,%)(ﬂ:,\bi)} = di; , E:'{(xv‘f’-‘)(-v-'ﬁi)} = A b4y,
where (x ;) 1s obtained by formally integrating ¥;(t) against x(t).

I. INTRODUCTION

Let K,(s,t) and K.(s}t), —T = s, t = T, be real, symmetric, con-

tinuous and strictly positive-definite kernels, and denote by K, and
883
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K, the integral operators with kernels K,(s,) and K,(s,t). We have
previously’ established that, if K;'K,K,! is a densely defined and
bounded operator on £, (the space of all square-integrable functions
on [—T,T)) and if its extension to the whole of £, has eigenvalues
)\; and complete orthonormal eigenfunctions ¢,(t), ¢ = 0, 1, --- , then
the two kernels have the following simultaneous diagonalization:

K\(s,t) = E (Klo) 6} (Kl ) (),
K,(s,t) = ; M (K () (K o) (1)

uniformly on [—T,T] X [—T,T]. In addition, if z(t) is a sample func-
tion of either of two (separable and measurable) zero-mean processes
with covariances K,(s,t) and K,(s,f) with associated measures P, and
P 2y then

D

a(t) = E 7:2) (Kl (1) (2)
in the stochastic mean, uniformly in ¢. Moreover,*
E{n(@n@)} = 8, E{n:@)n;(@)} = A 84y,
wheref
p:2) = lim (x,K7 i) (3)

n—0

in the stochastic mean, and {¢;,} is any sequence of functions in the
domain of K;! such that lim || ¢; — @i, || = 0. Furthermore, if the
two kernels have continuous 2rth derivatives (8°"/0s'0t")K,(s,t), p =
1, 2, then (1) and (2) can be differentiated term-by-term r times while

retaining the same senses of convergence.'
We remarked in Ref. 1 that, if ¢, is in the domain of K = K,
satisfies the integral equation

(Kap)(®) = ME (), =T =t=T, #)
and
n:(x) = (x,¢;) as. (almost surely), ®)
(I{I(PJ(t) = (K.\¢)(1).

Slepian (private communication) has long conjectured that, if (4)
admits formal solutions \; and ¢; , 7 = 0, 1, - - - , where y; may contain

* B, p = 1, 2, denotes the expectation with respect to P,
T Fm- any j', ge.ﬁg, (f,9) denotes the inner product of f and g, and || f || the norm

of f.
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é-functions and their derivatives, then the expansion coefficients and
functions of (2) are given by formally substituting such ¢, into (5).*
This conjecture, proved here, is significant since it provides a concrete
means of obtaining the expansions (1) and (2). To illustrate the point,

consider the following pair of covariance kernels:
Ki(sg) = ¢, Kus,0) = e,

For this pair, (4) admits the following formal solutions®

Balt) = cos 0t + P15t = 1) + 8t + 1)),
k=0,1,0-,
@Mm=mw+“mﬁw—ﬂ—w+ﬂ
corresponding to
o’ + 6 8o’ + 6

Agp =

o+ 6 T ag
where 6, and 8, are positive solutions of

(@ + B) 6, tan 6,7
—(a + B)6, ctn 6,T

(1',8—8:,
af — b;,

I

respectively, indexed in ascending order. Thus, formally,

@b = [ a() cos ot + 220 o) 4 2y,
@JMJ=[1mhmmmpﬁm&Tum—rcm
(K o)) = ;i_a—ﬁf cos 6,1,

K.d { Y .o
(Koo )(f) = &+ & sin 60,1,

Through a direct caleulation, we previously® established that

() KJ'K,K;* is densely defined and bounded,

(6)

8

(9)

(10)

(77) its extension has eigenvalues A, given by (7) and complete

* Similar conjectures have been made elsewhere.?
]
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orthonormal eigenfunctions ¢; given as

@i = C; l.i.m. i: #i‘i(‘n”f .f:i)fu ’

i=0

(@) = ex,¥) a.s8.* Koo = ¢;K\:, which verifies Slepian’s
conjecture for this example. Here ¢, is a normalization constant given by

- 2a ( : (e + BB ):Iu%
“T [a” A N L A

Cop+1 = Cok |8k=§g ’

(that is, coss; is obtained by replacing 8, with 6, in eu), py; and f,;
p=1,247=0,1, -, are the eigenvalues and orthonormal eigenfunc-
tions of K, , and (¢, , f,;) is defined analogously to (9).

In this paper we prove the generalization of (i), (77), and (¢i7), starting
with abstract kernels K, (s,t) and K,(s,t) and a generalized version of
the integral equation (4).

II. MAIN RESULT
Theorem: Let K, (s,t), p = 1,2, =T = s, t = T, be real, symmelric,
strictly  positive-definite kernels with continuous 2rth  derivatives
(0% /35"t K (s,t). If there exist sequences of real numbers {a.im},

{ta}: =T < t, = T, and {\:}:
0<b, =\ =0, 1=0,1,---, (11)

for some constants b, and b, , and sequences of square-inlegrable functions
(¥}, which satisfy the equation

r T al . q i
S (oo at e fixonl |

=0

(12)

=tm

b
s =T,

A =0 f7 (6t (s )) () m= - ! ( ) ‘
i : l ) tl 1\9, il / ilm atl 1\°y
_11

IIA

such that the right-hand side of (12) forms a complete set in £, , then
(1) K7YK,K;? is a densely defined and bounded operator on £, ,
(77) its extension to the whole of £, has eigenvalues and complete ortho-

normal eigenfunctions, which are the \; and

ol = 3 [(K%mw“)(s) + ): a,-mK%m(s,zm)} , (13)

i=0

* This portion is proved in a separate article.®
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(#7) n: and Klg; of (2) can be given, respectively, by

r

77:‘(3') = 2 [(-E“)s‘pd) -+ ila‘”m"c“)(tm)] a.s. (14)

=0

and by the right-hand side of (12) without \,. Here, K}, , p = 1, 2,
denoles an inlegral operator whose kernel is defined as

Ifiul(srt) = Z nuf:ifm'(s)fl():)(f) I = 01 ]-l e, T, (15)
in the mean in s, uniformly in t.

Remarks:
() K, (s,t) of (15) is well defined since

k+1

S YO0 = 2 Ksh), p=1,2, (16)
i=0 ds adl

uniformly in (s,).” It follows from this that (15) converges in the
mean in (s,) as well. Hence, from Fubini’s theorem, K}, (st) is a
square-integrable function of ¢ for almost every s. Thus, ¢;(s) of (13)
is well defined. We assume without loss of generality that ¢;, i =
0,1, ---, are normalized.

(#7) For the example in Section I, r =0,¢=2,t, = T,t, = —T, and

‘l"zk.n(t) = € COS 8.1, ‘;’2k+l.l‘l(f) = Cg4+; 8IN éktt

cos 6,T
A2k,0,1 = Q20,2 = Cop at g’
sin 6,7
Aojr1,01 = —Qorir,0,2 = Coksn ; + 8 f
a 8
bl = o b? = T,
B a

the right-hand side of (12) without \; is given by (10), and completeness
of {cos 6,t, sin 6t} follows from (18) and a gap-and-density theorem.®

III. PROOF OF THEOREM

For notational simplicity, we write K., , p = 1, 2, for the integral
operator whose kernel is

. ak%l
Kpu(u) = 5or Kywa), B 1=0,1, 7.

K,y and K,*,m, are abbreviated as before by K, and K}, respectively.
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(?) For any f, g € £z,
(K oif K mg) = ( K,u9), an

.Kintg = |.i.m. Z #3ffm‘(fr(::':rg)' (18)

n—00 i=0

To prove (17), note

(Kof Klorg) = f f g (O K o, Kror(u, ) ds di du

[ [ 1900 T utPORp o do it

= (fr-[{mkkg) ’

where the second equality follows from the mean convergence of (15)
and the third from the uniform convergence of (16). To prove (18),
consider

|=

which vanishes as n — « since (16) converges uniformly in (s,?).
(#1) K;*K} and K;'K} are densely defined and bounded on £, .
To prove this, apply K;* on both sides of (12) and use (18) to obtain

pl!!g - E “mfm(ﬁw:)r = (g;KplIg‘.J Z I-‘m(fr(n:)- 2

Z [Kioi\bﬂ + Z ai!ngm(‘,lm):I = hiK;;Kiﬁo.' .

1=0
Then, for each ¢,

M| K2 K |

= Z {(Kg[.kw.-,, , Kloprar)

k,l=0

+ E [ﬂ.am(K or( fm) K Ot\bik) + aikm(I{gOk(')tm)v K’ioﬂpu)]

+ Z aitmaikn(Kém(' ,I:,,,), I{'gulc(' ltﬂ))}
= “EG {(llfu y Ko + E‘ A pmdoi (- .t...))

+ Za.i,,[axmw‘au) + Za,:me(z,.. )]}

n=1
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r

=N\ [(I\'fukU’m ) I\-}m\(’ir + Z al‘lmKEOf('vtm))
0 m=1

k.l=

+ GE aikn(lf?llﬂ-(' ;[n)y K%Of‘}bil + Z aHmK%UI(' |tm))J

2

= A;

IW:‘

where the second equality follows from (17) and (18), the third from
k time differentiation of (12) and from (17) and (18), and the last
from (13). Hence, with ¢, being normalized,

1

| KKl | = 5,

1=20,1, -

Now {¢;} is complete since the right-hand side of (12) without X\;,
which forms a complete set by hypothesis, is equal to Kl¢, , and K}
is strietly positive-definite. Hence, from (11), K;*K?} is densely defined
and bounded.

To prove that K;!K! is also densely defined and bounded, define
¢; as the normalized right-hand side of (13) with the subseript 1 re-
placed by 2. Completeness of [@,} is similarly deduced via (12). Now,
by following the same procedure with the roles of K, and K, inter-
changed, we obtain

[ I{T‘!I\Tg(ﬁ,Hz =A|', '5=0, 1, o,
Then, the assertion follows immediately from (11).
(777) The ranges of K! and K! are equal, namely,
K%(aez) = Kz(nc'z)-
To prove this, denote by L and M the extensions to the whole of
£, of K;!K! and K;'K! respectively, which exist as a result of (7).

Since the domains of KL and K!M are £, , which is also the domains
of K* and K}, we have

K =KiL, K=KM.

Then, from the first equality, K!(£.) C Ki(£,), while, from the second,
K}(£,) C K}(£,). Hence, the assertion holds.

(i)

Kio(- ) = Lim. 2 K¥ P, -T=<t=T, (19)

n—e0 1=0

Kiug = Lim. Z; Kgfls(ﬁ:'},g). geLs. (20)

n—w 1



890 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967

To prove (19), note first that f,;, 7 = 0, 1, --- , are in the domain
of K;* as a result of (i) and also that (K;i:, Kifi;) = & from
orthonormality of {fi;}. Thus, (K%} and {Kif,;} form a pair of
mutually reciprocal bases of £, . Hence,

Kb+ = Lim. 2 K (K3, K- ,0). (21)
i=0

n—noa

But from (15)
Ky ) Ko(-0) = z(f LM, 1=0,1, 0,1, (22

uniformly in ¢. Now, since {f,;} is an orthonormal basis of £,,

fi; = Lim. Z (fii » T2012: -

n—o0 i=0

But, according to (22), the right-hand side converges uniformly. Hence,
the above partial sum must converge uniformly to f; . Suppose for
somek, 0 =k <,

ﬁf](t) = ZO (f1i ,fz.')fé?)(t) (23)
uniformly in {£. Then, from (22),

150 = 2 (h o f2012(0)
i=0
uniformly in ¢.° Hence, by induction, (23) holds for every £, 0 = k& = r.
Therefore, from (22),
(Kz-}fn' ' Kgor('vt)) = ﬁ:‘)(“). l=0,1,---,r
Then, (19) follows from (21) and the above.
To prove (20), we expand K%,, g relative to {Kifi;}:

K%mg = Lim. ;} (K;ifl,- ’ Kgmg')Kgfu,- ,

n—o

and note from (18) and (23) that
(I{;*flf ' Kﬁmg) = Z_;' (fr ,fzf)(fés)&) = (fl(:')-g)-
() To prove (i) of the theorem, we note from (i) and (#27) that

K7'K} is everywhere-defined and bounded on £, . Hence, its adjoint
(K'Ki)* is also everywhere-defined and bounded. Now, for any
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fef and g e D(K;Y), the domain of K[}, we have (K{!Klf,g) =
(f,KiK7Yg). Thus, KiKi'g = (K{'K})*g, g ¢ D(K;?). Hence, KiK;*
is bounded. Since D(K;?) is dense in £,, we conclude that K[ 'K,K;*
is densely defined and bounded.

(vi) To prove (#Z) of the theorem, define

T

ﬁoiﬂ(t‘) = “;0 .u'?.l' Z: |:(‘fbl'£ [} .ﬁj}) + miﬂ itm l(:)(tm)}fll(t)! (24)

=0

and note ¢,, ¢ D(K;?) and lim || ¢; — ¢ || = 0. Then

n—®

Lim. K.K; Y, = l.im. Z Z I:(‘f/.'z )+ E aumﬂ;)(tm)JKJu

n—o n—wo i=0 l=0 m=1

Z [Ifzm'ffu + Z al.!mKW)!('!tm)]

=0 m=1

= A.’Kk‘i '

where the second equality follows from (19), (20), (15) and (18), and
third from (12) and (13). Now denote by @ the extension of K7*K,K !
to the whole of £, . Then,

KWQf = Lim. K.K7¥,

n-—so

for any f € £, and {f.}: f, ¢ DKTY), lim || f — f. || = 0, since
|| K¥Qf — KK || = || KIQU — 1) [| + || (K1Q — KK7hf, ||

which vanishes as n — . Therefore, Qp; = A\, . Lastly, since {¢;}
is complete in £,, {A;} constitutes the entire spectrum of Q.
(vii) To prove (7i7) of the theorem, note from (3), (24) and (vz) that

n

1'1'.-(-1‘) = lim. E g [(\[m ,f:.“) + miﬂ ailmfl(:,(tm)](fli , ).

n—a0 i=0
Now

2

B | GV ) — 3 @h)0 )
= (Yo, Kiuda) — g pri(War 5 F17)°,

E,

V() — g(.r,f.,-)ﬁf-’(!) = Ku(t,l) — guliufi’(t)]’,
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both of which vanish as n — « by virtue of (16). Also, with the use
of (17) and (18},

E, (-1'”).’#-':) - "20 (-T-fu)(fl(:')n u) )
= W s Kadad) = 2 3 a1 e s K

n

+ E (War » K War , ) (s o Kofui)

By | xV(t) — Eﬁ (@, fi)fii' () r = Kan(t)t) — 2 Z)J‘L’-’(J)(Kmfu)(t)

= H K%m\l’u - HZ"KHM(](J(:)' -'1)

2
'

+ ;}0 iy Oy Kafu) = ‘ Kbou(-,0) — gK%fuﬂ:’(:)

both of which vanish as n — « by virtue of (19) and (20). Therefore,
upon combination of the above results, (14) is proved.
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