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Intermodulation distortion due to nonlinear elements in transistors is
analyzed using Volterra series representation. It is shown that this technique
18 well sutted for the analysis of transistor distortion where the nonlinearities
are small but frequency dependent. An ac transistor model incorporating
four nonlinearities is briefly described. The nonlinear nodal equations of
the model are successively solved by expressing nodal voltages in terms of
the Volterra series expansion of the input voltage. Based on this analysis,
a digital compuler program has been developed which computes the second
and the third harmonic dislortion for a given set of input frequencies and
transistor parameters. The results compare favorably with measured values.
This method also enables the derivation of closed form ac expressions for a
simplified model; these expressions show the dependence of distortion on
frequency, load and source impedances, bias currents and vollages, and
the paramelers of the transistor. The technigue is also extended to cascaded
transistors, and simplified expressions for the overall distortion in terms
of the distortion and gain of individual transistors are derived. Finally, a
few pertinent practical applications are discussed.

I. INTRODUCTION

Solid-state long-haul analog communication systems are being de-
signed for higher frequencies to meet the growth in demand. One of
the more critical and significant problems facing the system designer
is intermodulation noise arising from transistor nonlinearities. Thus,
an analysis of transistor distortion at higher frequencies is a practical
problem; this paper investigates the transistor distortion using the
Volterra series as an analysis tool.

Transistor distortion has been investigated in some detail previously,
Many authors have considered the exponential nonlinear relation be-
tween emitter current and emitter-to-base voltage which is important
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at low currents.******* The effect of frequency on this nonlinear source
alone has been reported.” Three nonlinearities (exponential, avalanche,
and hy at de) have been examined by Riva, Beneteau and Dallavolta.’
For currents up to 20 mA and frequencies up to 100 kHz, Meyer™*'*
has developed a more accurate and complex model obtaining the non-
linearities from h-parameters. However, he takes into account the fre-
quency dependence by assuming that the h-parameters can be written
as B’ + jwh'. Moreover, he does not take into account avalanche dis-
tortion, nor has he extended the model to higher currents (100 mA) and
frequencies (20 MHz). The model described here considers four non-
linearities; they are, exponential, avalanche, hyz , and collector capaci-
tance nonlinearities. These nonlinearities are superimposed on a linear
ac equivalent circuit.'”"'" Much of the initial development of the model
with three nonlinearities was done by Thomas.'’

The transistor model is analyzed using a Volterra series representa-
tion; this series is a generalization of the power series. In a now classic
report, Wiener applied this analysis technique' to find the response
of a nonlinear device to noise.'® Bose has carried the theory further."
Following a series of lectures by Wiener,'® the theoretical framework,
higher-dimensional transforms, and optimization with Gaussian inputs
were considered by Brilliant,'® George,'” and Chesler,"® respectively.
Barrett'® has treated statistical inputs. The synthesis problem has been
examined by Van Trees,”® who also applied the method to phase-locked
loops.** The technique has been extended to diserete systems,****** and
a class of time-variant systems.*'*® More recently the theory of the
convergence of the series has been treated.”” This work relies more on
George's work on the higher-dimensional transform theory."”

Even though much work has been done in this area, the Volterra
series has not found a wide application in solving nonlinear system
problems due to several reasons; if the rate of convergence is not rapid,
the higher-degree terms, which are cumbersome to handle, cannot be
neglected; hence, it cannot conveniently represent gross nonlinearities.
It is not simple to invert the multidimensional transforms to the time
domain, and it is not a useful technique to determine the stability of a
nonlinear differential equation.

The Volterra series method does, however, offer certain distinct
advantages in analyzing transistor distortion. Since transistor distortion
is frequency dependent, the power series is inadequate to characterize
it; the Volterra series does indeed represent frequency dependent sys-
tems. The nonlinearities in the transistors under consideration are
extremely small so that the second- and third-degree terms suffice to
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characterize them. Since the output corresponding to sinusoidal input
signals is of interest, there is no need to find the inverse of the higher-
dimensional transforms; the output can be expressed in terms of the
transform of the kernel. The higher-dimensional transforms of the
kernel are complex numbers when s; = jw;, where s; is the complex
variable in the transform domain; hence, these kernels can be numeri-
cally evaluated using the computer (see Section IV). Moreover, for a
slightly simpler model closed form ac expressions can be derived. Since
the kernels retain phase information, this approach will be useful for
the AM-to-PM conversion problem at IF frequencies. Finally, in an
amplifier two or more transistors are cascaded; the nonlinear behavior
of such cascaded transistors is a significant problem. The Volterra series
approach can be easily extended to study such cascaded transistors.

II. AN INTRODUCTION TO VOLTERRA SERIES REPRESENTATION

A brief exposition of Volterra series with pertinent reference to the
problem under consideration is presented below. For further details
the reader is referred to the references cited.

Consider a simple memoryless nonlinear system described by the
following power series; let y(f) be the output and x(¢) the input; the
system is represented by

y(t) = () + e.[x(0]" + elx(®T, 1)

where ¢, , ¢, , ¢; are constants. For a time-invariant system with memory
(capacitors and inductors in an electrical network), the linear term
te.x(f)} is replaced by the convolution integral (z(t) = 0;¢ < 0)

() = ‘/;‘ et — 7)a(r) dr. (2)

In the transform domain, (2) may be written
Yi(s) = Ci()X(s). 3)

This transform domain representation of the system [C,(s)] has been
an invaluable aid to the communication engineers since it brings into
focus the frequency behavior of the system.

A generalization of the second-degree term, c.[z(f)]’, is the double
convolution integral

(D) = f fo et — 10— 1) T 2rd) dre . 4)

i=1
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The output depends on the past values of the input; the above expression
involves a product of the input with itself, thus representing a quadratic
system. e;(f — 7; , ¢ — 75) is known as the second-degree Volterra kernel.

A two-dimensional Laplace transform can be defined for (4) after
introducing dummy variables £, and £ . As shown in Appendix A, (4)
becomes

2
Yol 5 8) = Calsy , 82) H X(s.). (5)
When two sinusoidal signals at frequencies f, and f, are applied
(Appendix A), the output at the harmonic frequency f, = f, is given
by [| Calfa = fu) | cos (2n(fa £ fu)t + @axs)]. Since in general Cs(fa , fo)
will not be equal to Cs(fa , —fs), different values of distortion at different
harmonic frequencies are directly reflected in the kernel. Moreover, as
in the power series case, the 2f product is less by a factor of two.
Likewise, the third-degree term [cs(z(7))?] can be generalized to a
triple convolution integral;

ys(t)=j:j:j:ca(t—n,t-'-‘rg,t—-rs)fI:c(r.-)dr.». (6)

i=1

In the transform domain (6) may be written

Yalsi 82, 85) = Cals1, 82, 8) H X(si). )

The magnitude of the signal at the harmonic frequency f. + f» — f.
due to the three fundamental signals at f, , f, and f, is given by | Cs(f, ,
fo, —f.) |- The constants like 1/4 for a ‘3f,’ product are the same as
obtained from the power series approach.

Later in the paper (in Section IV) the cascade relations in the trans-
form domain are frequently used; their physical significance is discussed
in detail in Section VI. (See also Fig. 1.) The cascade formulae and the
procedure for deriving them are given in Appendix A.

The second and third harmonic distortion are defined as the second
and third harmonic power in dBm, respectively, when the fundamental
power at the output of the transistor is at zero dBm (one milliwatt).
In the analysis of the model in Section IV, the output voltage is ex-
pressed in terms of a Volterra series of the input voltage. Thus, the
kernels C,(s;), Ca(s1, 82), and Ca(s,, 8, 85) are the voltage transfer
ratios; for a given load R, , the second and the third harmonic distortion
in dBm are given by the following expressions:
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Fig. 1 —Two cascaded systems.

III. THE JUNCTION TRANSISTOR NONLINEAR MODEL

A model is a simple but realistic representation of a physical phe-
nomenon in terms of measurable parameters such that the phenomenon
can be analyzed, and controlled if possible. The linear equivalent circuit
of a transistor is one such example. In reality, several elements of the
transistor equivalent circuit are not linear but are linearized versions
of nonlinear functions; they are the first-degree terms of the Taylor’s
series expansion of the nonlinear functions. Hence, a logical way to
develop the nonlinear model is to consider the second- and third-degree
terms of the Taylor's series expansion; thus, the emitter resistance
(exponential nonlinearity), current gain (hpr and avalanche nonlin-
earity), and the collector capacitance (collector capacitance nonlin-
earity) have been represented by nonlinear voltage dependent current
generators whose parameters are higher-degree Taylor’s series terms.
This approach has another advantage in that it is difficult to measure
the nonlinearities since they are small; but, it is not too difficult to
measure the overall functions and to curve fit with the known theoretical

* The factors £ and 1 normalize the distortion to 2f and 3f products,
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Fig. 2 — Common-emitter nonlinear equivalent eircuit.

or empirical relations. These nonlinearities are superimposed on the
linear equivalent circuit (Fig. 2). The nonlinearities are described next.
3.1 Exponential Nonlinearity

The emitter current, Iy, is related to the emitter voltage, V,, by
the exponential relation

Iy = A[exp (q %) - 1} + B, (10)

where K = Boltzmann’s constant,
g = electron charge in coulombs,
T = Temperature in degrees Kelvin,

and A and B are constants which depend on the transistor parameters
(Ref. 27; p. 181, p. 249). An experimental curve of the emitter current
I, and the emitter-to-base voltage V,, is shown in Fig. 3. This non-
linearity is expressed as a voltage-dependent current generator by a
Taylor’s series expansion of (10) as follows:

'i, = K(Ug) = K|Uz + szi + Kal’g H (11)

where the Taylor's series coefficients are derived in terms of known
parameters, the emitter resistance r,, and the emitter bias current Iy ;

ie.,
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1.2 Avalanche and hpg Nonlinearity

The collector current is a nonlinear function of the emitter current
at higher values of current (hpz nonlinearity) and of the collector-to-base
voltage at higher values of voltage (avalanche nonlinearity).”” Az ,
the ratio of I, to Iy, is plotted as a function of collector current I,
in Fig. 4. It is seen that the following empirical relation® matches the
experimental result (Fig. 4):

h max
hpg = FE 7 (13)
1+ alog® +-¢

Ic'mnx

where hpg mee 1S the maximum value of hrg, I mae 18 the value of /¢
at which hpp . 0ccurs, and e is a constant.

The avalanche nonlinearity is due to avalanche multiplication which
occurs at higher collector-to-base voltage. It is determined from the
collector characteristic which is a plot of collector current (/) and
collector-to-emitter voltage (V.g), (Fig. 5). The empirical Miller’s
avalanche multiplication factor is given by

—_— (14)
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Fig. 3 — Exponential nonlinearity — measured curve.
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Fig. 4—hpg nonlinearity — calculated and measured curves.

where Vzo is the sustained voltage, and the exponent n is determined
by experiment. From expressions (13) and (14), the ratio Iovslg is
given by

gg — hF’E max 1 15
Iz - I " % n? ( )
1+hmm+alogz( < )1~(—_"‘-’;)
Ic max: VCBO
where VCBO = V(,-E-o/n V l—a and ch = VCE .
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Fig. 5— Avalanche nonlinearity — calculated and measured curves.
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The ac 7, can be expressed in terms of 7, and v,,[vs — v,] by a Taylor’s
series expansion of (15). Since 7, is a function of emitter voltage v, , 7,
is represented by a current generator g(v, , v; — v,); for convenience in
notation it is separated into a linear term g,(v., 2 — v,), a second-
degree term g,(v,, v3 — v,) and a third-degree term g;(v., v — v)).
The linear term equals M,(a,K,)v, + M,(v; — v,). The second-degree
term is given by a,MoK2(1:)° + ma(vs — 01)* + () K02(vs — y).
The coefficients &, , ay, M, , m., etc., and the third-degree term are
given in Appendix B.

3.3 Collector Capacitance Nonlinearity

The collector capacitance is a nonlinear function of collector-to-base
voltage (Vcp) since the depletion layer width is a function of Vep .
The exact functional relationship is determined by plotting the common-
base imaginary part of h,, as a function of collector-to-base voltage
(Veg) as shown in Fig. 6.° It is evident from the figure that C. follows
the 1/3 voltage law (Ref. 19; Equation 5-96);

C, = k(Ves)™ 2. (16)
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Fig. 6 — Collector capacitance nonlinearity — caleulated and measured curves.
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This nonlinearity is represented as a frequency (differentiation) and
voltage-dependent current generator as follows:

., = y(va — vl)
d d d
=T a (vs — Ul) + Y2 &‘i (vs — U1)2 + va (ﬁ (va - Ul)ax (17)

where v, = C,, and where v, and v, are known from (16).

The above nonlinear current generators are incorporated in the linear
equivalent circuit as shown in Fig. 2. The linear equivalent circuit
parameters are obtained from the equivalent circuit characterization.
They can, for example, be computed from the h-parameters at different
frequencies. In general, the distortion is not a critical function of the
linear parameters. (Figs. 14 to 17).

All the nonlinear coefficients (K, , @z , m, , etc.) are easily obtained
from a simple computer program. The parameters to be specified along
with typical values for transistor type A-2436 are listed in Appendix C.

IV. THE VOLTERRA KERNELS FOR THE NONLINEAR MODEL

The Volterra series method is applied to the model to compute the
second and the third harmonic distortion. The voltage at each node is
a nonlinear frequency-dependent function of the input voltage. Each
nodal voltage is expressed by a Volterra series expansion of the generator
voltage; since the nonlinearities are small only three terms are con-
gsidered. The kernels at each node are determined from Kirchoff’s current

equations.

4.1 Nodal Equations

The Kirchoff’s current law is applied at each node; the currents are
next expressed in terms of the generator voltage v,, the three nodal
voltages v, , v2 , and v, , and the known linear and nonlinear parameters.
The impedances are represented by their transforms and o denotes
that it operates on the voltage across it. The nodal equations are given
below.

00— )+ (60 0 0 — 0) = () 0w + 0@ —v), (1)

Z,(s)

r-l o, — v) = K@) + (sCs) ov: + (rl) 0 (v, — v3) — (s — v2)
b ¢ (19)

- g(ﬂz y Vs — vl)?
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—y{vs — 1) + ;L (e —va) — gl vy —0y) = (sCy) 0 (v — v,)

+ (ZLL(SS)OUS’

where K(v.), v(va — v3) and g(v,, vs — »,) are the nonlinear current
generators.

(20)

4.2 Solution Using Volterra Series

Since each nodal voltage is to be expressed in terms of three Volterra
kernels, there are nine unknown Volterra kernels to be determined from
the three equations. The problem of solving for nine unknowns from
three equations is resolved by noting that the polynomials z, z® and
2* are linearly independent; hence, each degree term is separately
and successively solved. The linear kernels are first determined; then
the second-degree kernels are determined in terms of the linear kernels;
lastly, the third-degree kernels are evaluated in terms of the first- and
second-degree kernels.

Let A,(s), B,(s), C.(s) denote the transforms of the linear kernels
at nodes one, two and three, respectively. From the nodal equations
(18) to (20), the following vector matrix equation is derived.

J 1 A(s)
Z,(s
o )J = Pa(s) 1Bl(s>[, 1)
1 0 Ci(s)
where
1 1
+s(Ca+C1) +— - —aCs
Z,(8) rh Th
1 1 1 1
Py(s) = ——tm —+s8C2+ +E (1 —a) +8711 - —mi—sy1
s L Te Te
1 1 1
— sC3 —m — — 4 K1 —8m —+sCi+ “+mi + sy1
Te Te Zr,(8)
(22)

Equation (21) is solved by inverting matrix P.(s) and post-multiply-
ing by the vector
1
Z,(3)

l 0 .
0
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For a given frequency s = jw, the computation is done numerically.

The second-degree terms are equated next in (18) to (20). There are
two types of second-degree terms; those arising from the unknown
second-degree kernels [for example, (s, + 8,)CiAs(s;, s:)] and those
arising from the known nonlinear coefficients and the known linear
kernels [for example, K, II}_, B, (s;)]. The terms associated with the un-
known second-degree kernels are the same as were associated with the
unknown linear kernels in (21), but at the harmonic frequency (s; + s.).
The following vector matrix equation is obtained for the second-degree

kernels:

0 ] (As(s, , 50)
[02(B1 s €1 = Ai) By(s, , 52)
1+7(Cy — B)) — Kx(B))]p = Pxls + s2) ry o (23)
[—d(B,,C, — 4) Culsy , 82)
! —92(Cy — B1))J

where §, and 4, represent the second harmonic contribution due to
g2(v2 , vs — ;) and y.(vs — v,); hence,

G.(B, , C, — A) = [e K, + OizK::] HBl(si)

i=1

+ 288 1B, ()10 6) — Ao
+ Bis)[Ci) — Ai(s)]) |
+ ma ;[;[ [Cis:) — Aulsi)] (24)
R.(B,) = K, I Bis) 25)
50 — B = Kulss + s [T 1C6) = B)l. @6)

i=1

Py(s; + s.) is the matrix P.(s) with s replaced by (s, + s;).

The vector on the left side of (23) is known. Thus, the unknown kernels
are determined by inverting the matrix Pg(s; + s;) and post-multiplying
by the vector on the left-hand side of (23). When s, = jw, , the inversion
of the matrix and the post multiplication by the vector can be done
numerically.
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The procedure for obtaining the third-degree kernels is almost the
same; the significant difference is that the vector on the left side not
only contains terms arising from the third-degree nonlinear parameters
but also includes second-degree coefficients which give rise to third-
degree terms by the interaction of the first- and the second-degree
kernels. These interaction terms are denoted by K,s , fus , F2s , TeSpec-
tively. For example, K3(B,) = K, II3_, B,(s;), whereas K,; = 2k,B:(s1)
Bs(s;, s;) which shows the interaction of the first- and the second-
degree kernels. The third-degree kernels are derived from the following
equations:

[
[as(Bl ] 01 - Al) + ?3(01 - Bl)
— Ry(B) + o5 + 25 + Kus]
[_ga(Bl ) Cn - Al) - ’?a(CL - Bl)

- .@23 - '?23]

A

As(sy, 82, 83)
= Pg(s; + s + 83) 133(31 y 82 asa)J’ ’ (27)
Cs(s1 4 82 5 83)

where §; , f2s are given in Appendix B.

A computer program has been developed which calculates the kernels
and the second and the third harmonic distortion. It uses existing pro-
grams to invert the matrix Pz(s). The nonlinear coefficients are com-
puted from the known and measured parameters. Computed and meas-
ured results at different currents are given in Fig. 7. The program has
been extended to common-base and common-collector configurations.

V. SIMPLIFIED DISTORTION EXPRESSIONS, THEIR PHYSICAL SIGNIFICANCE
AND COMPARISON WITH EXPERIMENTAL RESULTS

Another advantage of the Volterra series method is that it permits
derivation of closed-form expressions for second and third harmonic
distortion. These equations show the interaction between the various
nonlinear parameters and the effect of frequency.

The model includes the base resistance (r;), the emitter resistance
(r..), the diffusion capacitance (C.), the load (R,) and the source im-
pedances Zg(s), and three nonlinearities, namely, exponential, ava-
lanche, and hrr nonlinearities. In the computer program C,., C..,
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Fig. 7— Comparison of experimental and computed results.

r., C,, m; and collector capacitance nonlinearity have been taken into
account. The expressions given below are for the common-emitter
configuration.

5.1 The Second Harmonic Distortion Term

The second harmonic distortion in dBm (8) is given by

Mz,*.,zzmog%,/lg'a[ (ro + Z,(2) (K, + sC) + 1 }

(r, + Z,(8))-[K\(1 — o) + 5C,] + 1
[+ 2 §C‘q Ty 2 stETb
[(—r - (R, + Tm) +oma ]I (r. +252)

=

Kz( (Z,(s) + r)-sC; + 1 )}
K2 \(Z,(s) + 1) (K, + 5Cs) + 1

where s, = jw,, $» = Zjw, and § = jw, & juw, .

(28)

_|_

5.2 The Third Harmonic Distortion Term

In the third harmonic distortion term given below, the interaction
terms due to the first- and the second-degree kernels have not been in-
cluded mainly to reduce the complexity; in certain cases, they may be
significant.

|: (r, + Z,(8)-sC. + K,) + 1 :|
(ry + Z,(8) - (Ki(1 — @) + sC5) + 1
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2 RysCory | 1 ?s,.cgri) B 3 ( 3,.02;-,,)
[ ‘+M‘(R T3 0K, T3@K,)) T~ "™ I (B. + K,

i=1

b K el + Z6)6C) + 1], 2wk,
(@K' (r + Z,)-(C: + K)) + 1 7 (@)K}

a(gg [ § KQT; ﬂ | (29)

where s, = jw,, 82 = jwy, 83 = =*jwo. and § = 8 + 5. + s; and s;5; =
8182 + 8283 + 838, .

_|_

5.3 Physical Interpretation of the Distortion Terms

The interaction of different nonlinearities and their dependence on
load impedance, source impedance, bias currents, bias voltage and
frequency is indeed somewhat complex. However, the closed form ex-
pressions derived above give a general qualitative picture which will
be discussed now.

5.3.1 Effect of Frequency

It is important to know the effect of frequency on distortion. The
distortion depends not only on the frequencies of the fundamental tones
but also on the harmonic frequency of interest. As shown in Fig. §,

-100 T T T T
(100mA; 20v; Rg=2250) 3f (EXPERIMENTAL RESULTS;
(b) —18 A2436 NO.27)
-90 3f ‘ } J‘
0_--__’______._--—--'"‘)_[‘0 of +7,-T, Ftfa-F
. . = 1 273
80 ,-(—a-r (1oomA; 1ov; Fag_son) ! L ®
3f, 2f, fy£f, AND FiE - f,
R =50n
& 70 (b) | (oo mA; 20v; Rg= |
@ b o 00 MA; 20v; Rg=22510) ___02;[-‘
z | I l I 2f
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Fig. 8 — Variation of M, , M; with frequency.
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M, due to @ + b product is better than M, of @ — b product by 10 dB
with the two tones at 8.32 and 7.266 M Hz. These measurements were
made with the transistor biased at 100 mA, 10V and with B, = 50Q
and R, = 500. In eurve (a) of Fig. 8, the fundamental tone was in-
creased from 2 MHz to 10.5 MHz and signals at 2f and 3f were measured.
It is seen that both M, and M; improved with increase in frequency.
A theoretical explanation on the basis of dominant terms (in this range
of parameter values) in (28) and (29) is given below. In (28) as well as
in (29) the terms in brackets are multiplied by a frequency-dependent
term

(rb + Rv)(Kl + §Cz) + 1 .
(r + R)EK,(1 — o) +5C5) + 1

In this range of frequency (s = harmonic frequency), if K,(1 — a,) =
| sC; | and if | (r, + R,)sC, | > 1 but K; > | (sC:) |, then the above
term reduces to K,/sC; which decreases with increase in frequency.
However, the avalanche terms (M, , M;, ete.) involve the terms sC,
[in (28) and (29)] and S;C, in the numerator. Thus, if the avalanche
terms are dominant, as at higher voltages, there should be no net con-
tribution due to avalanche terms alone. The exponential terms [K,/(K,)*
and K,/(K,)°] are multiplied by the factor

(ry + Ra)’§cz +1 .
(s + R,)-(K,(1 — a) +8C2) + 1

This term is independent of frequency if (sCi(r, + R,) + 1) > 1.
Thus the above discussion shows that distortion will improve with
increase in frequency at lower voltages and if | sC.(r, + B,) + 1| < L
To verify this statement, the voltage was increased to 20 volts and the
input resistance changed to 225Q. The plots of M, and M; with fre-
quency, as measured, are given in curves labeled (b) in Fig. 8. It is
seen that M, and M; do not improve with increase in frequency. The
small improvement can be attributed to the hrp terms.

In general, increase in frequency increases distortion; this is especially
true for the common base configuration. But as shown above, for certain
ranges of frequency and certain values of source impedance, distortion
can improve with frequency.

5.3.2 Effect of Load Resistance, R,

The load resistance is an external parameter which the circuit designer
can vary; hence, it is useful to know its effect on distortion. The second
and the third harmonic terms are multiplied by 1/+R, and 1/R,
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terms, respectively; it shows that the distortion can be reduced by in-
creasing R, . However, the avalanche terms M,, M,, and M, are
multiplied by the R, term, so that increasing B, will increase the con-
tribution from the avalanche terms. Thus, an increase in K, may in-
crease distortion or reduce it due to cancellation. (The contribution from
the collector capacitance terms also increases with increase in load (£5).)
Because of the above interaction, for a given set of parameters and
input frequencies and the harmonic frequency of interest there exists
an optimum load R, ; this, of course, can be determined using the com-
puter program. In Fig. 9, the measured values of M, and M; at different
values of R are plotted; in both cases increasing R, reduces distortion
until the optimum value is reached and then distortion increases with
increase in Ry, .

5.3.3 Effect of Source Impedance, Z,(s)

Source impedance is another important external parameter. The
source impedance affects the exponential nonlinearities K,/K: in (28)
and K,/K% in (29) by the factor

(ry + Z,(s))sCs + 1 .
(r, + Z,(8)[sC: + Ki(1 — )] + 1
At low frequencies, this nonlinearity is reduced by the factor 1/[(1 — «)
(R, 4+ r,)K, + 1]. Thus, an increase in K, will reduce distortion from
this source. However, the contribution from other nonlinearities are
increased by

14+ KRy +1)
1+ KR, + )1 — )

-100
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O -80
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bl
D fi+ - f=173MHz; f,-f;= 0.7TMHZ A2436; NO.27
2 -70
- Rq = 7500
o g
= (EXPERIMENTAL RESULT)
-60 —
[y Mz '—-——._.______‘
-50 O

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
LOAD RESISTANCE, R, IN OHMS

Fig. 9— Variation of M., M; with load resistance.
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It is seen from this expression that if K,(R, + r)(1 — «,) is greater
than 1, the other nonlinearities are not affected by the increase in R, .
Thus, if the exponential term is dominant, increasing K, reduces dis-
tortion at low frequencies. At higher harmonic frequencies if
| 8C2(Z,(s) + r) | > 1, the distortion terms are independent of the
source impedance since the [r, + Z,(s)] term in the numerator and
denominator cancel. This is well illustrated in the measured results of
Fig. 10. The second harmonic frequency being 0.7 MHz, | sCa(R, + 7,) |
is not much greater than one up to R, = 1002; hence, the second har-
monic distortion improves with increase in source resistance up to
140%. Further increase in B, does not cause much change in distortion.
The third harmonic frequency is 17.3 MHz; hence, a change in K, does
not affect M, appreciably. (| (sCo) (R, + ) | > 1)

5.3.4 Effect of Bias Current

Increase in bias current usually reduces distortion due to the following
reasons. The increase in emitter bias current reduces the exponential

terms
Kz_( 1_) . K, [ 1 }
) aIE and &) a(IE)2

Fig. 11 shows the effect of bias current on hpp terms; «, decreases

with increase in /., by
1 (1),
IC 10g IC' max !

LR

A2436: I-=100MA V=10V R =750

FUNDAMENTAL TONES 16.6,15.2, 4.5 MHZ

fit fa—f3 =17.3MHzZ; f,- f3= 07 MHzZ
(EXPERIMENTAL RESULT)

|
2]
[=]

Mz, M5 IN dBmM
4
[=]

M
—C 2
-60 s —]
/o-/
o—'/
-40

0 20 40 60 B0 100 120 140 160 180 200 220 240 260 280 300
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Fig. 10— Variation of M», M; with source resistance.
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Fig. 11 — Variation of as, a; with bias current.
it becomes zero at I, = I¢ mw/e, and then becomes negative, and

increases with further increase in I, . The coefficient «; decreases with
bias current I, . Thus, in general, an increase in bias current has the
effect of reducing both the second and third harmonic distortion (Fig. 7)
(at least until a, = 0).

5.3.5 Fffect of Bias Vollage

Whereas exponential and A, terms are functions of bias current, the
avalanche and collector capacitance nonlinearities are affected by the
bias voltage. The coefficient 3, increases with the voltage; but M, and
M, increase much more rapidly (Fig. 12). (Both the collector capacitance
nonlinear coefficients v, , v; decrease with the increase in bias voltage.)
The effects of change in bias voltage are especially pronounced at higher
load resistance since avalanche (and collector capacitance) terms be-
come dominant. The third harmonic distortion decreases more with
the increase in voltage (Fig. 13) than the second harmonic distortion

does.
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The physical significance of the closed form expressions has been
qualitatively discussed. Precise quantitative estimates can and have
been obtained using the computer program. For example, the effect
of varying linear parameters by fifty percent of their original values was
studied. The results show that the distortion does not critically depend
on the linear parameters (Figs. 14 to 17). The other transistor parameters
such as I¢ ne , Vero , M, €tc., can also be varied.

VI. ANALYSIS OF CASCADED TRANSISTORS

It is often stated that in a multi-stage amplifier, the output stage
alone determines the over-all distortion. Even though this statement
is true to some extent, it is frequently found in practice that the effects

=90
[ s ————————— . ——— M3
=80
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'g -70} fi+ fo-fy =17.3MHz; fo- f3 = 0.7MHz
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=
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Fig. 14— Variation of M., M3 with rs.
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Fig. 15— Variation of M., M; with C,.
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of the previous stages cannot be ignored and sometimes the previous
stage is dominant. This is especially true if both minimum noise figure
(which requires lower bias current) and modulation requirements are
to be met by a two stage amplifier. Two analysis tools based on Volterra
series are presented here which enable the study of such cascaded stages.

The first approach makes use of the cascaded formulae mentioned
earlier; this method illustrates the cascade phenomenon and permits
derivation of simple cascade rules.

Consider two cascaded transistors (Fig. 1); let the output voltage
(v;) of the first transistor be denoted by D(»,); the output voltage (v;)
of the second stage by E(v,) and F(v,). The aim is to compute the kernels
Fi(s)), Fa(s1, 82), Fa(sy, sz, 83) knowing D and E. To calculate D(s,),
ete., it is necessary to know the load impedance of the first stage which
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is the input impedance of the second transistor. This can be computed,;
thus, for a given generator impedance and bias conditions, D(s,),
Dy(sy , 82), Ds(8y , 82, 83) can be determined. E(s,), Ea(s, , s2) and Es(s; ,
Sz, 83) can be computed for a given load and bias conditions with B, = 0
(voltage v, is directly impressed across the second). Now expression
vy in terms of », is given by

vy = F(v,) = E@,) = E(D@,)) = (E 0 D)(v,). (30)

It is seen that F is related to E and D by the cascade formulae whose
physical significance is discussed below.

6.1 Linear Term

The linear term is given by
Fi(s) = Di(s)E\(s) (31)

which states that the overall gain in dB is the gain of the first stage
in dB plus the gain of the last stage in dB.

6.2 Second Harmonic Term

The second-degree kernel is given by

Fy(s, , 82) = Ey(s; + s2)Dalsy , 82) + Ealsy , 82) I_]:: D (ss). (32)
The first term of the formula states that a given harmonic product
from the first transistor D,(jw, = jw,) is amplified by the second transis-
tor at the harmonie frequency F,(jw, & jw,). The second term shows
that the two fundamental tones are amplified by the first transistor
[D,(jw.) D, (£jw,)] and then the second transistor acts on these tones
to produce distortion F,(jw, , ==jw,).
Equation (32) is related to the second harmonic distortion (M)
as follows:

— \/IO—HRL ’ Fy(s, ,32)
M =20 log =5 | (s )F ) @)
e
= 20 log '\/1?) R, 22(31 , Sa)| Ei(s, + s5) Ey(s, , ) . (34)

4

H Dy(s) E\(s1)E(s0) IzIEI(Si)

i=1 i=1

The second term is the second harmonic distortion of the last stage.
The first term expresses the contribution from the first stage; it approxi-



1014 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967

mately equals

l:First stage second harmonic] — I:gain of the last stage:l_ (35)
distortion in dBm in dB

This shows that if the gain of the last stage is high, the contribution
from the first stage is small. Equation (35) is approximate in two re-
spects; it neglects the frequency effects and the phase addition of the
contributions from the first and the second stage. In (35), the second
stage gain in question is actually the ratio

Ei(s; + 32)
EI(SI)EI(82)

which involves the two fundamental and the harmonic frequencies.
As an example, a shaping network which was introduced increased the
gain (18 dB) at the harmonic frequency (0.7) MHz) and decreased the
gain at fundamental tones 15.2 MHz (8 dB) and 14.5 MHz (8 dB)
with the result the overall distortion was poorer by 34 dB.

6.3 Third Harmonic Distortion Term
The third harmonic kernel Fi(s, , sz, 83) is given by
Fyls, , 82, s) = Ey(s; + s + sa)D3(31 y 82, sa) + 2E2(51 , 8 + 83)

Dye)Dilss ) + Bl 52, ) T Died. (30

The first term shows that the third harmonic product of the first stage
[Ds(s: , 82, 85)] is amplified by the last stage at the harmonic frequency
[E\(s; + 82 + 83)]. The second term is the interaction term; it arises
when the second-degree kernel of the last stage [Ea(s:, s» + )] acts
on the sum of the fundamental [D,(s,)] and the second harmonic output
of the first stage [D,(s, , s5)]. The last term shows that the second stage
third-degree kernel [E;(s, , 8., s;)] acts on the fundamental tones am-
plified at the respective frequencies by the first stage [D1(5,) D, (82) D1 (83)].

From (36), the overall third harmonic distortion is related to that
of the individual transistors by

M, =20 logi 107°R,, E1(513+ 8, + 83) Da(zsl 1 82, 83)
_I_]l:El(si) .Il_;Il Dl(si)
+2 Ez(sé , 8 + SH) z :(I-s) D22(S2 133) + Ea(-:l y S2 83) . (37)
_I_]l: E\(s:) e I:]; D(s:) ];Il E,\(s:)
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The first term is the contribution from the third harmonic term of
the first stage; it is given approximately by

|:Third harmonic distortion] -2 [Gain of the la.st] (38)
of the first stage in dBm stage in dB

The interaction term approximately equals

[Seeond harmonic distortion] - [Second harmonic distortion]
of the first stage in dBm of the second stage in dBm

+ 6dB — |:Ga,in of the la.st:l (39)
stage in dB

The third term in (37) is the third harmonic distortion of the last stage
in dBm.

It is seen that the effect of the first stage and the interaction term
can be reduced by increasing the gain of the last stage. Equation (39)
illustrates that the second harmonic distortion of each stage should be
good. This may become a limitation if the first stage is biased at lower
currents.

In the above simplified expressions [(38) and (39)] phase addition and
frequency effects have not been considered. In (38), 2 (gain in dB)
actually represents

E\(jws &= jw, %= jo.)

20108 | 7o B (o) By (20 |

In (39) the second harmonic distortion is to be measured with two
tones, one at the fundamental and the other at the harmonic frequency

Ey(s, , 55 + s3)
E\(s))E(s2 + s3)

and then multiplied by the ratio of the gain

E(s. + 33)_
E\(s,)

Moreover, the kernel must be made symmetrical by taking the average of
three possible combinations.

Thus, the simplified expressions (35), (38), and (39) are exact if the
transistor performance is not frequency dependent; in general, they
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can be used to get a qualitative picture. Equations (34) and (37) are
indeed exact and take into account the frequency dependence. The
computer program is being extended to calculate (34) and (37).

An alternate approach to caleulate the distortion of cascaded stages
is to analyze the nonlinear equivalent circuit of cascaded transistors
using the nodal technique illustrated in Section IV. The nodal equations
are derived first; next each nodal voltage is expressed in terms of the
Volterra series of the input voltage; the resulting vector matrix equations
are successively solved. Since the procedure is similar, the details are
omitted.

Two common-collector stages were cascaded using this approach.
(Fig. 18). The measured values at 120 mA, 10 V with 75 ohm source and
load impedances were —87 dBm and —112 dBm for the second and
the third harmonic distortion, respectively. The computed distortion
values are —88.7 dBm for second and —116.6 dBm for third harmonic
distortion. Thus, good agreement with experimental result is obtained.

The cascade formulas are simple, physically meaningful and yield
rules of thumb to judge the effect of the first stages. The nodal approach
is more complicated. However, the advantage of the nodal approach
is that it is general and can be used for an amplifier. For example, a
cascade of common-emitter and common-collector stages involves five
nodes; if shunt feedback is used at the input and at the output, the
same program can be used to analyze this amplifier. (Cascade formulas
do not take feedback into account.) In general, the nodal approach can
be extended to study frequency-dependent nonlinear network with
n nodes, if the nonlinearities are small.

I i
. G K (vo-v3) b ot K (Va-vs)
Ly —- —_—
A
L Ty ry
g Va Va
. pV,
P Rere— e
tb 1 ia b
A L
Zg(s) Cs | 2 | Cz
L
. |G ! ORIICIEN
Vg Y(V2) ) ¥(-Va)

g(v2-Vs ’:Vl) § (Va 'Vs;Va)

Fig. 18 — Common-collector — common-collector nonlinear equivalent circuit.
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VII. ENGINEERING APPLICATIONS

A few pertinent practical applications of the work are described
below. These results were either first predicted by the model and then
verified in the laboratory or first experimentally observed and then
confirmed by analysis.

In the initial design of L4 repeater a common-emitter—common-
emitter—common-collector configuration® was used in the power am-
plifier. The third harmonic modulation performance was not as good as
desired. This led first to the study of the output common-collector stage.
As shown in Fig. 19, the increase in source impedance increases the
distortion of the common-collector stage. Since the preceding common-
emitter stage output impedance is high, the common-collector per-
formance was not optimum. Secondly, the preceding common-emitter
stage was studied because the gain of the common-collector stage is low.
(see Section VI) As shown in Fig. 20, increase in load impedance beyond
optimum R; degrades its performance radically. Since the common-
collector input impedance is high, the common-emitter stage perform-
ance was not optimum either. Thus, in the redesign work by Ken
Tantarelli, the common-collector output stage is not being used.

Another interesting application feature was the improvement in
modulation performance of the common-emitter stage with increase
in voltage. As shown in Fig. 8, it is a function of load impedance, and
at about 150Q, maximum improvement was obtained.

New coaxial systems are currently being studied to operate at higher
frequencies. Different configurations have been examined for the output
stage. The model showed that common-collector and common-base
performance is poorer with an increase in frequency and thus the use
of these stages as output stages was questioned (unless transistors with
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Fig. 19— Common-collector; M; variation with source impedance; I. = 120 mA;
Vee = 10V; Ry = 75 Q.



1018 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967

-100 T
MEASURED
e T~

-90 T . ~.
E s ~ Y
[1a] - N~
o - h
z 80 Pl 3 - M
o _ ~COMPUTED FUNDAMENTAL TONES N =)
s _r 16.6, 15.2, 14.5 MH2 N~

-70 — fi+fa-f3

"I
-
-
—sok”_L Lol | L1l 1 R [
2 4 6 810 20 40 60 80100 200 400 600 1000 2000
R

Fig. 20— Common-emitter; M; variation with load impedance; I. = 120 mA;
V. = 10V; R, = 75 .

higher f,’s are available). Recently when a new, high-frequency modula-
tion test set was built, experiments confirmed the prediction. The third
harmonic coefficient (M3) for a + b — ¢ product was 8 dB poorer at
36.5 MHz (due to signals at 36.5 MHz, 40.1 MHz, and 43.1 MHz)
compared to the value at 17.3 MHz (due to signals at 14.5, 15.2, and
16.6 MHz). The common-emitter configuration modulation performance
suffered only about one dB degradation.

VIII. CONCLUSION AND ACKNOWLEDGMENT

This paper has presented a useful analysis tool for investigating the
frequency-dependent nonlinear behavior of transistors. A digital pro-
gram for all the three configurations has been prepared. The results
obtained compare favorably with experimental results. The closed-form
expressions yield a qualitative picture of distortion. The Volterra series
proves useful in examining cascaded transistors; a few rules of thumb
are derived and a general nodal analysis which can be extended to
cascaded stages with feedback is developed. The practical applications
cited show that the technique can be useful in the computer-aided
optimal design of linear transistor feedback amplifiers.
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APPENDIX A

A.1 Higher-Dimensional Transforms
The second-degree case is illustrated as an example. From (4),
t t 2
w) = [ [at—r, =) Matydr. @0
1] 0 i=1

If the system is physically realizable, ¢,(t — 7, , ¢ — 75) = 0, for r; > .
Hence, the limits can be extended to .

w0 = [ [Tat—r,i-n 1126 dr. (1)

Introducing dummy variables ¢, and ¢, , the two-dimensional trans-
form is taken

Yals, ,8) = f f y=(t, , ) exp (—s,t,) exp (—s.t.) di, di,

=f dt,f dt, U d-r.f dracslty — 11, o — 72)
0 0 0 1]

. f[ x(7;) dfi] exp (—s;t,) exp (—Sabo). (42)

=1

Substituting ¢ — 7, = m, ,{, — 72 = m, , and using the fact that
cx(m,y , my) = 0 for m; < 0 yields

Yu(s, , 8) = f ) dm, f ) dm, f ) dr, f ) dra ca(m, , ma)x(7)z(rs).
-exp (—simy) exp (—s,7,) exp (—s.m,) exp (—s;72)  (43)
= Cafs1 , 82) X (81) X (52). (44)

A.2 The Output of the Kernels to Stnusoidal Inputs

For the second-degree case, consider two sinusoidal signals at fre-
quencies f, and f, . The input z(r) ‘equals,

2(r) = [exp (jwar) + o (—jm,,r)] n [exp () + oxp (~3'ww)]_

(45)
From (41)

() =fu d-nfo drycall — 10, & — 12)
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&

_{(‘Xp (Jwar1) + exp (—jw,71) + exp (jw,7,) + exp (—jw;,'r.):|

2 2

_[eXD (jwaTs) +2 exp (—jw.r2) | €Xp (ju, 7o) -i-2 exp (—Mra)]_ 46)

Considering one cross term only,

[ dr, [ droc(t — 7, , 1 — 1)

Ot <y
‘% exp (jwary) exp (7o) (47)
Substituting m, = { — 7, , m, = { — 7, and carrying out the integration
yields
1Ca(jwa ; ju) exp [flwa + ws)t]. (48)

This term occurs twice as does its complex conjugate.
Hence, the output due to the a + b term alone is

Yars(t) = | Calfwwa , ) | €08 [(wa + @)t + @una]. (49)

The 2w, term and its conjugate occur only once in (46); hence, it is
6 db better. The response of the third harmonie kernel to three sinusoidal

inputs is similarly treated.

A.3 Cascade Relations

For the system shown in Fig. 1, the cascade formula are given below.
The cascade relations can be symbolically written as

Z = F(x) = E(y) = E(D[z]) = (E 0 D)(2). (50)
The formula are
Fi(s)) = E\(s))Dy(s1) (51)
Fa(s, , 82) = Ei(si + 82)Da(sy , 82) + Eals, , 85) f'[ D, (s) (52)
Fy(s, , 82, 85) = Ei(s; + s + 85)Ds(s, , 82, )
+ 2By, 5 + 8Dy Dusn , 50) + Falss , sa s 50) 1T D). (53)

i=1

A physical interpretation of the formula for cascaded transistors is
given in Section VI. The procedure for deriving the cascade relation is
as follows: the output Z(f) of the last stage is expressed in terms of the
Volterra series of its input. (Only two terms are considered)



TRANSISTOR DISTORTION ANALYSIS 1021

20 = f: e(t — m)y(n) dr,
+ j;" ‘l;w eg(t - T1, I — 12) f]: y(-r‘_) d-‘l‘,- ) (54)

i=1

The output of the first stage y(t) is related to its input by
un) = [ i — a)ale) do
=0 El 2
+ f f do(r — o, , 7 — @) [[ 2(e.) do;  (55)
Jo 1] i=1

Substituting (55) in (54), terms of the same degree are collected; as an
example, the first second-degree term equals

2
fd'r et — 1) ff do(r — oy , t — @3) H (o) do; . (56)
Taking the two-dimensional transforms yields
2
Bisi + s2)Dalsy , 52) I X(s0). (57)

APPENDIX B
The Nonlincar Parameters
From (15),
I. = f(IE)h(VcB)- (58)

A two-dimensional Taylor's series expansion of (58) is taken; ¢, is
expressed by K(v,) and vep = v; — v, . Hence,

o= gloa , 00 — 1) = gi(ve , 05 — ¥1)
+ g2(a , 05 — 1) + g3n , 04 — 1), (59)
where
0ivs vy — 1) = a, MK, + M(v; — v,), (60)
g2z , s — 1) = M K@) + ma(v, — 0,)°
+ a, M Ko (0,)" 4+ a, M K, ()5 — v1), (61)
and
g2 , v — v;) = @l o(K\)’@2)* 4 mslvs — )’
+ a, MK, — 0,)* + o, Ki(vs — v,)
+ M Ko@) + 200K Ko(,)' + oo LK @) (0 — v).  (62)
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The avalanche coefficients are given below.

= —2
Ver \!
1= (V;o)
i, = () = "'((TVJ)— (Mo)*
i, = 301 = 3 — 1 Ay O
sy (=1 2M\ M,[(n—1) (M,
M3 = 'E(Mz) M ( ZVGB + Mo ) - [2(V{,'3)2 + (M

(63)

(64)

(65)

oo

The coefficients m, , m, , and m; equal m; = I.(M./M,); i = 1, 2, 3,

where I, is the collector de bias current.
The hrz coefficients are given below:

_— hFE max
oy =
hrgex + 1 + alog’ + 2a log e log
I(,' mAX IC max
__ 1 (@) [ I ]
o T . 2a log e| log o + loge

@ = ‘—"l[ 20 4 9 () 1 ()" 2a(log 6)2].

6 1)2 (Io)z hFE max

The collector capacitance coefficients are given by

Y1 = k(VcB)ﬂ

—1 4
Y2 = 'E‘ k(VcB)’s

k -3
Yz = 57_ (VCB) .

(67)

(68)

(69)

(70)

71

(72)

From (62) for gs(v. ; vs — 1), = is obtained by replacing B,(s;) for
v, and C,(s;) — A,(s;) for (v — v,); moreover, the kernel must also be
symmetrical. Since the procedure is the same as for ¢, it is omitted.

The interaction terms are given below:
Gz = 20,00K3 By(s))Bass , 55)
+ 2my [Cils1) — Ai(8)][Cass , 85) — As(se , 8)]
+ aiM,K, By(s, , 52)[Ci(s5) — Ai(ss)]
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+ 041M1K1 Bi(s)[Ca(s2 , 83) — Aa(S2 , 83)] (73)
$os = 272 [Ci(81) — Bi(s:)][Cals2 5 83) — Balss , 85)] (74)

where—denotes symmetrical kernel.

APPENDIX C

A2436 is an n-p-n silicon transistor with overlay type of construction.

Its fr ranges from 800 to 1000 MHz. It is a power transistor with current

capability of 1 amp and can handle 2.2 watts of power.

Typical parameter values for transistor type 2436 27 at 120 mA,

10V are given below:;

I, = (.12 amps.
7 = 13.6 ohms
T = 5200 ohms
C, = (6)107"* farads

C, = (3.97)107" farads
C, = (9.2)107** farads
Z, = 50 ohms

Zy = 50 ohms

Ver = 10 volts

Veso = 350 volts

n =2

ré, = 0.2165 ohms

a = 0.38

hrg max = 122

Iomax = 0.633 amps.
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