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We consider the accuracy with which a numerical solution of the system of
ordinary differential equations
T+ f(x, #) =0, =0

can be oblained by the use of a numerical integration formula of the well-
known type

P P
Ynir = Z WYn—r + h Z bk'y;ﬁk .
k=0 k=1

For the scalar case, under some natural assumptions, and assuming that
a and B8 are real constants such that

aéaf(x.t)gﬁ' (>0
ar

at every point x, 1t is proved that if

F@ 21— X az™" +3a+B8h X bz ™ =0
k=0 k=—1
for all |z | = 1, then (e), the root-mean-squared error over a given interval,
between the true samples of x(l) and the y,, satisfies

=1+ p" 0511:15121 | F(e™) |7 (o)

tn which p depends on a, B, the a, , and the by, , and (¢) takes into account
the local roundoff and truncation errors as well as errors in the starting
values for computing the y,.
If the condition on F(z) stated above holds, and if p < 1, then
(&) = (1 —p7" max | F(e™) | (p)-
DEws2x
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The significance of the key assumptions is discussed and two examples
are given.

I. INTRODUCTION

In this paper we present some results concerning the accuracy with
which a numerical solution of the system of ordinary differential
equations

can be obtained by the use of a numerical integration formula of the
well-known type!

Yns1 = kz; i + b kZ bk, NP @)
- =1

In (2) the y, are approximations to the z, 4 z(nh), where h, a positive
number, is the step size parameter; Yo, %1, - - - , Y are starting vectors,
the last p of which are obtained by an independent method; and

yn & —f(ya ,mh).
If by # 0, then yny, is defined implicitly, and (2) is said to be of
closed type. It is assumed throughout that (2) can be solved* for
Yns1 for all n = p. Specializations of (2) include, for example, Euler’s
method:

Yner = Yo + by,

and the more useful formula

Yns1 = Yn + 3R(YL + Yher).

It is assumed throughout that for ¢ = 0, f(z, t) is a well-defined real
N-vector-valued function defined in the set of all real N-vectors z,
that f(z, t) satisfies (the usual weak) conditions which guarantee the
existence and uniqueness of a solution of (1), and that the Jacobian
matrix af(z, t)/dz exists for all z and all ¢ = 0.

Equation (2) ignores the roundoff error R, introduced in calculating

Yns1, and, in order to take R, into account, we shall consider instead

* Tt is well known that if f satisfies a uniform Lipshitz condition, and if k is
sufficiently small, then (2) possesses a unique solution yn.: which can be ob-
tained by a simple iterative process’* However, this smallness condition is by no
means always necessary. For example, if b, > 0 and, with « as defined in Sec-
tion 2.3, if @ > 0, then for any h > 0 a unique golution %1 exists and can be
computed by an iterative process which is only slightly more complicated than

the usual one (see Section IV).
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of (2):

yn+l = g a'kyn—k + h kz bky;ﬁk + Rn y n z‘ p' (3)

=-—1

We may also assume that R, takes into account the error in solving
(2) for yYa+1, caused typically by truncating an iteration procedure
after a finite number of steps. Predictor-corrector techniques can of
course be viewed as giving rise to a degenerate (often one-step)
iteration technique in which the “starting point” is generated by the
predictor.

The truncation error T, , a basic entity associated with the integra-
tion formula (2) and the differential equation (1), is defined for
n = p by the relation

P ki
Toy = Do WZuy +h 2 bl +Ty, n=p
k=0

k=—1
in which ! = —f(z,, nh). Clearly, T, is a measure of how well the
samples ,_, , T, p41, *** , Tasr Of the solution of (1) satisfy the integra-

tion formula. The problem of estimating T, is a classical one, and there
are standard methods which lead to precise bounds."**

We now define a set of vectors {¢,} which plays a central role in the
subsequent discussion:

Wﬂ=Tn_Rnr n‘;p (5)

O, = (-'U,.H - ?Jn+|) - ak(l'u-r.- - y,.uk)

k=0

Fh S bl s (0 — B = (g (0 — KR},

e (6)
n=—1,0-,p—1

(with the understanding that z, = y, = f(z., nh) = f(y,, nh) =0

for n < 0). Note that the ¢, forn = —1,0, - - -, (p — 1) are measures

of the departures of the starting vectors from the exact values, and that

¢n =0forn =-—1,0,- - -, (p — 1) if the starting vectors are exact.

We shall describe our results first for the scalar case (i.e., for
N =1).
II, RESULTS

Let e, denote (z, — y,), the difference between x(nh) and its com-
puted approximation. Suppose that N = 1, and that « and g8 are real
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constants such that

a = =B (7)

for all t = 0 (at every point z), and that

F &1 — Z G L da b X b =0 ()

k==1

for all |z| = 1 (including “z = «”). We prove that then

@ (01 + 0" 3 et ©

m=0
the root-mean-squared value of the first (M + 1) error terms [M is an
arbitrary positive integer greater than or equal to (p 4+ 1)] is bounded
from below in terms of

M !
@ = (0 + 07 Zle ), 10
the corresponding quantity for the ¢’s, in accordance with the inequality
@z1+a" 0ml:ﬂ | FEe™) |7 (o). (11)

[F(z) is defined in (8)], in which

i: i (k1)
bw—l +1)w

k=—1

F(e'™) (12)

p = 3(8 — @)h max
0sws2r

We also prove that if in addition to the assumptions stated above,
we have p < 1, then the sequence {e,} is bounded (i.e., there exists a
positive constant ¢ such that | e, | = ¢ for all n = 0) whenever the
sequence {g¢,—1} is bounded, and

(=1 —p7" ,nex | Fe™) |7 (@) (13)
(whether or not {¢,_} is bounded).

Inequality (11) provides a limitation on obtainable accuracy under
essentially only the weak assumption that the sequence of approxima-
tions {.} defined by (2) approaches zero as n — « for all sets of starting
values when f(z, {) = }(e + B)z. Since, by assumption, F(e') # 0 for
0 £ w £ 27, it is clear that p < =,
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The condition that p < 1 is satisfied if and only if the locus of

O) = =5 (14)

k=—1
for 0 = o = 27 lies outside the “eritical circle” ' of radius 1(8 — a)h
centered in the complex plane at [1(a+8)h, 0] (see Fig. 1).*

| |
l |
| |

ah Bh

Fig, 1— Location of the critical circle C (for N = 1).
Since
p =3B — a)h{min |O) — Ha + B [}, (15)

we see that p is the ratio of the radius of € to the distance between
¢ and 6, where ¢ is the center of (' and 6 is a point nearest ¢ on the
locus of 6(w).

2.1 Discussion

The quantity (e) of course of interest in problems in which we
are concerned with a measure of the accuracy of a numerical solution

*If @ > 0, we can express both the conditions that p < 1 and #(2) 5 0 for |2| = 1
entirely in terms of a condition on the locus of ®(w)~! for w ¢ [0, 27]. The requirements
on F(z) and p are met if the disk of radius [(ah)~! — (Bh)™1] centered at
[3[(ah)™* + (BR)~!], 0} is not “‘encircled” or intersected by the locus of ©(w)~1. There
is a complication that arises as a result of the fact that @(w)~!is ty ically not bounded.
This complication often stems from a “consistency requirement”’ which implies that
1 — X i apz~¥*V) has at least one zero on the unit circle. However, due to also
typical “‘convergence requirements,” 1 — 3 7;_, axz~(** normally has only simple
zeros on the unit circle, a fact that can be used to suitably define what is meant by
the locus of @(w)™! not encircling the disk. We leave the details of the necessary
“principle of the argument”” argument to the sufficiently interested reader.
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over a large number of steps, as opposed to the accuracy of some final
value obtained at the end of a large number of steps.

Although there is a vast and interesting literature concerned with
various aspects of the problem of error estimation in digital computa-
tion (see, for example, Refs. 3, 4, and 5), the results presented above,
and their proofs, appear to be most closely related to earlier results
concerning the input-output stability of continuous-time nonlinear
feedback systems.®* Indeed, the writer is not aware of any lower-
bound results in the numerical analysis literature of the type described
above. However, some upper bounds concerning (2) of (for example)
the form |e,| = K with K independent of n (which imply (e) = K)
have been obtained in certain cases. In this connection, our condition
that guarantees the boundedness of {e,} is often weaker, and our upper
bounds on (e) are often much stronger, because, for example, the ¢m-
can become very small as m becomes large.

Our approach can be applied to several other problems in numerical
analysis. In particular, with reasonably direct modifications of our
proofs, analogous theorems can be proved concerning the numerical
integration of systems of second-order ordinary differential equations.

2.2 Exzamples
Euler's Method: Yn.1 = Y + huh

Here F(z) = 1 — [1 — 3(a+ B)hlz™", so that F(z)  Ofor |z | = 1if and
onlyif 0 < 3(a + B)h < 2,and | F(e'*) | = |1 — [1L — (a + B)hle .
Thus (with 0 < ¥(a + 8)k < 2),

min | FE™) L= 1+ [1—3a+Br"

[1—[1=3+/r".

max | FE™) |

1

The locus of © is the circle shown in Fig. 2, since O(w) = 1 — ¢ *“. If
ah > 0 and gh < 2, then the critical disk (Fig. 2) is not intersected
by the locus of ©, the condition that 0 < 3(a + B)h < 2 is satisfied,
p < 1, and in accordance with the last paragraph of the section preceding

Section 2.1:
p = 3B — )h max ([3(8 + a)h]™, [2 — 3(8 + )h]7).

* It is interesting to note that the posslblhty of exploiting feedback-theoretic
ideas has been emphasized by Hamming.*
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ah Bh

Fig. 2— The locus of @(w) for Euler’s method, and the critical cirele C.

If 0 < (« + BYh < 2, then

min | F™) |7 = [2 = 3 + BRI,
max | F(e'™) |7" = [3(a + B)R]',
_B—a
P=B+a’

and

ez + BB+ a2 = o+ O )
@=[1~@-a@B+a""Ea+ /R ).
For estimates of T, , see Ref. 1 or 2.
As a remark concerning the necessity of the condition p < 1, we note
that if ah > 0, but gh > 2, then for even the speclal case in which

f(x, t) = Bx, we have e, , e, , €2, + - - unbounded, since %, , ¥, , Y2, - - - is
unbounded (assuming merely that y, # 0).

The Formula yn.1 = ya + 3h(y; + yi):
In this important case
F) =1+ Ya+ Bh — [1 — }a + BhE™, and
O = = — 2itan (9)
31 +e7) 2
We have F(z) #= 0 for |z|] = 1 if and only if (« + 8)h > 0, and [as-
suming that (« + 8)h > 0]:



1250 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1967
min | F") [ = [l + Ha + Ak + |1 = e+ O 17
max | FE") | = [1+ Ha + Hh = |1 = da+ Hh I
The locus of O lies entirely on the imaginary axis of the complex

plane,

_B-a
P~ 8 ¥a’
and obviously p < 1if « > 0.
If « > 0and (a + B)h < 4, then

3=

min | F(e'™) |

(3@ + AAI™

max | Fe') |
and
@z 1+ B—a6+a ] ¥
€ = [1— (B —a)@+a '] [Hae+ BRI (o).
The last inequality can be written as simply

@) = () o).

For the integration formula under consideration,

h3mnr(n")
12
where n, lies in the interval [ (n — p)h, (n + 1)A].
Here p = 0, and
e = (v — yo) + 3h[f(20 ,0) — f(yo , 0)).
Thus, assuming for the purpose of illustration that roundoff errors can
be neglected:

T, =

Ar

() = (ﬂh)“((M + 07 e FHM+ DT

m=1 |

hai!,"”(ﬂm) Di
12

provided that @ > 0 and (e + 8)h < 4. If, for example, (8 — a)-
(B 4+ o)~ = } and (a + B)h = §, then the ratio of our upper bound
on (e) to our lower bound is 18. If (8 — &) (8 + ) = § and
1(a + B)h =}, then the ratio is 42.
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2.3 Resulls for the Vector Case (N = 1)

We shall state our results for N = 1 in a slightly more formal fashion.

Definitions:

(1) Let || q|| denote (3°Y., ¢?)! for every real N-vector ¢ =
(ql y G2y 00 1Q~V)A

(#7) Let {af(x, t)/dx}s and |of(z, t)/dx}, denote, respectively, the
symmetric and antisymmetric (i.e., skew symmetric) part of af(z, {)/dz,
the Jacobian matrix of f(z, ?).

(ti7) Let F(z) = 1 — 272, ax™®" + 3 + Bh 22, bz ™

(i) e, & x(nh) — y,,n = 0 with the y, forn = (p + 1) defined by
(3).

(v) With M an arbitrary positive integer such that M = (p 4 1), let

@ (r+v e )

@ 2 (0 + 07 S lloea 1)

where the ¢,,_, are defined in (5) and (6).

Assumplions:

Let the smallest eigenvalue of {af(x, t)/dx}s be bounded from below
by the real constant a(e > — =) for all { = 0, and let the largest eigen-
value of {df(x, {)/dx}s be bounded from above by the real constant
B(B < =) forall ¢t = 0. Let the modulus of the largest eigenvalue of
{9f(z, t)/0x}, be bounded from above by the real constant y(y < =)
foralli = 0.

Definition:
Let
p £ [38 — a)h + vh]

| »

| E bkeﬁi(kﬂm

k=—1

-+ max -

NSws2r 1 _ Zak(’—i(.l--i-llw + %(ﬂ + ﬁ)h E bke_i(k+l)w

| k=0 E=—1
Theorem I: If
(2) the assumptions of Section I concerning f(x, {) and (2) are satisfied,
(@) 1 + 3(a + B)hb_, # 0,
(121) F(z) # 0forall |z| = 1,
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then
@z=(1+p" min |FE*) [ ()

0<ws2w

Theorem 2: If (i), (i1), and (ii1) of Theorem 1 are salisfied, and if p < 1,
then

@) (= (1—p" max |FE) |7 @)

0sws=2r
and
()  sup || gm-s || < o implies sup ||e. || < =.
mz0 mz0
Corollary to Theorem 1: If (i) of Theorem 1 is satisfied and there
exists at least one real constant k, such that
1 — Eakz—u:n) + klh z b,,z_””“ = 0
k=0 k=—1
for all | z | = 1, then there exists a positive constant ko, which depends
only on ag, Gy, " *, ay,b_1,bo, **+, by, a B, and y such that
e) = Feo{e).
Theorems 1 and 2 are proved* in the following section. The proof
of the corollary is very simple.

Since

1— X ™ 4 kb 2 b ™ #0

k=0 k=-—1

for all | z| = 1, there exists a k{ such that

1— X az®" +kh 2 b ™" =0
k=0 k

=—1

forall|z| =1, and
1+ kihb_, # 0.

Choose o' and 8 such that o’ < a, 8’ = B, and 3(o’ + 8') = ki . If we
replace « and 8 with o’ and g, respectively, we see that Theorem 1
applies.

* Our proofs actually yield sharper, but less explicit, bounds on (e) than those
of Theorems 1 and 2. See (31) and (37).
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III. PROOFS

Proof of Theorem 1:

We have

Yu1 = Z Yot + R Z bky,’.«k +R,, np
k=0

k=—1

and

F P
Tair = 2 @y +h 2 bl + 1., nZp.
k=0

k=—1

Thus,
P
Cast = D iy
k=0

—h Z bk[f[xn—kn - k)h] - f[yn—k 3 (ﬂ - k)h]} + Cny N g P
k=—1
and, with ¢, defined forn = —1,0, --+, (p — 1) by (6),

en = D @lury — h LZL bi{flXar , (n — 1 — K)A]
k=0 -—

= flyn-rr (0 — 1 — k)h]} + @n (16)
forn = 0.

As a matter of convenience we define a_, &

Lemma 1: There exist real sequences {w.}?_, and {v.}2., both belonging
to I, (i.e., with the property that 3 2., |w,| < o and 3.2 |v.| < )
such that

‘*-h i bkz—(kﬂ)
We) 2 3w = - el (17)
k=0 1 — Zl {ﬂ'k _ %(G! + ,B)hbk]z_(k“)
P
Vi) £ Yo = 5 1 (18)
k=0

1 — E [ar — 3(x + B)hbk]z—(*+1)

k=—1
forall |z| = 1.
The proof follows at once from the standard theory of z-transforms,

in view of assumptions (1) and (i77) of Theorem 1. The details are
omitted,
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Lemma 2: Let 6, < f(x,, nh) — [y, nh) — 3(a + B)(@. — y.) for all
n = 0, and let {w,} and {v.} be as described in Lemma 1. Then

e = D wei 8 + > Vi (19)
k=0 k=0

forn=0,1, -+, M.
Proof of Lemima 2:

From (16) and our definition of §,:

7

e" = Z [a‘k - %(ﬂ‘.’ + B)hbk]en—k—l

ket (20)
P
—h z: bk 5n—k*l + Pn—1 » n g 0.
k=—1
We multiply both sides of (20) by e ™ and then sum from n = 0
to n = M to obtain
A ) » M .
Seme, = 2 law — Yo + Bhb] D€ e
n={ k==1 n=0
Il M . M .
_ h E bk Ze—iﬂu a,,-k_] + Ee—anuwngl (21)
k=—1 n=10 n=0
for all w e [0, 27]. Using e, = 8, = 0 forn < 0, we have
E e—mwe"_kﬂl — e—;(1+k)w Z e*:nwe" _ e—|(l+k)w Z e—:nmen (22)
n=10 n=0 n=M-k
and
M . . M . . M .
Ec—nuu 5;;—k—| — c“l(l"‘k)(\l Ze—mm 5” _ e—-(lH:)w Z e—mu 5" . (23)
n=0 n=0 n=M-k

Thus, from (21), (22), and (23)

M

M M
Z e—:’nuen — W(eu'm) Z 67""” 5,, + V(eiu) ZD e-—mu‘pn_l
a=0 n=

n=0
. ‘ £ : M .
+ V(e”“){ Z: bke—uumu Z e—luw 5,,
k=—1 n=M=k

» M
— Y (@ — 3a+ Bhbe e D f‘"”h} (24)

k=—1 n=M—k

for all w € [0, 2].
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The expression within the braces in (24) can be written as

ke .
Z sne—lnw

n=0

1255

with s, = 0 forn = 0,1, ---, M and forn > (1 + M 4 p). Since

{ve} €1, , we have

I;(el'm) Esne—inw — Zefa‘nw Zvn—ksk .
—0

n=() n k=0
Similarly,
. M ) @ ) n
Vie™) Z e e = Z e Unei(@i—1) ar
n=0 n=0 k=0

in which

(@r-1)ar = Q-1 E=M

=) E>M

and finally, since {wy} e l; ,

Wi(e'™) :ZI[,G—M 3, = ge_"'” ; wor(8)ar 1
where
(8)y = 6, k=M
=0, k> M.
Thus,

M n

Z e"l'ﬂhleu = geﬁi"@ }.-Zo wn—k(sk),\!

n=10

-] n
+ Z e " Z VneilPr—1) ar
A0 k-0

-] n
+ 2™ D v
k=0

n=0

for all w e [0, 27]. Since
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forn=0,1, ---, M we have*
en = Z Wn—rk ak + E un—kwk—l (25)
k=0 k=0

forn=0,1, - -+, M. This completes the proof of Lemma 2.
Lemma 8: If (19) holds forn=10,1, --+, M, then

(i, gf’»—m-: 2)‘§(§Henll”)§+(:f_ju :Z_;wn_k A ,); (26)
and
(i) s(E] Eoa )+ (E] S [} 0

Proof of Lemma 3:

Inequality (26) or (27) follows from (19) by two applications of
Minkowski’s inequality. We leave the details to the reader.
Inequality (27) is used only in the proof of Theorem 2.

Lemma 4:
M n 2 . M
Dl X wew || = max | WE™)[F 2| 6"
n=0 k=0 Osws2r n=0
Proof of Lemma 4:
By Parseval’s identity,
M n 2 1 27 M , n 2
E D Wai & = o= 2e D W b || dw
n=0 k=0 2w Jo n=0 k=0
1 2x M . n 2 _
= 2—7; . Zﬂ:}e ran g w,,-.,(&k)M dw
in which
(5k)u = &, k = M
=0, E>M.
Therefore,
M n 2 1 2x ) . n 2
Z Wo—g O = - E e " E Wi (86) ar dw.
n=0 k=0 2r Jo n=0 k=0

* We could have obtained (25) from (20) directly using standard z-transform
theory, if we had introduced further assumptions which guarantee that the se-
quences {yn}, {z(nh)}, and {pr1} are transformable. However, this would have
complicated the statement of our results and would have weakened them in a non-
trivial manner,
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But since {wy} e I,

o0

n 0 M
Z e—t'um g wn—k(ak),u — ZO e—fwnwn Z e—iwﬁ 5;;
- =

n=0 k=0

I

M
W) 3 et s,

Thus,
M n 2 1 2r . M A 2
Z Wh—p 6;, g "f W(e‘w) Z e—‘mk 6;,; dw
n=0 =0 2 0 k=0
. 1 27r M . 2
< max [WE™) Po- [ | Zet o || do
Osws2r 2r 0 k=0
A M
= max | WE™) [* 2 || & |I°
Dsws2x k=0

which proves Lemma 4.

Lemma 5

1A

(Snar) s 06 —o+0(S e ).

Proof of Lemma 5

We shall prove that

6] £ [BB—a +v]le]l
forn=0,1, ---, M.
By definition
“ 5“ H = H f(ﬂ:ﬂ ,ﬂh) - f(yn rnh) - %(ﬂ + B)(xn - yﬂ) “‘

Let g(a) = flax, + (1 — a)y,, nh] for a € [0, 1]. Then
dg

0 = f'lax, + (1 — a}y, , nh](z, — y.)

in which f[ax, + (1 — a)y,, nh] denotes the Jacobian matrix of
f(=, t), evaluated at * = az, + (1 — a)y,, t = nh. Now, since q(1) —
q(0) = f(xn, nh) — f(yn, nh), we have

j; %da = fx. ,nh) — f(y. , nh).
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Therefore,

[| 6. || = H fol {f'laz, + (1 — @)y. , nh] — (@ + B)1y} da(x. — ¥a)

in which 1y denotes the identity matrix of order N.

For H an arbitrary N X N matrix, let || H || £ (largest eigenvalue of
H*H)} in which H* denotes the complex-conjugate transpose of H
(i.e., let || H || denote the ‘“‘spectral norm” of H). Then

HmHéHfﬁwm+u—mmm%%@+W““
Al — | e
< f [| f'laz, + (1 — @)ya , nh] — $(a + ALy || da || e ||.

With {f'}s and {f’}, , respectively, the symmetric and antisymmetric
parts of f', we have

I1f = 3+ B)1x || = || {f'}s — 3@+ 81y || + [ {1 |l
For each @ ¢ [0, 1], there exists’ an orthogonal matrix T, such that

T (f}sTi' & D = diag (1, {2, --- {~) in which, since {; is an eigen-
value of {f'}s,

e =8

forj=1,2 -+ ,N. Using || T, || = || T7' || = 1,
(| {f'}s — 3+ 81y || = || TT" DT\ — 3@+ AT:'T ||
= | 77°D = 3+ BT - Ty |
s |77 D = 3+ ALy [ Ty ]
§m?x|§'i—%(a+ﬁ)
< 46 — o). (29)

Thus, || f — §a@ + By || = 38 — a) + || {F1all.

Consider || {f'}4||. For each a & [0, 1] there exists’ an orthogonal
matrix T, such that T,{f'},T;' = S is a direct sum of 2 X 2 block
matrices of the form
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and, if N is odd, and “1 X 1 matrix” containing the zero element.

Clearly,
2 7
BB, = [bf 0 J
0 b}

S*S is a diagonal matrix, and its largest element is not greater than 2.
That is,

[l =1 T'8T. || £ || S]] = v,
and consequently
[1f" — 3@+ B)1y|| =3B —a) +v (30)
for all a ¢ [0, 1]. Finally, from (28) and (30)
H 6n H —S_ [%(B - OC) +7] H €n H‘

At this point we have proved that with p as defined in Section 2.3

(] Zoe ) sasa(Snerr). o

n=0 n=0
We now need the following result.

Lemma 6.

M

>

n=0

" 2 M
S st || 2 min 176 1 3 (Lo |1
=0

k=0 NSwsS2r
Proof of Lemma 6:

Consider 8 £ Y7 || 35, v.sci ||¥, with the ¢,'s N-vectors. Choose
Cas1,y Carea, + -+ 8O that

vt =0, n=(M+1).
k=0

This is possible since v, # 0 [v, = lim V(2)]. Then

z—

2

S = Z: Z U, 1 Cp

n=0 k=0 (32)
1 2x w ) n 2

= o J Ze_”"" Ev,,_kck dw.
< Jao u=0 k=0

Under the assumption that

et 5
2 el < =,

k=0
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we can write

Z ~ien ZU,‘ wr = Ze_""' Ee_.mkc (33)

n=0 n=0 k=0
in which the last sum over k is interpreted as the usual limit in the
mean. From (32) and (33)

— _1__ - ie—iunv ie—-lmk : Cd
2w Jo n=0 e
1 27 0 i 2
> min |F(eiﬁl) |—2 f Ee—twkck de
DEws?2r 0 k=0 (34)
= min |FE™) [ Z e II?
0=sw=2r
2 min |FE™) [ E e (I
NsSws2r
We now prove that
2 llell* < .
k=0
Let
= Z vn—kck ] n g O
k=0
Of course: q, =0forn= (M + 1).
Let K be an arbitrary positive integer. Then
K :
E —inw Zvﬂ—kck — Ee—ﬂnmgn .
n=0 k=0
With
(cr = G, k=K
=0, E> K
we obtain
o n ) n K
Z e E Vo-ilC)x — Z e " Z vaile)x = E e " qn .
n=0 k=0 K+1 k=0 n=0
Therefore,

> [1 = 3 [ - 3+ Bhbie ]

©

Z e " g voile)x + F(em) § 3Himq'1 . (35)

KE+1
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The first term on the right side of (35) can be written as

E e_""’k dk .

K+1

Thus,
K K . o0
2 2
el s Zllell+ 2 [l dll
k=0 k=0 K+1

1 21}

2T 0

2
dw,

K
F(esw) E e—"u.nq“

n=0

from which we obtain

LY "
2 e |l
k=0

IIA

K
max | Fe™) [* 20 || g |I*
OSsws2r n=0 (36)

IIA

max | F) [* 3 || 0 |I*

Osws2r

Since (36) holds for all K > 0, we have completed the proof of Lemma
6.*
Inequality (31) and Lemma 6 prove Theorem 1.

Proof of Theorem 2:

By Lemma 3 [inequality (27)], Lemma 4, and Lemma 5 of the
preceding proof, we have

(Ser) s l(Stetr) + (5

n 2\
g Vn—kPi—1 ) . (37)

Furthermore, by essentially the same argument used to prove Lemma
4, we find that

M n
(E kE VUn—kPr-1
=0

n=0
Therefore, with p < 1,

(Shetr) s a= o7 max 17 1 (5 llonn 1)

We now prove that sup || ¢a-1 || < « impliessup || ¢, || < «. Assume
nz0 nz0

) s max 1me (S 1o 1)

0Ssw=2r

* Alternatively, we can show using (35), that only a finite number of ci are
nonzero.
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that sup || ¢, || < «. Let

nz0
n
= Z Un—rPr-1 -
k=0

Then we have

e,.=n2wn—»6;-—|-u,., n=2~0,12 -+ M (38)
& = [y , kh) — f(ye , kh) — 3(a + B) (@ — ys) (39)

in which, since {v,} €1, , sup || w. || < .
nz0

=can

There exist positive constants ¢, and ¢, such that |w,| = c.e
for all n = 0. By continuity, since p < 1, there exists a ¢ € (0, ¢) such
that

pe = max | WE“™) [ 3B — o) +7] <1

Osws2r

in which of course

W(eim—a-) — Z w"e—(fw—c)n.
n=0
From (38) and (39):

é, an_ksk-i_ﬁ-", ﬂ=0,1,2,...‘]‘f
k=0

B, = J(zx , kh) — 1@ , kh) — 3 + B)(& — Tu)
where &, = €™, , W, = €W, , Uy = €Uy, 8 = €70, T = €T, Go =
ey, , and (g, kh) = e™f(e""g, kh) for all N-vectors g.
The Jacobian matrix |’ of { is related to the Jacobian matrix of f by
f'(q, kh) = (™™ q, kh)

from which we see that ' satisfies the assumption concerning [’ relative
to the numbers a, 8, and v. Therefore, by the proof of Theorem 1,

(iilénw) (1= po)” (Znu.. )

n=0

forall M = (p + 1).
Now,

(Eair) = (e ) s sop i (&)

n=0 n=0
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eaa(,\:“) _ 1)}
= su U (—~—
up || . || (5
o(M+1)
= su u S o—
- nEI: ” " || (82’ -

1}
and so,
M } et
(Z%I é. ) = (1 — p) lms:gg [ un || (40)

forall M = (p + 1).
From (38):

M
Z War—x Ok
k=0

We shall now use (40) to bound the first term on the right side of (41).
Using the Schwarz inequality,

[lex || = +5:;13Hu,.” (41)

1

M M -
} Z Wr—p Ok =" | Z War—k Ok l
n=0 k=0 49
) e @
é e—w.\r(;n I'wn Ez) (é H ak Hz) .

By the proof of Lemma 5,

IA

18] = BB —a) + ]l
which leads to

M
Z War—p Ok
k=0

e’ 1 -1 = 2}
§W[§(ﬁ_ﬂ)+'¥](1_ﬂa) sg;:l[u,. > ).

(E n=0

Since o € (0, ¢,) [see the paragraph below (39)], |@.|* ¢ I, , and therefore,

A
Z Wy O
k=0

Finally, from (41) and (43), we have sup || e, || < o, which completes

nz0

sup < =, (43)

M>(p+1)

the proof of Theorem 2.
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IV. A CONDITION FOR THE SOLVABILITY OF (2) FOR Uny1

The problem of solving (2) for ¥,+1 is that of solving the equation

y + hbf(y, 1) = g (44)
for y, with g a given N-vector. We write (44) as
Qu=y (45)

in which the operator @ is defined by the condition that Qv =v +

hb_1f (v, t) for all real N-vectors v.
We prove below that (with (-,-) denoting the usual inner product of

real N-vectors) :
Qe — Qus v ¥ — U Z ki [ % — s I (46)
| Qe — Qus || = ka |l %o — ¥ |l (47)

for every pair of real N-vectors y, and ¥y, in which k; = (1 + hb_1e)
if by =0,k =14 hbgif by =0: and ke = {1 + h | b4 |-
[max (||, |B]) + y]}. Since k2 < o, according to a special case of
Theorem I of Ref. 8,if k; > 0 (e.g,,if b_; = 0and 1 + hb_1a > 0),
then (45) possesses exactly one solution which can be determined by an
iteration procedure that is only slightly more complicated than the
usual procedure? (which is valid only under much stronger conditions

onh).
To derive (46), let

q(n) = . + 1 — Dy + hbflny. + A — ys , 1]
for € [0, 1]. Then
() = Wa — ) + hb_of [nye + (1 — Dy, UYa — ¥s),

and so

Qu. — Qyy, = f q'(n) dn
’ (48)

= [t R+ (4= o A1 — ) d.
Thus,
Qo — Qv » ¥ — W)
[t B+ 0= ) = 0, = 00)



ACCURACY OF NUMERICAL SOLUTIONS 1265

Il

[0+ b+ (= o D3 = ), @ — ) d

Il

[l % =y I’
+ hb-—l j; (f.’Q[T’J?}n + (1 - 71)!!:; 1] !](yn - yb)l (ya - yb)> d’?:

in which f# denotes the symmetric part of f’. Thus, since the eigenvalues
of f£ are bounded from below by «, and from above by 8:

@ — Quo va—u) = A+ hbod) ||ya —w ), b 20
= (14 hboaf) |l ye —w |, b0 S0
Consider now the derivation of (47). By (48),
|| Qua — Qus ||
=Lt rrt + @ = s 0 dnt = )
= H fo‘ {1y 4+ hboif'[nya + (1 — Mys , D dn ||| s — ¥e ||

< [ 10+ B+ @ = w0l dn e = ]
But, with f the antisymmetric part of f,
| 1y 4+ Bb_of'[nye + (1 — Dy, 2 ||
LA by [ [ FIye + @ =y, 8]
LA R ooy [ fs [T+ R ban |- F2 ]
L4+ h by [max(lal, [B)+h[b]nr.

A lIA

1A

Therefore,

1 Qu. — Quo || = {1+ k| by [ max (Ja |, [B) + 7]} [[%. — u |l
which is equivalent to (47).

REFEREN CES

1. Ralston, A., First Course in Numerical Analysis, McGraw-Hill Book Co., New
York, 1965.

2. Hamming, R. W., Numerical Methods for Scientists and Engineers, McGraw-
Hill Book Co., New York, 1962.

3. Henrici, P., Error Propagation for Difference Methods, Wiley & Sons, Inc.,
New York, 1963.



1266 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1967

4. Hildebrand, F. B., Introduction to Numerical Analysis, MeGraw-Hill Book Co.,
New York, 1956.
5. Rall, L. B. (editor), Error in Digital Compulation, Volumes 1 and 2, Wiley &
Sons, Inc., New York, 1965.
6. Sandberg, I. W., On the Theory of Physical Systems Governed by Nonlinear
Functional Equations, BS.T.J., 44, May-June, 1965, p. 871.
7. Macduffee, C. C., The Theory of Matrices, Chelsea Publishing Co., New York,
1956.
8. Sandberg, I. W., On the Properties of Some Systems that Distort Signals—I.
B.S.T.J., 42, September, 1963, p. 2033.



