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This paper deals with the analysis of data from the omnidirectional
high-energy proton detector on the Telstar® 1 satellite. The main accom-
plishment is the development of relatively simple (empirical) mathematical
models which give a statistically accurale representation of the measured
spatial distribution of intensity of protons wilh energies belween 50 and
130 MeV.

These models depend upon the fitting of 8 (or 9 or 10) coefficients based
on samples containing approximately 1000 of the nearly 80,000 experi-
mental observations. The nature of the model for the average omnidirec-
tional counting rate permals its closed form transformation to the equivalent
equatorial pitch angle distribution.

Sufficiently accurate fits were achicved so that the residuals’ (equal to
observed minus filled) could be productively examined for possible depend-
ence on variables other than the two magnetic coordinates used in the
fitting. One consequence of this was the detection of instrumental suscep-
tibility lo temperature and bias voltage changes, which led to an objective
partitioning of the data.

The present paper has several evolutionary aspects: In particular, a
series of one-dimensional fits was employed as a base for developing a
two-dimenstonal model; a preliminary analysis of all the data was used
to guide the rejection of outliers; a first two-dimensional fit to all the data
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led to a data-independent basis for partitioning the data; the mode of
selection of a sample of data, to which the two-dimensional model was
filted, changed as deeper insight into the importance of this 1ssue developed;
and, after a very satisfactory fit to the data was attained, the model was
improved by specialization and reparameterization so as lo overcome some
statistical defects and to achieve greater physical meaning.

The data cover the time period between July 1962 and February 1963,
and the spatial region bounded by 1.09 R, = R = 1.95 R,and 0 =\ < 58°.
Fluz maps having a relative accuracy of about two percent are derived
from the fit and presented. The temporal behavior of the intensity s ex-
amined and some changes are noted. The maximum value of the omni-
directional fluzx of protons with energics between 50 and 130 MeV s found
to be [5.7114 X 10° protons/cm® sec at L = 1.46 on the magnetic
equator, in good agreement with other erperiments. Relative: flux values
and energy speclra are consistent with the generally accepled picture of
the proton distribution.
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This paper deals with the analysis of data from the omnidirectional
high-energy proton detector on the Telstar® 1 satellite. The main ac-
complishment is the development of a relatively simple (empirical)
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mathematical model which gives a statistically accurate representation
of the measured spatial distribution of protons with energies between
50 and 130 MeV.

The Telstar® 1 satellite was launched into a 45°-inclined orbit with
an apogee of 5600 km and a perigee of 950 km on day 191 (July 10),
1962. The period of precession of the apsis was 180 days. The satellite
was instrumented to measure fluxes of energetic particles; in particu-
lar, counting rates of protons with energies above 50 MeV were re-
corded. Two thousand hours of telemetry was received during the ac-
tive life of the satellite, which terminated on day 52 (February 21),
1063. The satellite and associated systems have been described in de-
tail.* The particle-detection instruments have been documented® and
some of the experimental results have been presented.™ **

The above-mentioned presentations of information concerning the
earth’s radiation belts have been principally graphieal in format, ow-
ing to the complexity of the belts and the limited understanding of the
details of the processes affecting them.

An accurate analytical representation of the data would enable con-
venient interpolation, extrapolation, and transformation. Thence it
would be practical to make extensive comparisons with the results of
other experiments and with various theoretical predictions and to sum-
marize, analytically, such features as the equatorial omnidirectional
counting rate and the approximate size of the equatorial loss cone. In
addition, an empirical mathematical model would facilitate the study
of temporal fluctuations in various regions of space. Of course, a good
analytical representation, even though empirical, may also stimulate
deeper physical insight and theories.

The present study was directed toward the development of a math-
ematical function which would, when fitted to the data, provide a con-
venient, conecise and precise summary deseription. The mathematiecal
model (s), which are herein presented, were empirically evolved, using
the knowledge that the intensity distribution of these protons is, in
the main, not rapidly variable in time. Even more specifically, the
assumption has been that fluctuations in observed counting rates at a
fixed point in space relative to the earth are independent random vari-
ables. Further, the main effort of the analysis has been to try to relate
the observed counting rates to a two-dimensional magnetic coordinate
system derived from three-dimensional spatial coordinates by mapping
the known earth’s magnetic field onto the field of a magnetic dipole.®

The mathematical models which are used depend upon fitting of be-
tween 8 and 10 coefficients based on samples containing approximately
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1000 of the nearly 80,000 experimental observations. The nature of
these models for the average omnidirectional counting rate permit
their closed-form transformation to the equivalent equatorial pitch
angle distribution.

The fitted models were sufficiently accurate so that the residuals
(equal to observed minus fitted) of all the data could be productively
examined for possible dependence on variables other than the two mag-
netic coordinates used in the fitting. One consequence of this was the
detection of instrumental suseeptibility to temperature and bias volt-
age change, which led to an objective partitioning of the data.

This article summarizes some of the productive aspects of the anal-
ysis of this body of data. A very large amount of “preliminary” work
is not reviewed. Though not an historieal deseription of the work, the
present paper does have several evolutionary aspects. In particular, a
series of one-dimensional fits were employed as a base for developing
two-dimensional models; a preliminary analysis of all the data was
used to guide the rejection of outliers; a first two-dimensional fit to
all the data led to a data-independent basis for partitioning the data;
the mode of selection of a sample of data, to which the two-dimen-
sional model was fitted, changed as deeper insight into the importance
of this issue developed; and, after a very satisfactory fit to the data
was attained, the model was improved by specialization and reparam-
eterization so as to overcome some statistical defects and to achieve
greater physical meaning.

Readers with specific interests may wish to consult the Table of
Contents, the summary (Section XIV) and the following overview for
guidance.

Section IT introduces the input data which have been analyzed. Co-
ordinates and notation are tabulated, the distribution of the data is
displayed, and the general quality and stability of the data are dis-
cussed. It is shown informally that the measurements may be usefully
organized in the dipole magnetic coordinate system used.

In Section III, various alternative coordinate systems and scales are
considered. The bases for choice of the 2,L coordinate system for the
independent, variables and the square-root-of-counting-rate scale for
the dependent variable are given.

Section IV brings together the ideas underlying the formulation and
evolution of the models, and gives mathematical definitions and details.
Some properties of the models which make them suitable smoothing
functions for this body of data are indieated.

One-dimensional fits to the data in each of several L-slices (an
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L-slice is a particular grouping of the data) are displayed on several
scales and discussed in Section V. It is shown that L-slice fits suffer
from fundamental deficiencies, in addition to being inconvenient to
work with. The results of the L-slice fits are used to lead to a two-
dimensional model.

Section VI contains the treatment of the preliminary fit of a two-
dimensional model. This fit is of good quality and provides residuals
which are used to help identify and eliminate extraneous sources of
variability in the data and to serve as a basis for more refined sample
gelection.

The treatment of the two-dimensional fit to the data after it has
been partitioned to reduce instrumental effects appears in Section VII.
The method of sample selection is important, and some algorithms and
their influence on the resultant fits are considered in Section 7.1. The
advantages of selecting a sample on the basis of a preliminary fit are
diseussed. The fit itself is described and evaluated in the remainder of
the section.

A more detailed statistical eritique of the fit discussed in Section
VII is contained in Section VIII; in particular, some remaining phys-
ical and statistical defeets are pinpointed.

Section IX deals with a modified version of the model, which elimi-
nates the remaining defects, and gives the results of fitting the most
satisfactorily parameterized model of the proton distribution.

Residuals are used to study temporal effects in Section X. An in-
crease in intensity near L = 2 is noted during October, 1962. An upper
limit of 0.003 gauss is found for the diurnal variation of the earth’s
magnetic field near L = 1.5. A possible shift in the location of the
atmospheric cutoff is examined.

The behavior of the radiation belt near the top of the atmosphere is
the subject of Section XI. Although the data do not allow the position
of the low-altitude cutoff to be accurately determined, the qualitative
behavior precludes a simple atmospheric cutoff mechanism.

Section XII is devoted to a comparison of the Telstar® 1 results,
presented as flux maps, with those obtained on Injuns 1 and 3, Ex-
plorers 4 and 15, and other satellites. Absolute flux values agree to
within a factor of 2 in most cases, which is as well as can be expected.
Very good agreement exists eoncerning the behavior of the intensity
in the equatorial plane, on L-shells, and near the top of the atmos-
phere. Experimental results regarding the equatorial pitch angle (see
Fig. 1) distribution are found to agree well with each other, but differ
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appreciably from the published results of theoretical calculations.

Section XIII gives brief consideration to possible directions in which
this work might be extended: improving the fit to the Telstar® 1 high-
energy protons still further; approaching model development differ-
ently; employing the data more fully; and encompassing other more
complex bodies of data.

Seetion XIV contains a brief summary of the results and Section XV
contains acknowledgments.

Appendix A provides a detailed description of the particle detector
and its ealibration.

Appendix B gives some statistical background and details of the
analysis, and Appendix C discusses statistical measures of the good-
ness of fit of the model over all the partitioned data.

MAGNETIC B = 0.0266 GAUSS
NORTH

COS ap=0.5

ag = 60°
)
2=
ao
S
N
’/"
1 1
3.0 3.5Rg
Bg = 0.01995 GAUSS

Fig. 1— Magncetic coordinates of the point P. The spiral is the orbit of a
particle trapped on the magnetic line of force L = 2.5 and mirroring at B =
0.0266 gauss. The equatorial piteh angle, ao, is the angle between the veloeity
vector and the magnetic field vector at the equator.
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II. THE DATA

The data which are studied in this paper were obtained with a
detector on the Telstar® 1 satellite which measured protons with energies
greater than 50 MeV. The sensitive detecting element is a semiconductor
diode developed specifically for satellite experiments.” The effective
geometric factor, g, of the detector depends upon proton energy, but
over the region energy between 50 and 130 MeV the average geometric
factor, g, is relatively insensitive to the energy spectrum and an ap-
proximate value of 0.143 cm® steradian has been selected. These con-
siderations are discussed in detail in Appendix A. The response of the
detector is also dependent upon both temperature and electrical bias
because of changes in the effective thickness of the active region of the
detector. These effects are discussed in Section 6.8.

The primary input to our data reduction process consisted of: the
telemetry record of the number of counts measured by the detector
in an 11-second counting interval once every minute; the time at which
the data were recorded (inserted by the recording station); and the
ephemeris of the satellite position obtained from tracking data. These
are supplemented by the satellite spin-axis orientation obtained from the
mirror flash data® and by telemetered measurements of the satellite
skin temperature near the detector and of the detector bias voltage.

During data reduction, the square root of the counting rate was
computed for each recorded particle-counting interval and associated
with the following information: date and time, geographic position,
position in the earth’s magnetic field, orientation of the detector relative
to the magnetic field, bias voltage, and skin temperature.

The model developed in the present paper is based on the use of
a two-dimensional magnetic coordinate system, in which the earth’s
magnetic field is mapped onto an axially symmetric dipole field using
the adiabatic invariants of particle motion.” Any of a number of equiv-
alent pairs of magnetic coordinates, including the B,L; R,\ and z,L
sets'® may be used to locate position in this dipole field. Briefly: The
magnetic shell parameter, I, specifies a particular line of force (about
which the trapped particle spirals) by the radial distance to the line
in the equatorial plane of the dipole measured in units of one earth
radius (see Fig. 1); position along the line of foree is specified by elthm
the magnetic induction (field strength), B, or by z, where x = (1— —B,/B)!
is a convenient variable in the equations of the dynamics of charged
particle motion. (B, is the magnetic induction at the equator on the
line of force in question.) Magnetic dipole polar coordinates R and ),
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CB

A=60°

45°

MAGNETIC INVARIANT EQUATOR

Fig. 2— The spatial distribution of data for I < 3 in R, \ coordinates. Every
twentieth point from the L-ordered data is plotted.

where R is the radial distance in earth radii and A is the latitude angle,
offer a sufficiently close analog to geographic coordinates to be con-
venient in many circumstances. The choice among these sets is dis-
cussed in Section III, as are the reasons for choosing the square root
of the counting rate as the scale for the dependent variable.

The coordinates and variables, together with other symbols used
in this analysis, are listed in Table I under the following headings:
Radiation Intensity, Position and Orientation, Instrument and Energy
Spectrum, Mathematical Model, Statistics, and Other. Summary in-
formation concerning units, constants, derivations, and sources is
included.

The satellite was confined to the volume of space {1.09 R, <
R=195R,,*0 =\ = 358°. For {L > 3, R <195 R,}, the average
counting rate is very nearly zero, and these data were not examined
further. About 5 percent of the 50-130 MeV proton data for L < 3
were associated with noise bursts which affected adjacent telemetry
channels; these data were discarded. The study described below is
based on the remaining 77,649 observations.

The spatial distribution of the data is indicated in Fig. 2 which is

* R. = earth radius.
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a plot in B\ coordinates of the position of every twentieth point from
the L-ordered data. Although data were not acquired continuously
during the 226 days that the satellite was active, there are no time
gaps in the data longer than two days in duration.

Fig. 3 is a plot of bands of constant counting rate made by plotting
the R\ coordinates at which certain specified numbers of counts were
recorded during 11-second counting intervals. The data in Fig. 3 cover
the entire seven-month life of the satellite. The narrowness of the con-
tour bands demonstrates that the data are exceptionally well-behaved
in both time and space, and that one may reasonably hope to describe
radiation intensity in terms of R,\ coordinates or their equivalent.

Among the various sources of error in the data are: noise present
in the received telemetry signal or introduced during the recording and
processing of the telemetry; errors in the time as recorded by the
ground station; errors in the satellite ephemeris; differences between
the real magnetic field of the earth and the values of B and L calcu-
lated from the coefficients in the computer program INVAR (see Table
I); and instrumental effects. In addition, one expects statistical flue-
tuations in the measured counting rate at a fixed position. The im-
portance of these sources of error is discussed later.

cB

MAGNETIC INVARIANT EQUATOR

R

Fig. 3— Bands of constant numbers of counts in 11 seconds in R,\ space:
Band a, 4; Band b, 32; Band e, 127-129; Band d, 254-258; Band 3, 508-516 counts.
All the data from the seven-month period are displayed.
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III. CHOICE OF THE PRINCIPAL VARIABLES AND THEIR SCALES

The current state of knowledge of the earth’s radiation belts sug-
gests that the spatial distribution of high-energy protons may reason-
ably be organized on the basis of a two-dimensional magnetie coordi-
nate system, except perhaps at very low altitudes near the South
American magnetic anomaly, where longitude also becomes important.
Telstar® 1 data plotted in Fig. 3 indicates that the observed counting-
rate data does indeed depend principally on the magnetic coordinates,
R and A. The coordinates R\ are defined in terms of the mathemat-
ically equivalent pair B,L.® A third equivalent set consists of L to-
gether with the coordinate z, suggested by Roberts,?® defined in Table I.

We have primarily employed the x,L set in this study because of
the following considerations: In the adiabatic theory, the mirror points
of particles do not migrate between magnetic shells.!* Within any shell,
the coordinate x is approximately linear in A for A < 30°, and thus the
near-equatorial data is not “crowded” into a small interval of the
coordinate, as is the case for B. Moreover, we have been able to de-
velop simple functional representations of the data in terms of x and L.

The flux of particles is the variable of greatest physical interest for
comparing the results of different experiments, caleulating physieal
effects of the radiation (such as radiation damage to devices in pro-
posed orbits), deriving an energy spectrum from experimental meas-
urements, examining the implications of various source and loss mech-
anisms, ete. However, the flux is not measured directly and requires
for its calculation knowledge of the energy spectrum of the particles
and of the energy dependence of the geometrie factor of the detector,
Even in the present circumstances where the econversion is (under the
assumptions of Appendix A) quite insensitive to these, we prefer to
carry out the bulk of the data analysis in terms mathematically equiv-
alent to the directly observed counting rates.

From among the possible representations of the counting rate in-
formation (including counting rate, log counting rate, and square root
of counting rate) the square root of the observed counting rate, ¥, has
been selected as the dependent variable. On the hypothesis that the
number of counts in a given 11-second counting interval at any given
position in space is a random variable with a Poisson distribution, it
can be shown that the variance of Y is approximately constant, inde-
pendent of its average value (see Appendix B.2). The least squares
criterion has been used in all the estimating procedures; that is, coeffi-
cient estimates have been selected so that the sum of squares of dif-
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ferences between observed and fitted values is minimized. The choice
of the square root scale, ¥, as the scale on which to represent the
counting rate data makes troublesome differential weighting of the
data in the least squares fitting unnecessary. Similarly, plots of ¥
versus various variables are convenient since the scatter in Y is ap-
proximately independent of the value of Y. In fact, the square root
transformation will make the variance of the observation approxi-
mately independent of its average value whenever the variance is pro-
portional to the mean. Thus, the procedure is more robust than the
assumption of a Poisson distribution, for which the variance equals
the mean. Further discussion and detail is given in Appendices B.2
and C.

The results were restored to counting rate and the flux was calculated
using the best estimate of the average geometric factor, 7, (see Appendix
A) to facilitate the discussion of the physical significance of the meas-
urements,

1IV. THE EVOLUTION OF THE MODELS

4.1 General Approach

This section provides a summary overview of the evolution of the
models, the details and accomplishments of which are elaborated in
the following sections and appendices.

The approach to model development in this study has been largely
empirical. Theoretical physics considerations are currently too com-
plex and speculative to do more than serve as a general guide and
stimulus. We have proceeded on the presumption that an adequate
model for the spatial distribution of the high-energy protons ean be
based on the mapping of the earth’s magnetic field onto a two-dimen-
sional axially symmetric dipole field, expressed, for example, in the
coordinates x and L. This is supported by the plots of Fig. 3, the suc-
cessful polynomial fits on L-lines of MeIlwain® Valerio,* and Fil-
lius,*® and by the results of the present study.

The ultimate justification of the mathematical models developed
herein is that, when appropriate estimates of coefficients are inserted,
good fits to the data are obtained. Various other mathematical, phys-
ical, and statistical considerations also provided guidance and evalua-
tion.

The evolution involved successive interactions with the data and
iteration on models. Roughly, the main stages included: grouping the
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data into L-slices; inferring a mathematical function having adjustable
coefficients which would fit a selected series of L-slices; developing a
mathematical function to describe the dependence of the L-slice coeffi-
cients on L; thence fitting the two-dimensional model so-defined to a
sample of the data; using this fit to screen outliers, to detect instru-
mental effects and, after partitioning the data, to select a representa-
tive sample of partitioned data for further fitting; after obtaining a
very good fit to the partitioned data, some remaining physical and
statistical defects of the model were overcome by a reparametrization
and specialization. Further generalizations of the model were also
tested.

4.2 The L-slice Model

As a developmental operational procedure (encouraged by the L-shell
orientation of the adiabatic theory'') the data were grouped into a
series of narrow bands according to L values (e.g., 1.849 = L = 1.851)
and plotted versus z. Retrospectively, there is every reason to believe
that an initial approach based on grouping the data into z-slices would
also have led to an effective analysis (see Section 13.2). Various fune-
tional forms, having adjustable coefficients dependent on L, were tested
for adequacy of fit to the L-slices.

Initially, we employed the functional form

0 (x > z.),

where A, x, and 8 are fitted coefficients for each L-slice, and

]r(l — :52)-=|:1 - (I—“’“:)zi]m (z < ),

Gx;z, S) = l 2)
0 (x > z.).

For this body of data from the region {R < 1.95R,,1.15 = L = 3. 0},
we have found this ¥, () function provides an adequately ﬂex1ble model
on Leslices, for appropriately fitted values of the coefficients 4, .,
and S. In this representation for given fixed L, the quantity A® may be
interpreted as the average equatorial omnidirectional counting rate,
since z = 0 on the equator, x, represents a “cutoff’” value for z, 1e
the cosine of the equatorial pitch angle corresponding to the “loss cone”,
and S has the effect of a shape factor in the y,z dependence.
The analysis using this y,(z) model is described in Section V.
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4.3 Dependence on L

The vy, (x) model was fitted to a series of L-slices, obtaining fitted
values of 4, x, and S. These were each plotted against the nominal
(mid-range) L value for the slice and a reasonably smooth variation
with L obtained.

Thence we inferred the following functional dependence of the L-
slice coefficient estimates on L:

S = S(L) = s, + s,L, (3)
7 = 2(D) = A1 - (%)[4 i ’ij}’ @)
R. = R(L) = Ly + r(L — L) + (L — L)* + (L — Lo)*, (5)
a,(L. — L)
A= apy = et ey DD (®)
0 (L < L),

where sy, 81, 71, 72, 13, @1, s, ag, n and L, are fitted coefficients.

Equation (4) simply expresses the mathematical relationship be-
tween R (or R;) and x (or x.) in the magnetic dipole field (see Table
I). The coefficient L,, which oceurs in A’(L) and z, (L), may be inter-
preted as the lower bound of the L shells on which protons with ener-
gies above 50 MeV were measurable. The quantity R, (L) is such that
R.(L) — 1is the equivalent dipole altitude at which the counting rate
falls to zero.

4.4 A Two-Dimensional Model—Model T

The conjunction of (1) to (6) defines a two-dimensional model, re-
ferred to henceforth as Model I,

Y, L) = A(L)-G'(x, z(L), S(L)), )

where G is essentially the function @ of (2), with z, and S explieitly
dependent on L.

Though empirical considerations mainly guided the choice of these
functions, some physical and mathematical properties influenced the
choice. In the present case, in which the geometric factor of the de-
tector is considered to he independent of the energy spectrum (see
Appendix A), [y(z, L)]? transforms in closed form to the equatorial
pitch angle distribution, giving?®
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2)28(L)
o 1) = 2 z.(L) (8)
o g 2me (L)BG3, 1+ 28(1)

where j(po, L) is the predicted equatorial unidirectional flux (protons/
em? sec ster) at equatorial pitch angle ap = arc cos pg, and 8 is the
beta function,

B(p, q) = j: w1 — w7 du. ()]

In addition 3’ (x, L) has good boundary behavior. The derivative at
the magnetic equator, dy’(0, L) /dx, is 0, which provides continuity.
When 3 < S(L) < %, then ay'(x., L)/dx = —oco and o[y (x., L)]?/
9z = 0. The estimated values of S do satisfy this constraint in the
present case. The desirable consequences of this behavior of the de-
rivatives will be discussed in Section V. The function ¥’ (x, L) gives
smooth interpolation over regions sparse in data, and does not have
any of the wild fluctuations often associated with polynomial fits.

The analysis of the data using Model I is deseribed in Section VI.

4.5 Summary Uses of Model I.

The unspecified coefficients of Model I were estimated by nonlinear
least squares fitting to a sample of about 1000 observations from the
complete body of data. Thence this fit of Model I (the CB fit) was
evaluated relative to all the data and to auxiliary variables, such as
time, which were not included in the model. Outliers were thereby de-
tected and screened. An instrumental effect was uncovered (see Section
6.8), and this led to an objective partitioning of the data, yielding a
subset (HTB data) for further analysis. The CB fit of Model I was
also used to specify a representative data sampling procedure for fur-
ther fitting to the HTB data.

Though Model I produces a very good fit to the HTB data (see Sec-
tion VII), it has certain physical and statistical defects. Specifically,
though the quantities 4 and z, in the L-slice model have a direct phys-
ical interpretation, most of the coefficients in y'(z, L) do not. Addi-
tionally, the estimates of the coefficients in A’(L) turn out to have
exceedingly high statistical correlations and the model y’(z, L), as a
function of the coefficients, exhibits marked nonlinearities even in a
close neighborhood of the least squares estimates (see Section 8.5).

Therefore, after clarifying the character of the data and obtaining
a good fit, attention was given to additional improvements of the
model.
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4.6 A Modified Model—Model 11

The statistical difficulties of Model I were entirely overcome by em-
ploying a specialized version of A’(L), defined below. Furthermore,
this specialized model, Model II, retains all the desirable properties
of Model I while providing both aesthetic improvement and greater
physical interpretability.

Model IT is defined by

y'(x, L) = A”(L)-G"(x, z.(L), S(L)), (10)
where (7 is asin (2), but with S(L) = s,, and
[ A»(]-‘ - Ilu) ([ - L)
(n — 2) 2 (L, + L — 2L)/2]" L= h
AV(L) = I L, — L, =
(L) 1 , (Ly ) + v @ — Ly (11)
0 (L < L),

where 4,, Ly, L, and n are the coefficients to be estimated.
A” (L) is a special case of A"(L) and relates to it by the following
transformations:

Ly = L,
=1
ay = 2L, — L, (12)

ay = 2"7'(n — 2)(L, — Ly)’
a, = 2" A,9(L, — Lo)"".

Indeed, Model II is essentially defined by the following nonlinear con-
straint imposed on Model 1:

a, =2""(n — 2)(Ly — a5)". (13)
The coefficients of A”(L) in Model II have the following physical
interpretations:

L, (as before) is the smallest value of L such that high-energy
protons are measurable by the instrument;

A, is the square root of the maximum counting rate of high-energy
protons in the radiation belt;

L, is the value of the magnetic shell parameter (on the equator,
2 = 0) at the highest radiation intensity;

n may be interpreted as a shape factor for the equatorial (counting
rate)! funetion, A”'(L).
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The model A”(L) has the form of a product, with the maximum
value, 4,, being multiplied by a factor which decreases as L departs
from L, in either direction. Note that the factor multiplying 4, is
dimensionless.

The other fitted coefficients of Model II are s, which is a shape fac-
tor for the dependence of (counting rate)? on x at constant L, and 7y, ra
and 7y which, with Ly, define the cutoff function . (L).

The analysis of the HTB data using Model IT and comparisons of
Models I and I are considered in Section IX.

1.7 Generalizations

The previously defined models may be regarded as speeial cases of
Model III defined by

Y, L) = A"(L)-G"'(x, x (L), M(L), P(L), Q(L)), ~ (14)
where A" (L) = A’(L), defined in (6),

0 (x > z.),

2.(L) is as defined in (4), and M (P), P(L) and Q(L) involve coef-
ficients or functions to be fitted.

The function G’ is a special case of G””, in which M (L) = 2 and
()(L) = }. This permits a closed form transformation to an equatorial
pitch angle distribution. The function G” additionally constrains P(L)
= 8¢, independent of L.

The more general G in Model III can be used on L slices to de-
termine L-slice estimates of M, P, @, as well as A and x,, and these
in turn inspected to infer functional dependence on L. Clearly, this
more general form must lead to at least as good a fit as Models I or
II. Work has been done with Model III** but no important improve-
ment over Model IT was obtained for this body of data.

Neither of the fitted models 3/ (z, L) nor y”(z, L) is applicable far
outside the spatial and energy regions that include the data analyzed
here. For example, Models I and II do not fit well to the 26-33 MeV
protons measured by the Telstar® 1 satellite, nor are they suitable for
fitting many of the electron distributions. Preliminary investigations
indicate that these remarks may not apply to G”, whose additional
coefficients allow more rapid changes in curvature as a function of .

IIA

),

(15)
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We have already shown for Telstar® 2 data® that A(L) can be ex-
tended to include description of the plateau of high-energy protons
reported by McIlwain® 22 near the equator at B =~ 2.2 R,, beyond the
orbital extremes of the Telstar® 1 satellite. The extension was made by
adding a term to A’(L), (6), to give A" defined by

2
A" = AY(L) + a, exp [—g—l—;&] , (16)
where ay, a5, and L, are coefficients desecribing the equatorial distribu-
tion of the “excess” protons that give rise to the plateau. In the less
stable parts of the radiation belts the early work on empirical time
dependence presented by Gabbe and Brown® clearly requires extension.

V. FITS ON THE L-SLICES

The model of (1) and (2) was fitted to the data, on the scale of Y,
in 92 individual L-slices, using a nonlinear, multidimensional, least
squares, computer program (sce Appendix B) to estimate the coeffi-
cients and produce various statistical measures. The procedure of fit-
ting to L-slice data enabled one to test functional forms of yz(x) and
then to evolve functional forms for the dependencies of the coefficients
of the L-slice models on L.

Proceeding in this manner, however, has a number of possible pit-
falls. In particular, the estimates of coefficients within an L-slice may
be highly correlated, and the reliability of the actual values of the
estimated coefficients also depends on the pattern of data points in
the particular L-slice, e.g., whether or not there are points near x,.
Hence, the estimated values for any particular coefficient may not ex-
hibit a smooth dependence on .

The form of the L-slices whose middle values of L, called L,,, are
1.35, 1.801, 2.2015, and 1.79, respectively, are displayed in Figs. 4 to 7.
The thin solid lines in the figures are the fits to the L-slice data (mean-
ing of the dashed and thick solid lines will be taken up later). The
numerical values of the coefficients of the fits, and the widths of the
slices are given in Table II. Figs. 4 and 5 are examples of the high
quality of fit which is typically obtained for L-slices having L, < 2.

In Figs. 4(a) and 5(a), square root of counting rate is plotted
against x. One sees that the fit to the data points (the thin solid line)
is quite adequate. The cutoffs, a., are well-defined, the scatter in Y is
approximately independent of y and the data are well-distributed in a.
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8 T | { T | T
(a)
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Lm=1350
FIT TO POINTS .
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o | | 1 | | l L.
o 0.2 0.4 0.6 08
&€
80 T I T i I T
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- . —
0 | | ] | ] | \'&. Jo o
9 0.2 0.4 0.6 0.8
T

Fig. 4— Data from the L-slice centered at Ln = 135 and the results of three
fits shown on four scales.
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Fig. 4 — (continued)
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5 T ] | I 1 I T ™
(a) T.- REGION | 2 3 | als
Lm=1801 : \\ ‘
——— FIT TO POINTS '\ |
——— FroM CB COEFFICIENTS "\ ‘ ‘
1= - FROM HTB COEFFICIENTS — - 3 _
0 ! | L | I | I 1 X
0 0.2 0.4 = 06 0.8 1.0
22 T T T T T T T 1
(b)
2o L .
Lm= t80!
FIT TO POINTS .
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Fig. 5 — Data from the L-slice centered at L. = 1.801 and the results of three
fits shown on four scales. The partitioning in (a) is discussed in Section 7.1.
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TaBLE IT— COEFFICIENTS AND STATISTICS OF THE L-SLICE FITs.

L 1.35 1.801 2.2015 1.79
Lyin 1.346 1.800 2.200 1.7895
Loax 1.354 1.802 2.203 1.7905
AL 0.008 0.002 0.003 0.001
A 6.757 4.109 1.70 4,324
a(A) 0.053 0.031 0.12 0.043
Te 0,6795 0.8998 0.954 0.923
a(xe) 0.0027 0.0044 0.011 0.015
S 0.324 0.390 0.58 0.478
a(8) 0.018 0.024 0.10 0.060
umber of pts 140 129 144 65
MSE 0.1125 0.0497 0.0282 0.0478
Correlation coefficients

A with z. 0.281 0.309 0.724 0.408
A with S 0.605 0.561 0.940 0.548
z, with S 0.774 0.820 0.890 0.944

As the cutoff is sharp on the scale of y, it is convenient to have a
function which has an infinite derivative at .. Otherwise the exact
x at which ¥ = 0 may have relatively little effect on the mean square
error of the fit. This would lead to an ill-defined value for ., even
though the data allows one to evaluate the position of the cutoff quite
precisely for L values smaller than =1.9.

In Figs. 4(b) and 5(b), the counting rate, V2, is plotted against x.
The thin solid lines represent the same fits as those in Figs. 4(a) and
5(a). One finds that the position of the cutoff is no longer well-defined
on the plot. Instead the counting rate fades away as x increases. Hav-
ing the derivative of y* equal zero at the cutoff (as noted in the pre-
vious section) is suitable in this situation. The scatter in }? now
changes with 7%, and is greater for large values of y? (small values
of ). This nonuniform scatter makes it more difficult to judge the ap-
propriateness of fit. If one wished to minimize the squared deviations
between observed and fitted in terms of %? (or log ¥°) the values of
Y2 (or log ¥2) would have to be weighted inversely as their estimated
approximate variance, with a loss of intuitive appreciation of the qual-
ity of fit from a scatter plot and a substantial inconvenience in carry-
ing out the fitting procedure.

In Figs. 4(c) and 5(c) the ordinate is log y*. This choice of coordi-
nate restores the ability to diseriminate in the vicinity of the cutoff at
the cost of a large loss of sensitivity in regions where the counting rate
is higher.

Finally, Figs. 4(d) and 5(d) display the same data in the coordinate
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system log ¥*, log (B/B,). This choice of abscissa expands the high-z
region enormously, but contracts the low-z region to the point where
1t 1s impossible to see the details of the partiele distribution in the
vieinity of the equator (xz = 0). This contraction would be even more
severe if the abseissa were B or B/B,.

In the region defined by A < 45°, which covers the high energy pro-
ton data, the coordinate x provides adequate detail (see Ref. 10 for
further discussion). If, however, the data had extended to A > 45° an-
other choice of magnetic coordinate would have been desirable for
x > 0.95, because all A > 45° are crowded into z values between 0.95
and 1.

The standard errors and corrclations of the coefficients of the
four L-slices under discussion, together with mean square error (MSE) *
of fits, are listed in Table II. The standard error is in general a
relatively small fraction of the estimate and the MSE is substantially
greater at small values of L,, than at larger ones. This is further ana-
lyzed in Section VI.

At L = 2.2 the satellite gets no closer to the magnetic dipole equator
than A = 20°. This fact, which is associated with the problem of cor-
relation of coefficient estimates within L-slices, is displayed more em-
phatically by choosing z as a coordinate, as in Figs. 6(a), (b), and (c),
than by choosing log (B/B,) as in Fig. 6(d). In addition, in Fig. 6(d)
the expansion of the abscissa in the region of the cutoff makes it diffi-
cult to judge the physical appropriateness of the value of z, which re-
sults from the least squares procedure. The same difficulty is encoun-
tered to a lesser degree with Fig. 6(h). However, in Figs. 6(a) and
6(c) one judges the x-intercept of the thin solid line to be too large,
and Fig. 6(a) has the additional advantage of allowing one to make
a better judgment of the quality of the fit at lower values of z. As might
be surmised from the high values of the correlations for L, = 2.2 in
Table II, the value of 2, can be adjusted to a substantial extent with-
out much change in the mean square error. These high correlations,
which typieally oceur for L,, > 2, reduce confidenee in the individual
estimates of the coefficients for given L-slices. This difficulty also re-
duces the stability of the estimates of the coefficients as L,, is changed,
and precludes basing the values of x.(L) and S(L), for L > 2, on the
fits to the L-slices.

A similar difficulty may be introduced when L < 2 by sampling
fluctuations as illustrated in Fig. 7. In this case, there is a scarcity of

* Some statistical terms are defined in Table I.
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Fig. 6 — Data from the L-slice centered at L, = 2202 and the results of three
fits shown on four scales.
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Fig. 7— Data from the L-slice centered at Lm = 1.790 and the results of three
fits shown on four secales.
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data near and beyond the cutoff, unlike the slice with L, = 1.801
illustrated in Fig. 5. The paucity of data near the cutoff in the L-slice
centered on L,, = 1.79 both correlates and distorts the values of .
and S. In this particular case, the width of the L-slice can be increased
to avoid this difficulty, but, in general, increasing the width of the
slice to include enough data may introduce a serious L-dependence
within the slice. As a result, x, may be determined by points near one
extreme of L within the slice, 4 by points at the other extreme and S
by some combination. This problem is especially severe below L=13
where data begin to become sparse.

The plotted points in Figs. 8 to 10 summarize the dependencies of
the estimates of the L-slice coefficients A, z., and S, respectively, on
Ly, for all 92 slices. More than one value of the coefficients is plotted
for some values of L,, because on occasion the width of the L-slice was

S T T I T
8 _
o L-SLICE ESTIMATES ]
Un ——— FROM CB COEFFICIENTS
FROM HTB COEFFICIENTS
61
5 —
A
al-
3 | —
2
=
0 | | It 1
1.0 1.4 1.8 2.2 2.6 3.0

Lm

Fig. 8 — Three estimates of A as a function of L.
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Fig. 9— Three estimates of x. as a function of L.

varied without changing L., . Although there are local fluctuations in
the estimates that arise from the way a narrow L-slice samples the
data, the estimates exhibit a smooth dependence on L. The fluctuations
are particularly pronounced near L,, = 1.8 in Figs. 9 and 10, and L,, =
1.3 in Fig. 10.

The standard errors of the L-slice estimates of A are typically 1 per-
cent for L < 1.95, but become as large as 6 percent where there are
no equatorial data, as is the case for L > 1.95. Fox z, estimates, the
standard errors are typically 0.5 percent. The estimates of S have a
standard error of about 5 percent (£0.015) near I = 1.5 and about
15 percent (40.05) near L = 1.2 and L = 2. The meanings of the
curves in Figs. 8 to 10 will be discussed in the following sections.
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Fig. 10 — Three estimates of S as a function of L.

In summary, the L-slice approach enables one to infer a functional
dependence of L-slice coefficients on L and to obtain an intuitive ap-
preciation of the quality and nature of fit. The fitting procedure re-
quires refinement by being carried out as a simultaneous two-dimen-
sional process in x and L jointly. This overcomes the “orouping”
inaccuracy in the L-slice approach and in addition makes good use of
the data in those regions where data are scarce. The resultant function
also provides convenient and excellent interpolation of data over the
entire z,L region while employing a relatively small number (8, 9, or
10) of fitted coefficients.

VI. THE TWO-DIMENSIONAL FIT FOR THE COMPLETE BODY OF DATA

The analysis of this section is a precursor to the more refined paral-
lel analysis of Section VII. This preliminary analysis produces the
following results of consequence: Model I (see Section 4.4) is shown
to be satisfactory; instrumental effects are identified and an objective
algorithm for partitioning the data to reduce these effects is formu-
lated; outliers are screened; and a more adequate basis for sample
selection is provided. Many statistical details are omitted from this
section, and statistical matters are dealt with more fully in Sections
VII, VIII, and IX and in Appendices B and C.

6.1 Sample Selection and F'it

It was necessary, for practical computing reasons, to make a selec-
tion of approximately 1000 observations on which to carry out the
simultaneous two-dimensional (in z and L) nonlinear (in the coeffi-
cients) least squares fit. In this preliminary phase, the nearly 80,000
data points were sampled by dividing the L-range from 1.15 to 3.00
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into 925 contiguous intervals, each 0.002 wide. One data point was
selected from each interval. As the data are approximately uniformly
distributed in = (in the z-range covered by the satellite) in each
L-slice (see Figs. 4 to 7), no effort was made at this point to in-
fluence the x distribution of the observations in this subset. The ques-
tion of the “design” of the sample to be used as a basis for fitting the
model is rather important, however, since the fit obtained with the
empirical model is responsive to the distribution of data in z,L space.
Other bases of sampling were employed later (see Section 7.1 and Ap-
pendix B.3).

Model I, deseribed in Section 4.4, was fitted to the 925-point sample
from the complete body (CB) of data. As this serves only as a pre-
liminary fit, the values of the CB coefficients and other statistics are
not presented here.

The quality of this fit was examined from various viewpoints: (1)
by its behavior along the boundaries of the belt; (i7) by comparison
with the L-slice fits; (i17) by plotting the residuals (observed value
minus fitted value) versus the x and L coordinates; and (iv) by ex-
amining the mean square residuals (MSR) in various regions of mag-
netic coordinate space. Though the coeflicients of the model were. esti-
mated from 925 sampled data points, the evaluation of quality of fit
was based on all the nearly 80,000 observations.

6.2 Evaluation of Fit at Equator

The points in Fig. 11 are the values of Y (square root of observed
counting rate) plotted against L for all data points for which z is near
0, specifically x < 0.037 (i.e., A < 1°). For a given L, 3'(z, L) changes
very little between = 0 and z = 0.037 (see Figs. 4 and 5) and the
points in Fig. 11 may be regarded as approximate equatorial points,
The curve in Fig. 11 gives the fitted values of A’(L) = 3’ (0, L) using
the CB coefficients, and appears to represent the data very well. Note
that A’(L) has not come from a fit to the equatorial data as such, but
rather is the equatorial value of y” as predieted by the two-dimensional
fit. That is, the fitted A’(L) does not minimize the sums of squares of
deviations for just the equatorial points, but is, rather, the optimum
fit in the least squares sense to the 923-ohservation sample, and these
observations are distributed through x,L space. The excessive scatter
in the equatorial value of Y between L = 1.35 and L = 1.55 which
shows in Fig. 11 will be taken up in the next section.

The values of A’(L) are also plotted for reference as the dashed
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Fig. 11 — All data for = < 0.037 (ie, within 1° of the magnetic invariant
equator) and the equatorial value estimated from the CB coefficients plotted
against L. A’ and ¥ are in units of (counts/sec)'*.

line in Fig. 8. One sees that the L-slices give quite good estimates for
A, although these estimates tend to be a little erratic and to favor
the lower values rather too much in the neighborhood of L = 1.4.

6.3 Evaluation of Fit at Cutoff

The cutoff may be thought of as the position of the outer envelope of
the nonzero counting rate, or the inner envelope of the zero counting
rate. Thus, in practice the location of the cutoff is associated with the
sensitivity of the detector, rather than with the absence of particles.
TFor L = 2, there is a wide range of x over which there are many in-
stances of either zero or one count occurring during the 11-second count-
ing interval, and as a result the cutoff is not well-defined. This is
exemplified in Fig. 6. The overlapping of the region in which no count is
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observed with that in which one count is observed shows clearly in
Fig. 12. The locations of occurrences of zero counts are plotted in K,z
coordinates in I'ig. 12(b) and in «,L coordinates in IFig. 12(d). Figs.
12(a) and (c) show the locations at which one count (one, two, and three
counts for L < 1.5) was recorded. (The density of points has been re-
duced at high L to improve the clarity of the display.)

Because the cutoff is increasingly difficult to define from the data as
L increases beyond =2, the position of the cutoff predicted by the fitted
model is not a good boundary condition to use in judging the quality of
the two-dimensional fit. Instead the locus of positions for which exactly
one count per counting interval is predicted is superimposed as the solid
lines in I'igs. 12(a) and (e} upon the array of points giving the band
of positions at which one count per counting interval was observed. The
data are represented quite satisfactorily by the solid lines particularly in
the region (L = 1.90) where the belt ends abruptly. The fit is least
satisfactory near L = 2 (A = 40°). Adding the terms r,(L — L)* and
rs(L — Ly)° to the expansion for R,(L) in (5) does not appreciably
improve the fit near A = 40°.

The line z,(L), representing the cutoft itself, is plotted as the dashed
line in Fig. 12 and is seen to be a reasonable outer envelope for the
nonzero counts.

The present estimate of x.(/) is also shown as the dashed line in
Fig. 9. Below L = 1.8, the estimates of x, from the individual L-slices
are in good agreement with estimates from the two-dimensional fit.
However, above L ~ 1.8 the L-slices give erratic values for x,. As
demonstrated in Fig. 7, the L-slice estimates may be biased toward
high values, a circumstance which makes it difficult to extract a satis-
factory fit for x,(L) from the estimates of x, produced by fitting the
L-slices.

6.4 Behavior of S(L)

The values of the function S(L) generated by the two-dimensional
fit cannot be subjected to a simple boundary comparison with the data.
The function S(L) is plotted as the dashed line in Fig, 10 along with
the L-slice estimates. It will be seen that the L-slice estimates tend to be
somewhat higher than the values given by S(L) in the neighborhoods
of L = 13 and L = 1.9. However, if the form of S(L) is taken to
provide a better fit to the points in Fig. 10, then the resulting two-
dimensional fit yields a physically less satisfactory fit of the cutoff
function x.(L) to the boundary data without substantial improve-
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Fig. 12— All positions in R, X space (a) and z, L space (c¢) at which one count
(one, two, and three counts for L < 1.5) was observed in an 11-second counting
interval, and all positions in £, X (b) and =z, L space (d) at which zero counts
were observed in an 1l-second counting interval. The solid lines are the loci of
positions at which the CB coefficients estimate one count in 11 seconds. The
dashed lines are the loei of the cutoff function z.(L) or R.(L) ecalculated from
the CB coefficients. The trace B = 20 R,, which explains the absence of data
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MAGNETIC INVARIANT EQUATOR

Fig. 12 — (continued)

in the lower right-hand corner of the z,L plots, appears in part (d). The cluster
of points near B = 1.1 and A = 20° in part (b) of the figure is data acquired by
the telemetry station at Woomera, Australia. It represents observations made
near perigee when the satellite was below the bottom edge of the proton belt,
which is high over the western Pacific Ocean.
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ment in the overall fit (see also Section 4.7). Admittedly, this judg-
ment is subjective because it is made in regard to regions where the
cutoff is poorly defined by the data because of the insufficent sensi-
tivity of the detector. The high values of S near L = 1.9 appear to
arise from the correlation problem discussed in Section V in connection
with Fig. 6 and Table IT.

6.5 Behavior of the Fit on Several L Slices

The dashed lines in Figs. 4 to 7 are the values predicted by the CB
coefficients superimposed on the L-slice data along with the pre-
viously derived L-slice fit. In Figs. 4 and 5, the difference between the
thin solid and the dashed lines is insignificant, and this is generally
the case for I, < 1.95. At L,, = 1.79, the predictions from the CB
coefficients differ importantly from the fit to the L-slice only for x
values at which there are no data.

For L,, = 2.2, however, the two predictions are noticeably different
as may be seen in Fig. 6. The fit to the L-slice gives the estimate
2, = 0.954 (see Table II); the two-dimensional fit yields x, = 0.928;
and the difference exceeds two standard deviations. The question as to
which of the two lines is a better representation of the data in this
L-slice in the physical sense, rather than in the least squares sense
applied to these points by themselves, is connected with criteria
which will be discussed in the following sections. The basic fact is
that the two-dimensional fit provides a mechanism by which the data
on every L-slice can influence the fit on every other L-slice and
thereby provides a fit that is more satisfactory overall than the
collection of individual L-slice fits.

6.6 Residuals in x,L Space

The data were also examined for dependencies on x and L over
and above those provided for by the fitted mathematical model. This
is accomplished by studying the residuals, ie., (¥ — %), for all the
nearly 80,000 observations. The residuals provide a very sensitive basis
for judging the quality of the fit. The removal of the principal depen-
dence on z and L by subtracting the fitted function from the observa-
tions has the effect of allowing small systematic differences to be
prominently displayed.

Fig. 13 shows a 3100-point sample of the residuals, ¥ — y, plotted
against L, where, to keep the density of the points reasonable, only
one point has been plotted from each of the nearly 3100 contiguous
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RESIDUALS OF Y

Fig. 13—CB residuals of Y (i.e., * — y calculated from the CB coefficients) plotted
against L. The arrows indicate == the approximate standard deviation if ¥* were
Poisson distributed. No more than one point is plotted for an L increment of 0.0006.

L-intervals, of width AL = 0.0006, between L = 1.15 and L = 3.
Ideally, the residuals should scatter randomly about 0, without any
perceivable pattern. For L < 2.4 there is only a little indication of a
nonrandom trend. However, for L. > 2.4 there is a distinet pattern.
This pattern is associated with the quantization error, which becomes
important where the number of counts per counting interval is very
small. When 0 <y < +/1 count/11 sec and ¥ = 0 or /1 count/11 sec,
the result is the tailing upward toward the residual = 0 axis that starts
at L =~ 24. When y = 0 and ¥ = 0 or V1 count/11 sec, one gets
the two-line pattern (0 and 0.0310 = +/1/11) seen clearly in Fig. 13
for I 2 2.7. (The thickening of the zero axis indicates the presence
of data points.)

Fig. 14 is a plot of the residuals against x for all points for which
14 < L < 1.6. The residuals in Fig. 14 show no structure; however,
their average value is a little less than zero. This dip is confirmed by
the points in the range 1.4 < L < 1.6 in Fig. 13, and means that the
value of y is slightly high relative to the data in this region. However,
the lack of structure in I'ig. 14 indicates that the bias is independent
of z in this region.

Fig. 15, the plot of the residuals vs  for 1.85 < L < 1.90, shows
the region in which the fit is poorest. The residual points are not sym-
metrically distributed about zero and the asymmetry seems to depend
on x. Notice that the value of y is slightly too large near x &~ 0.05 and
z &~ 0.65. The discussion of these trends is continued below, after
some further analysis has been described.

6.7 Mean Square Residuals in x,L Space

Another way of gauging the quality of fit is to compute the mean
square of the residuals (MSR) scparately for various regions of
x,I. space. Trends in these quantities may indicate regional varia-
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Fig. 14— CB residuals of ¥ (i.e., ¥ — y caleulated from the CB coefficients) plotted
against z for 1.40 < L < 1.60. The arrows indicate =+ the approximate standard
deviation if ¥? were Poisson distributed.

tions in the adequacy of fit. The data and residuals were divided into
three groups. Group I contains all the “good” data points “within”
the boundaries of the > 50 MeV proton belt. These points are defined
as those not included in Groups II and III. Group II consists of the
“good” data points “outside” the boundaries of the belt. These are
points which meet two criteria: they have values of (x, L) for which
z is greater than x,(L) + 0.001, and they are not in Group III. Group
1T comprises the outliers or “bad” data points, defined as those points
whose residuals are greater than three times the overall root mean
square residual of the points in all three groups together.* The most
probable origin of a point in Group III is a telemetry error.

If the number of counts in a counting interval behaves like a

* Note that only 0.5 percent of the data fall in Group IIL
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Poisson random variable, then the variance of Y2 would be equal to
the average value of Y2 As noted in Appendix B, when Y is not near
zero, the variance of ¥ would then approximately equal 0.023, inde-
pendent of the average value of Y. This value then might approx-
imately represent the average value of the mean square residual,
MSR, on the scale of Y. Thus, the number 0.023 provides a baseline
for the comparisons discussed below.

Table III lists the mean square residuals (MSR) by L range and
by Group. For Group II, Y is frequently zero and, as > =, implies
y = 0, one finds that the residual is zero very often. Of course, under
the Poisson assumption the variance of ¥ when its average value is 0
or very close to 0 will be less than 0.023 (see Appendix B.2) and the
appearance of MSR values smaller than 0.023 in Group II is thus not
surprising. A similar circumstance exists in Group I for L > 2.6.

cB
oal _ 185<L <190 _

RESIDUALS OF Y

Fig. 15— CB residuals of Y (i.e., Y — y ealculated from the CB coefficients) plotted
against x for 1.85 < L < 1.90. The arrows indicate + the approximate standard
deviation if ¥* were Poisson distributed.
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For the overall fit, the MSR of Group I (L range from 1.1 to 3.0) is
only twice 0.023. However, for 1.3 < L < 1.6 the Group-I MSR is four
times 0.023. This L range is associated with the large scatter in the
equatorial data plotted in Fig. 11, and Fig. 14 shows that this scatter is
independent of x, rather than just an equatorial phenomenon. This
issue is pursued further below.

6.8 Dependence of Residuals on Other Variables

Studies were made of the possible dependence of the residuals on
observed variables other than x and L. Indeed, it will appear that
some of the excess scatter exhibited in Table 11T and in Figs. 11 and
14 is associated with instrumental effects.

The regularities inherent in the orbit and orientation of a satel-
lite, the motion of the earth, and the location and operation of the
telemetry receiving stations lead to systematic interrelations among
the various coordinates listed in Table I. A simple example concerns
temperature. The satellite cools when its enters the earth’s shadow.
This eclipse occurs only on the night side of the earth. Thus, if the
detector is temperature sensitive, one would see a false day-night
effect in the counting rate. If, because of additional dependencies,
data are available during eclipse for only a limited span of days, a
false secular effect might also be observed. Because of the implications
of the preceding discussion, a careful study was made of the behavior
of the residuals with respect to a large number of coordinates, and
attention was given to the details of the relationships among the
coordinates during the search for contributors to the inflation of the
MSR.

We present below the evidence that has led us to the conclusion that
two instrumental effects, variations in bias voltage and changes in
temperature of the detector, are principal causes of inflation of the
MSR.

There was no temperature sensor on the particle detector. The
instrument is not exposed to sunlight and is relatively well-insulated
thermally from the skin and frame of the satellite. Consequently,
temperature measurements of the skin are not closely related to the
temperature of the detector. However, a good indicator of detector
temperature is elapsed time since entering or since leaving eclipse.
Fig. 16 gives plots of the residuals, ¥ — v, against time in minutes
measured from the more recent of the two events, entered shadow or
entered sunlight. Residuals associated with periods during which the
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satellite did not enter eclipse onee per orbit arc segregated at the far
right-hand side of the plots, labeled 4 on the abseissa.

I'igs. 16(a) and (b) are for 1.4 < L < 1.6. The points in Fig. 16(a)
are those for which the bias voltage was between 95.3 and 97.5 volts,
while Fig. 16(b) contains those for bias voltages between 92.0 and
95.3 volts. The decrease in the residuals (and also in the observed count-
ing rate) after the satellite enters eclipse (and the temperature falls)
and the increase after the satellite leaves eclipse (and the temperature
rises) may be seen distinctly in both figures. In addition the residuals are
noticeably more negative for the low (92.0 to 95.3 V) bias range. Both
low bias voltage and low temperature are known to decrease the ef-
ficiency of the detector and one expects an appreciable effect to be intro-
duced into the counting-rate data. In the present case the scatter is
about =415 percent of the counting rate. A consequence of this is the
excess scatter that has been noted particularly with reference to Fig. 11
and Table III.

Figs. 16(c) and (d) are analogous to Figs. 16(a) and (b), but the
residuals are for the L range 1.85 to 1.90. Again, the systematic
influence of low temperatures and low bias voltages is unmistakable.

6.9 Partitioning the Data

Two ways of responding to these instrumental effects might be:
(i) to try to correct the data, or (i) to disregard the affected data.
It is not possible to make a correction to the counting rate that is
properly independent of the experimental results because; (1) the bias
voltage was measured in steps of 1.11 V, which is not sufficiently fine-
grained; (2) it would be necessary to estimate the temperature of
the instrument using a complicated hypothetieal relationship between
the instrumental temperature, skin temperature, and time after enter-
ing eclipse (or sunlight); and (i) we have an insufficient knowledge
of the temperature and bias-voltage sensitivity of the detector.

Though an ad hoe correction based on the observed counting rates
could have been attempted, it was decided for practical reasons to
eliminate both the low-temperature and low-bias points and use only
that data which was gathered under the following conditions:

(7) The satellite had been in sunlight for the previous 50 minutes,
and thus had attained temperature equilibrium reasonably well
(see Fig. 16).

(#7) The bias voltage was between 95.3 and 97.5 volts,
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Fig. 16 — CB residuals of ¥ (i.e., ¥ — y calculated from the CB coefficients) plotted
against time in minutes from the most recent of the two events, entered eclipse
or entered sunlight. Data taken on days during which no eclipse occurred are plotted
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within the region marked “A” at arbitrary values of the abscissa. The arrows
indicate 4 the approximate standard deviation if ¥* were Poisson distributed.
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This selection yields a homogeneous body of 41,135 points, hence-
forth referred to as high temperature-high bias (HTB) observations.
The remaining 36,500 points, which represent a mixture of tempera-
ture and bias conditions, were used only occasionally in further
analyses. This selection process coincidentally produces one unfort-
unate associated circumstance, namely, the exclusion, as low-bias
data, of all measurements made between days 325 and 373.

Further analysis and model fitting and development based on, and
directed towards, this HTB data is detailed in the following sections
and Appendix C.

VII. THE TWO-DIMENSIONAL FIT FOR THE SELECTED (HTB) DATA

7.1 Sample Selection

The distribution of the HTB data in magnetic space is indicated
in Fig. 17, which gives the R, coordinates of every tenth point from
the 41,135 L-ordered HTB observations. The data provide reasonably
adequate, though uneven, coverage. As a practical requirement for the
fitting procedure, a “representative” sample of about 1000 observa-
tions must be selected.

MAGNETIC INVARIANT EQUATOR

Tig. 17— The spatial distribution of the HTB data for L < 3 in R, coordi-
nates, Every tenth point from the L-ordered data is plotted.
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It is intuitively eclear from preliminary knowledge of the radiation
distribution that some sample configurations will be far more effective
than others in defining the functional form of the proton flux.

The sample selection is important because: (¢) nothing more than
a sophisticated smoothing funetion is being fitted and we want this
function to be broadly applicable over the entire space; () an
optimum fit in one region of space does not necessarily imply a good
fit elsewhere; (#i1) the spatial distribution of data points depends on
the satellite orbit and the position of the telemetry stations; () even
with the square root transformation, there remains some differential
variance among the data.

These considerations argue against using a simple random sample
or even a random sample in x with a systematic sample in L such
as in the CB fit. Indeed, they also argue against fitting all (un-
weighted) HTB data, even if this were practical. Alternatively, points
might be chosen on the basis of a simple geometric grid in magnetic
space. Such a proeedure would he easy to use, but it is arbitrary with
respect to the radiation belts.

Sampling procedures might be based on particular physical features
of the radiation belts to emphasize the goodness of fit, for example,
where the flux is high or where diffusion across L lines might be
important. However, such fits would be too biased for our present
general objective.

One is thus led to a sampling process based on properties of the
radiation belt itself, as described for example by the preliminary CB
fit. In particular, a high density of data points is desirable in regions
where the value of y is changing rapidly, while a low density will
suffice where the function is changing slowly. A realization of this
criterion would be to define about 1000 x,L cells, within each of
which the range of y from the preliminary fit would be the same.
However, there are appreeiable practical difficulties in defining the
boundaries of such cells.

Thus, the following hybrid procedure was used to define the 960-
point HTB sample on which the subsequent fitting was done: The
L-range from 1 to 3 was divided into about 120 L-slices of equal
(=~ 0.017) width in L. Each L-slice was then divided into eleven
x,L cells using a scheme that depends on the preliminary fit. The
first ten cells were chosen so that within each cell the range of ¥
predicted by the CB model is closely 1/10 of the equatorial value of
y at the center of the L-slice. The eleventh cell lies beyond x,. The
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method of partitioning in the z direction is illustrated by the partition
of the L-slice in Fig. 5(a) into five x-regions by the horizontal
lines. (The distance d is added to @, to define the lower-z boundary of
the last cell.)

To take some account of differential variances remaining after
the square root transformation, the following procedure was em-
ployed: The mean square deviation from the mean (MSD¥) was
calculated for all the HTB data in each x,L cell defined above;
thenee, after visual inspection of the results (see Appendix C), three
groupings of contiguous z,L cells were made according to whether the
MSD’s were generally below 0.013, between 0.013 and 0.020, or above
0.020; the corresponding regions were then given relative weights of
2, 14, and 1, respectively. The weight 1 implies that one point was
sampled from the cell.

These weights were assigned on the basis of a judgment which con-
sidered: (1) the desire to increase the weight of low variance (i.e.,
near-zero counting rate) observations and thus to aid the definition of
the cutoff; and (i) the desire to keep from “wasting” sample points
in the region x > z, since such data will add little to the specification
of 2,(L) and virtually nothing to the estimation of A(L) and 8.

Fig. 18 shows the distribution in #,L space of the 960-point sample
which was used. The number 960 came about because a number of
the defined cells had no data in them. Our experience with several
other samples of the HTB data gives us confidence in both the ration-
ale behind, and the results obtained with, this 960-point set, henceforth
referred to as the HTB sample. However, sampling procedures tailored
to the requirements of special purpose fits will give better results in
some regions of x,L space.

Some additional discussions relevant to sample selection and data
usage are given in Section 13.3 and Appendices B.3 and C.2.

7.2 The HTB Fit

A slightly constrained version of Model I of Section 4.4 was fitted
to the 960-point HTB sample. The results are referred to as the HTB
fit. The constraint is s; = 0, in (3). Most of the values of s, obtained
in preliminary fits to various samples of the HTB data differed from
zero by less than two standard deviations. Also, the points in Fig.

* See Table I for definition of MSD, MSR and MSE.
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Fig. 18— The distribution of the 960-point HTB sample in z, L space. The
trace £ = 2.0 R, explains the absence of data in the lower right-hand corner of

the figure,

10 do not suggest a linear dependence of S on L.* The effect of this
constraint on the value of the fitted cutoff function was examined and
found to be unimportant.

The estimated HTB coefficients (obtained by fitting the constrained
model to the HTB sample) appear in Table IV. The physical inter-
pretation of L, as the lowest L on which > 50 MeV protons were
measurable was noted in Section 4.3. The standard error of 0.001 (=6
km in altitude) is no larger than the uncertainties inherent in the
calculation of L itself.

The interpretation of S as a shape factor (see Section 4.2) is
straightforward in the present ease, i.e., where s; = 0. The standard
error of 0.005 is much smaller than the standard errors of the
estimates of S generated from the fits to L-glices (Table IT) and is

*Some higher-order models for S(L) were tried but proved unsatisfactory (see
also Sections 6.4 and 9.2).
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1.0

Tig. 19 — Graphical summary of the HTB fit, (a) curves of * vs L for constant
z, (b) curves of ¥ vs z for constant L, (¢) contours of constant ¢ in z,L space.
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also small compared to the scatter in Fig. 10. This implies that a
substantial fraction of the scatter may be associated with the high
correlation between S and x, on the L-slice fits. Further consideration
of standard errors and correlations of the fitted coefficients and
detailed statistical evaluation of the fit is deferred to Section VIII.

Fig. 19 presents a graphical summary of the function o' (x, L).
Part (a) of the figure shows 3* vs L for (several) constant x. Physi-
cally, these curves correspond to values of the intensity of radiation
vs L for constant magnetic dipole latitude, because ¥ = constant
implies A = constant. The nesting of the curves in Fig. 19(a) is a
consequence of the faect that G’(x; z., S) decreases monotonically
with x [see (2) and Fig. 19(b)]. The shape of the curves changes
smoothly with L, and the position of the maximum shifts smoothly
toward higher L as the value of & (and therefore A) increases.

The nesting property does not hold for plots of %" vs x at constant
L. This general consequence of the existence of a maximum in A4’ (L)
1s displayed in Fig. 19(b). All the curves in Fig. 19(b) have similar
dependences on z.

Fig. 19 — (continued)
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Tig. 20 — The value of ¢’ computed from the HTB coefficients of Model T vs
the observed value, Y, for the 960-point HTB sample.

Fig. 19(c) contains contours of constant y plotted in z,L space
and completes the graphical summary. The contours surround the
point = 0, L. = 1.46 at which the peak intensity occurs.

7.3 Evaluation of Fit to the HTB Sample

A summary indication of the quality of the fit of the 9-coefficient
Model I to the HTB sample is given in Fig. 20, in which the fitted
(computed) value, 7/, is plotted against the corresponding observed
value, Y. The solid straight line would represent the case of a perfect
fit. This is impossible on the basis of a model using only z,L
coordinates since different Y values were observed for the same z,L
pairs. It is seen, however, that the scatter of the plotted points about
the line of perfect fit is reasonably uniform and that the horizontal
width of the “scatterband” is roughly constant over the entire range of 3.



PROTON DATA FROM TELSTAR 1 1361

In the following subsections, the quality of fit to the entire body of
HTB data is scrutinized, using many of the procedures used in the
previous section to evaluate the CB fit.

7.4 Evaluation of Fit on Equator

The HTB fit along the equatorial boundary is displayed in Fig. 21.
The points are the values of observed Y plotted against L for all HTB
data for which 0 £ z < 0.037 (i.e.,, A < 1°), and the plotted curve is
A'(L), defined in (6), using the HTB coefficients of Table IV. Comparing
Fig. 21 with Fig. 11, it is seen that most of the excess scatter has been
eliminated. The curve in Fig. 21 does not deviate noticeably from the
center line of the points (except for 1.5 < L < 1.6, where the curve is a
trifle high and for L & 1.95, where the curve is a trifle low).

fo T [ T T T T I T
HTB

o

v (PoinTs), A{LINE)
T

b
|

Fig. 21 — All the HTB data for x < 0037 (i.e., within 1° of the magnetic in-
variant equator) and the equatorial value estimated from the HTB coefficients
plotted against L. A” and Y are in units of (counts/see)'”,
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In Fig. 8 the solid curve, which is A’(L) caleulated from the HTB
coefficients, may be compared with the dashed eurve, which is A’(L)
caleulated from the CB coefficients. The HTB fit gives higher
equatorial values for 3" when L is less than =~1.9, as might be ex-
peeted from the fact, displayed in Figs. 16(a) and (b) and discussed
in Section 6.8, that the HITB data select the higher values of ¥ for
14 < L < 1.6. For L greater than =1.9, the equatorial values of the
HTB fit are somewhat lower than those of the CB fit; however, there
is no equatorial data for L > 1.95, and the comparison of the fits is
not meaningful in this region. The points in Fig. 8 are estimates based
on CB, nof HTB, data and are not immediately pertinent to the solid
curve.

An estimate of the standard error of the fitted equatorial function
A’(L), based on the HTB sample, is plotted as a function of L in
Fig. 22(a) (see Section VIII for details). The standard error of
A’(L) is typically less than one percent in the range of L (1.15 <
L < 1.95) over which equatorial data are available. Error bars of
this size would hardly be visible in Fig. 21. For the same values of L,
the standard errors of A’(L) derived from the HTB fit are sub-
stantially smaller than those from the L-slice fits listed in Table II.
As might be anticipated, the percent standard error of A’(L) in-
creases as the minimum a values of available data inereases with
increasing L beyond L = 2. This increase to a value of 10 percent at
L = 3 reflects inereasing uncertainty in the extrapolation of the fit.
Note that the curves in Fig. 8, which represent the equatorial values
of CB and HTB fits, differ, in general, by substantially more than two
standard errors and the difference is certainly ‘“‘statistically signi-
ficant.”

7.5 Evaluation of Fit at Cutoff

Figs. 23(b) and (d) show the positions, in x,L and R,\ coordinates,
at which zero counts were observed during an 1l-second counting
interval. Figs. 23(a) and (c) are corresponding plots for one count
(one, two, or three counts for L < 1.5) per counting interval. Only
HTB data are plotted, and the density of points at high L has been
reduced to improve the clarity of the display.

Judgments regarding the quality of the fit are made, once again,
with reference to the well-defined band of one count, rather than in
terms of the more nebulous cutoff. The solid lines in Figs. 23(a) and (c)
are the loci of y'(z, L) = /1 count/11 sec, using the HTB coefficients
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Fig. 22 — The standard deviation of 4, a4, and the standard deviation of z,,
oz., 88 functions of L. Units of ¢4 and o=, are the same as the units of 4 and z.,
respectively. (a) Model L. (b) Model II.



PROTON DATA FROM TELSTAR 1 1365

in the model. These lines represent the data well. Although the fit
appears uniformly good in the z,L representation, a slight weakness
near the “corner” at X\ & 40° is displayed sensitively in the R\ plot
(see also IMig. 12).

The dashed lines in Figs. 23(a) and (¢) show the locus of the fitted
cutoff function, x,(L), ealculated from the HTB coefficients. Error
bars indicating excursions of one standard error in z.(L) are shown at
two places on Figs. 23(a) and (c). The standard deviation of z.(L)
as o function of L has been estimated (see Section VIII), and is plotted
in Fig. 22(a). This standard error is smaller than those produced by
the L-slice fits at corresponding values of L (see Table II).

The values of x.(L) for the HTB and CB coefficients are plotted in
Fig. 9. Although there is no discernible difference between the two
curves in the figure for L < 2, the difference between the tabulated
values exceeds twice the standard error (which is very small) over
much of the range of L. The two sets of coefficients thus lead to results
which differ in a “statistically significant” manner. For L less than
X2, the significance of the standard error is more readily understood
when it is interpreted in terms of the altitude of the cutoff. This is
done in Section XI.

Beyond L & 2, the values of z, for the CB and HTB coefficients
diverge noticeably, compare Figs. 12(a) and (¢) with Figs. 23(a) and
{e), respectively. The magnitude of this divergence is quite sensitive
to the method used in selecting the samples to be fitted. As has been
discussed, the concept of a cutoff is not well defined in the context of
these measurements for L > 2. The uncertainty is reflected in the
rapid rise in the value of the standard error of 2.(L) [see Fig. 22(a)]
as L approaches 3. The significance of this rise may be more readily
appreciated by referring once more to the error hars assoeiated with
(L) in Figs. 23(a) and (c).

The partitioning of the data on the basis of electrical bias and tem-
perature, and the procedure chosen for selecting the sample to the
fitted, introduce statistically significant differences between the values
of x,(L) obtained from the HTB and CB fits, as well as the more
readily anticipated significant differences in the values of A’(L).

7.6 Standard Error of Fitted Value

The standard error for y'(x, L) is relatively constant, ranging be-
tween 0.01 and 0.04, except close to x.(L). 1t should be understood
that this standard error is based on the fit to the HTB sample, and
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MAGNETIC INVARIANT EQUATOR

HTB

Fig. 23 — All positions for the HTB data in R, \ space (a) and z, L space (c)
at which one count (one, two, and three counts for L < 1.5) was observed in an
11-second counting interval, and all positions in R, X space (b) and z,L space
(d) at which zero counts were observed in an 1l-second counting interval. The
solid lines are the loci of positions at which the HTB coefficients estimate one
count in 11 seconds. The trace B = 2.0 R,, which explains the absence of data
in the lower right-hand corner of the z, L plots, appears in part (d). The dashed
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MAGNETIC INVARIANT EQUATOR

08—

Fig. 23 — (continued)

lines are the loci of the cutoff function z.(L) or R.(L) caleculated from the
HTB coeflicients. The cluster of points near £ = 1.1 R, and A = 20° in part
(b) of the figure is data acquired by the telemetry station at Woomera, Aus-
tralia. They represent observations made near perigee when the satellite was be-
low the bottom edge of the proton belt, which is high over the western Pacific
Ocean.
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thus applies to the estimate of the average value of y and does not give
the standard deviation of a single predicted observation. The latter
would be in the neighborhood of 4/0.04 = 0.2 (where 0.04 is approx-
imately the MSI, see Table 1V).

Contours of constant percent standard error in the counting rate,
y?, are shown by the curves in Fig. 24(a). For L < 2 the standard
error is less than 2 percent except close to the cutoff, where the value
of y* is falling fast. (Near the cutoff, the standard error in . is more
informative.) In the absence of a fitted function, it would be neces-
sary to average between about 30 and 300 observations to achieve a
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x
0.4]- K | &R _]
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L

Fig. 2¢ — Contours of constant percent standard deviation in the counting rate,
", caleulated from the fits to the HTB sample and plotted in &, L space. (a)

Model I. (b) Model II.
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Fig. 25—HTB residuals of Y (i.e., ¥ — y calculated from the HTB coefficients)
plotted against L. The arrows indicate == the approximate standard deviation if
Y* were Poisson distributed.

standard deviation as small as 2 percent. As discussed in Appendix
B.4, the estimates of the standard deviation based on the HTB sam-
ple are conservative and (if there were no biases in the model) the
values that apply to the 40,000 HTB points might be smaller than
those in Fig. 24(a) by a factor as large as 6.

The values in Fig. 24(a) are for relative counting rates (or fluxes)
and do not include the uncertainty in the absolute calibration of the
instrument noted at the end of Appendix A. Other discussion is given
in Sections 9.4 and 12.2 and Appendix B.4.

7.7 Behavior of the Fit on Several L-Slices

Using the HTB coefficients, values of y,(x) were caleulated for
L, = 135, 1.805, 2.0215, and 1.79. The results are plotted as the
heavy solid lines in Figs. 4 to 7. Recall that the points in these figures
are not all HTB points. In gencral, the HTB points are those with the
higher values of Y, although this may not be the case at [ =~ 2.2
because of the temporal effects discussed in Seetion N. The four
figures also allow further appreciation of the difference in results
between CB fit and the HTB fit produced by the partitioning of the
data and the refinement of the procedure by which the sample was
selected.

7.8 Restduals in x,L Space

The residuals, ¥ — y, were computed for all the HTB data using
the HTB coefficients. Fig. 25 is a plot of residuals against L, and
Figs. 26 and 27 are plots of residuals against 2, in the indiecated
L-ranges. These plots are analogous to Figs. 13 to 15, and as they
display properties similar to the earlier figures, the discussion of
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Tig. 26— HTB residuals of ¥ (i.e, ¥ — y calculated from the HTB coefficients)
plotted against z for 1.40 < L < 1.60. The arrows indicate =+ the approximate
standard deviation if ¥* were Poisson distributed.

Section 6.6 applies. In particular, there is little indication of a de-
pendence of the residuals on the magnetic coordinates. Moreover, the
residuals in Figs. 25 to 27 are more closely clustered about zero than
those in Figs. 13 to 15, confirming the fact that there is less scatter
in the HTB data. This reduction in the scatter is especially marked
in the neighborhood of the peak of the radiation belt (near z = 0
between L = 1.4 and L = 1.6, Fig. 26).

7.9 Mean Square Residuals in x,L Space

A breakdown of the mean square residuals (MSR) by L-ranges
for the fit to the HTB data is given in Table III. This analysis is
analogous to that presented in Section 6.7 for the CB fit. For the
Group I data the MSR for the overall fit (1.1 < L < 3.0) is about
(1.5) (0.023) = 0.036 and the largest entry under HTB Group I is
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0.059. The anomalous trend of the MSR near L = 1.4 evidenced in
the fit to the unrestricted data (see Section 6.7) has been largely
eliminated. The overall MSR for the Group I data has been reduced
by 15 percent.

The breakdown of the MSR by L-ranges is not a particularly
refined test of the quality of the fit. This index is based on essentially
all the HTB data and, because the averaging procedure is blind to
the distribution of data within L-ranges, favors results that fit best
where the density of data is high. As the HTB sample was selected
using criteria dependent on the preliminary fit to the data and does
not necessarily favor x,L regions in which large quantities of data
were acquired, the results of fitting this sample does not produce the
lowest obtainable value of MSR for all of the HTB data. Examina-
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0.8 s —
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Fig. 27—HTB residuals of ¥ (i.e., ¥ — y caleulated from the HTB coefficients)
plotted against = for 1.85 < L < 1.90. The arrows indicate =+ the approximate
standard deviation if ¥* were Poisson distributed.
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tion of the MSR in z,L cells shows the effect of the sample selection
procedure on the MSR in L-ranges. Appendix C contains further in-
formation and analysis of MSR. in «,L cells.

Model I with the HTB coefficients, provides a summary of the
HTB data that, in the light of the many sources of variability and
measurement errors, reasonably approaches the limit set by expected
statistical fluctuations.

7.10 Sources of Variability in the Dala

The residuals for the HTB data are now examined to see whether
further identifiable sources of variability may be associated with
them. Possible sources are: instrumental effects, errors in the ephemeris
of the satellite, errors in the deseription of the magnetic field, telem-
etry errors, fluctuations in the length of the counting interval, de-
ficiencies in the model, and temporal variations. While all these must
make some contribution to the MSR, the interrelationships among
the coordinates discussed in Section 6.8 and the small size of the
individual contributions, make positive identifications very difficult.
We have not attempted to examine in detail the large number of
small, apparently systematie, deviations discernible on the residual
plots, although some of these may be “statistically significant.” In-
stead we have restricted our study to effeets which are readily ap-
parent on the residual plots. Where the observations are dense, an
effect would be glaringly apparent if it introduced a shift of = 0.05
in the local mean of the residuals. (This corresponds to a change of
about 1.2 percent in flux at the peak of the proton intensity, and
about 12 percent when the flux is a hundredth of its peak value.)

Instrumental effects are associated with temperature, bias voltage,
radiation damage, and imperfections in the omnidirectional char-
acteristies of the detector. Restricting the range of temperature and
bias voltage removed the major fraction of the instrumental effects
associated with these variables. Directional effects in the detector
might show up when the residuals are plotted against y, the angle
between the spin axis and the local magnetic field vector. However,
no dependence was observed, indicating that the detector is effectively
omnidirectional, Radiation damage, though technically an instru-
mental effect, is more logically treated with temporal variations.

Examination of plots of residuals versus various geographic co-
ordinates did not reveal any systematie dependencies. In view of the
small excess of the MSR over expectation for a random Poisson
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process, and the existence of other sources of error, it seems reason-
able to conclude that the ephemerides were computed with sufficient
aceuraey for this analysis.

The plots of residuals against the geographie coordinates as well
as against @ and L values were used to judge the quality of the co-
efficients used to caleulate the magnetic coordinates L and z. No
systematic effects that ean be attributed to flaws in the coefficients of
the magnetic field were diseerned. Nor is there any indication, in the
form of excessive scatter of the residuals, that I is an imperfeet
coordinate in any part of the region of space covered by these data.

Gross telemetry errors and those that occur in conjunction with
noise bursts are easily identified and have been discarded. There
remain telemetry errors that are indistinguishable from good data
on a point-by-point basis, and these erroneous data must make some
contribution to the scatter. As noted in Scction 8.1, the distribution
of the residuals has been looked into and they are found to be very
well-behaved. However, it is not possible to make any quantitative
estimates of the contribution of the remaining telemetry errors to the
MSR.

Temporal variations are an important source of variability, and
Section X is devoted to their analvsis.

VIII. STATISTICAL CRITIQUE OF MODEL 1.

This section presents further information on statistical evaluation
of the Model I fit. (Some background concerning relevant statistical
techniques is given in Appendix B.) While confirming the very satis-
factory performance of Model T in fitting the data, as presented in
Scetion VII, some unsatisfactory aspects are uncovered and several
defects of the model are pinpointed. The rectification of these defects
iz effected by use of Model 1T, discussed in Seetion TX,

8.1 Fit of Model I to the 960-point HT'B Sample

The analysis of variance for the fit of Model I to the 960-point HTB
sample is shown in Table IV. This gives various partitionings of the
total sum of squares (about 0) of the 960 observations (on the square
root of counting rate scale). Table IV indicates the relevance of the
model to the data in terms of its statistical effectiveness. Fitting the
nine coefficients of the model accounts for more than 99.3 pereent of
the total sum of squares of the observations, leaving less than 0.7 per-
cent associated with “error” or lack of fit. On a per degree-of-freedom-
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basis, the ratio of mean square for “fitted model” with 9 degrees of
freedom to mean square for “error” is over 16,000.

Of course, simply fitting the mean of all the data accounts for a
sum of squares of 2121.2 of the total of 5374.7. Of the remaining “cor-
rected” total sum of squares about the mean of 3253.6, the part of the
model “orthogonal” to the mean accounts for 3218.9, i.e., approxi-
mately 98.9 percent (so that the squared multiple correlation coefficient,
R?, is 0.989). The corresponding ratio, mean square for the model with
(9-1) = 8 degrees of freedom to mean square for error, is over 11,000.

It is worth emphasizing that the sample selection process which was
used (see Section 7.1) is such that fitting the sample is, on a per ob-
servation basis, a more challenging problem than it would be for the
entire body of data (see Appendix B.3).

A summary graphical indication of the appropriateness of the fit is
given in Fig. 20 which shows the fitted value plotted against the ob-
served value. A perfect fit (essentially impossible here with any model
based on z,L coordinates because different integral values of Y are
observed near the same z,L point) would be the diagonal straight line
shown. Deviations from fit should be gauged as horizontal spread about
the line, since the observed quantities are plotted as abscissa, and are
seen to be reasonably uniform throughout.

Inecisive indication of the quality of fit was provided by various
plots of residuals (against L, z, y, time, ete.). Some representative
plots over all the HTB data are shown in Figs. 25 to 27 and Figs. 41 to
43.

As a further examination of the adequacy of the fit to the selected
HTB data, normal and half-normal probability plots (see Appendix
B.8) were prepared for the 745 residuals comprising the subset of the
960-point HTB sample for which 2 < z.(L). These plots are shown in
Figs. 28 and 29.

Fig. 28 does display a generally good linear configuration indicating
that the residuals may reasonably be regarded as a sample from a nor-
mal distribution. There is no suggestion of general asymmetry or other
distributional peculiarities. There are perhaps three values which are
statistically “too large,” but not wildly so. Indeed, the plot is remark-
ably well-behaved and reassuring,

From some points of view, it is useful to consider the statistical be-
havior of the residuals without regard to their sign. Fig. 29 is a plot
of the ordered absolute residuals against standard half-normal (folded
standard normal) quantiles. This presentation is more focussed and
sensitive to a statistical overabundance of large absolute residuals. The
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plot is also very well-behaved, with indication of the same three overly
large values.

The reason for omitting from these plots all residuals from points
for which x > z,(L) is that, for those, the predicted value y is 0 and,
in the great majority, the observed Y was 0; hence, the residual is 0.
Since it was exactly this information which determined the estimate
x.(L) and since one could hardly expect a collection which includes
about 15 zeros to behave like a normal sample, these points were omit-
ted

From either Figs. 28 or 29 one can estimate a slope of about 0.21,
which is an estimate of the standard deviation of the (counting rate)!
observations, clear of the confounding influence of the nonvariance-
stabilized very low counting rate observations, since observations for
z > z,(L) have been omitted. The corresponding variance estimate,
0.044, clearly exceeds that from the Poisson approximation, 0.023,
and also is greater than the pooled value for the MSD(Y), 0.039,
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Fig. 28 — Normal probability plot of residuals from fit of the model to the
HTB sample.
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(Appendix C) the overall HTB data MSR(Y), 0.038, (Appendix C)
as well as the MSE(Y) from the fit to the 960 points, 0.036, (Table IV).
This is as one would expect, since the variance estimate from the slope
of Figs. 28 and 29 is not downward biased by the zero (and V'1/ 11)
residuals from the very low counting rate observations for x > 2.(L),
while the other quantities are so biased.

The excess of the variance estimate of 0.044 over the Poisson value
of 0.023 may be due to any or all of several factors, including: (z) the
noncorrectness of the Poisson assumption, (i) temporal variations in
the radiation belts or the detection equipment, (¢77) measurement
errors or computational biases in time record, ephemeris or magnetic
coordinates, ete. (iv) noise bursts—the outlandish values were detected
and discarded, but the general effect must be an upward bias on varia-
tion, and (v) inadequacies in the model, including analytic form and
coordinates employed.
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Fig. 20 — Half-normal probability plot of absolute residuals from fit of the
model to the HTB sample.
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8.2 Statistical Measures Over All the HTB Data.

An extensive presentation and comparison of various funections of
the residuals over all the HTB data is given in Appendix C. Those re-
sults provide (i) an empirical justification for the use of the square
root transformation; (i7) a strong indication that the fit attained by
Model I eannot be improved very much in the least squares sense over
all the HTB data; (¢77) information on the extent of “unevenness” of
the cell-construetion process by which the 960-point HTB sample was
selected; and (iv) some indication of differential effectiveness of fit of
Model I to the data for different x,L regions.

8.3 Statistieal Propertics of Estimates of the Coefficients and Cocfficient
Functions.

The least squares estimates of the nine coefficients of Model I fitted to
the 960-point HTB sample are given in Tuable IV, with their approxi-
mate standard errors and pairwise correlations.* These provide the
information needed to ohtain estimates and standard errors for fune-
tions of the coefficients; e.g., 3" (x,L), or A’(L), or the value of the max-
imum counting rate, or the position in space at which the intensity of
high energy protons is maximum, ete. (See Appendix B for the neees-
sary formulae.)

Some of the pairwise correlations in Table TV are exceedingly high.
This may be due, in general, cither to an unfortunate “design” (i.e.,
the array of positions of observations in z,Ii space in this application)
or to some inherent “coefficient redundaney” in the model, or to both
such blemishes. Oceurrence of such near-singularities ean lead to prae-
tical difficulty with the iterative fitting computation and/or make the
individual coefficient estimates poorly determined.

In the present model, only the coefficient L, has a direct physiecal
interpretation. Its estimate has a very small standard error and an
entirely bearable correlation with the remaining coefficient estimates
(all values of |a| < 0.5). Otherwise, physical interest centers mainly
on the coeflicient functions A"(L), (L), and y'(x,L;) whose estima-
tion is considered in Sections 7.2, 7.4, 7.5, 7.6, and 8.4.

For a given model and specified coefficient values, the matrix of ap-
proximate correlations depends only on the array of data positions in
x,L space. Thus, to check on whether the correlational problems might

* A rescaling of the values of p, namely as the quantity « defined and moti-
vated in Appendix B3, 1s :l}sn given in T:lh!r'_ IV. The coeflicient of dependence
a has more nearly the behavior of a “linear utility function.”
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be due to inadequacy of the practically available (selected) array, a
correlation matrix was computed using an ‘ideal’ z,L array, namely
the 1034 values of (z,L) corresponding to the division of x,L space
described in Section 7.1 and Appendix B.3. While some minor improve-
ments in some of the correlations were noted, the changes were small.
Thus, it would appear that the main reason for the high correlations
is in fact some “coefficient redundaney” in the model.

Inspection of Table IV indicates that the very large correlations are
associated with some of the parameters of the A’(L) function, namely
a1, as, ag, and 5 for all pairs of which |p| > 0.99 (ie., || > 0.90).
Moreover, it will be seen in Section 8.5 below, that the present param-
eterization of the model leads to a markedly large indication of non-
linearity and there is reason for believing that this is largely due to
the same subset of coefficients. The combination of both defects stimu-
lated development of Model 1T which overcame them (see Section IX).

8.4 Estimates of Functions of the Coefficients

The estimates of the coefficient functions A’(L) and z.(L) have been
discussed in Sections 7.4 and 7.5 and summarized in Figs. 10 and 11.
Their estimated standard deviations, on a “pointwise” basis, are
graphed in Fig. 22(a), while the approximate correlations of the esti-
mates of A’(L), z.(L), and S, as functions of L, are shown in Fig. 30(a).

Despite the near-singularities (i.e., | p | near 1) in the estimates
of some of the individual coefficients of A’(L), it is seen that the estimate
of the square root of the equatorial counting rate provided by A’(L) is
well-determined over the entire I. range. The standard error varies
between approximate limits of 0.018 and 0.040, nonmonotonically, and
these values are typically less, sometimes by a factor of 5 or more,
than the standard errors from the corresponding L-slice estimates
(see Table II) reflecting in part the statistical gain from the simul-
taneous two-dimensional fit.

For z.(L), the standard error is less than 1 percent over much of
the range of L, rising to 3 percent for large L values where the data
are statistically inadequate.

The three correlation funections py ..(L), pa.s(L), and ps...(L), for
the estimated coefficient functions A’(L), z.(L), and 8, are plotted in
Fig. 30(a) (see Appendix B.4 for formulae). In general, these correla-
tions are small (| p| < 0.5, [a| < 0.12). The statement applies to
the correlations involving A’(L) despite the very high correlations among
individual coefficients. The generally low correlation between A’(L)
and z.(L) is as intuitively expected since A’(L) is influenced mainly
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by observations at small x while z.(L) is determined mainly by those
at large x. The exception is near L = Lo, where p,..(Lo) approaches
1 as a result of the fact that the coefficient L, is common to both funec-
tions and that the forms of 4’(L) and z.(L) [see (4), (5), and (6)]
require that both funetions be zero when L = L, .

The statistical correlation between the fitted 4 and z, for the L-slice
fits was always positive (see Table IT), which is not the case for py .. (L).
This change in sign gives some indication of basic differences in be-
havior between the results of the two-dimensional fit and the outcome
of the collection of one-dimensional L-slice fits.

The (4, S) and (S, z.) correlations have the same signs in all cases.
The magnitude of the correlations among A, x., and S is larger for
the I-slice fits (see Table II) than for the HTB fit at corresponding
values of I [see Fig. 30(a)]. This is very noticeable for L greater than
~1.7. particularly for the large correlation between S and .. It is
these large correlations which make it difficult to obtain reliable L-slice
estimates of 2, or S when I, > 2 (see Fig. 6) or when the distribution
of the data within an L-slice is poor (see I'ig. 7).

8.5 Nonlinearity Indices and Dependence of Estimates

Appendix B.5 discusses the use of the sum of squares function (i.e.,
sum of squares of differences between observed value and “fitted”
value, as a function of proposed coefficients) as an indicator of the
joint dependence and behaviour of the coefficient estimates and the
fact that the extent to which the contours of the sum of squares func-
tion are approximated by a certain family of ellipsoids provides a meas-
sure of linearity of the model.

Fig. 31 shows 4 of the 36 pairwise projections of the 9-dimensional
ellipsoid, whose size would correspond to a “0.99 joint confidence co-
efficient” as discussed in Appendix B.5. The axes are scaled in each
case according to the standard error of the coefficient. The orientation
and shape of the ellipse corresponds directly to the sign and magnitude
of the correlation, p, or its transform, «, for the pair of coefficients.
Thus, for example, Fig. 31(a) shows the projection onto the a;-ay
plane. The resulting very narrow positively inclined ellipse corresponds
to a very high positive correlation of a,, ag (p = 0.9995, « = 0.97).
(The 45° inclination of the graphed ellipses is a result of scaling the
axes by their standard errors.) Part (b) of the figure shows a narrow
negatively inclined ellipse for the case of rather large negative correla-
tion between ay and 5 estimates. Parts (¢) and (d) illustrate results for
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small and negligible correlations between Ly, ra and ry, S, respectively.

At various positions on these ellipses there appear numbers which
are ratios of the actual sum of squares at that “point” to the minimum
sum of squares, The computation of the actual sum of squares is done
for the coefficient values corresponding to the point on the 9-dimen-
sional ellipsoid which projects into the point on the plotted ellipse.

If, in fact, the coefficients occurred linearly, all of these numbers on
all of the pairwise ellipses would be constant and in the present case
would have the value 1.023 corresponding to a sum of squares of resid-
uals of about 35.47. A= a basis for judging the actual values and their
variability, the following table gives values which this ratio would
have, if the coefficients did oceur linearly, for various joint (9-dimen-
sional) “confidence coefficients:”

Conf. Coeff. Contour Ratio
0.90 1.015
0.95 1.018
0.99 1.023
0.999 1.029

In view of the variability of the actual ratios in Fig. 31, and of the
extent to which some depart from the values in the above table, it is
clear that in the present form of the model the coefficients behave
jointly in a markedly nonlinear fashion even in a relatively small
neighborhood around the least squares estimate.

Inspection of the entire set of (9) (8)/2 = 36 pairwise plots strongly
suggests that a major part of this nonlinear behavior derives from the
cocflicients a;, as, ay, and 5 of the A’(L) part of the model. These also
are the coefficicnts whose estimates exhibit the undesirably high cor-
relations which have been shown above to be due mainly to a “coeffi-
eient redundaney” in the model.

Direct interpretation of the ellipses in Fig. 31, as indicating inter-
dependence of the coefficient estimates, depends heavily on the appro-
priateness of the linear approximation in the neighborhood of the least
squares estimate. Since the nonlinearity index is in fact distressingly
large one must be cautious in interpreting the ellipses or their asso-
ciated correlation or dependence coefficients.

8.6 Summary Statistical Criticisms of Model I.
Model I, with coefficients determined by fitting to the 960-point
HTB sample, has been shown to provide a very good fit both to the
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sample and to the entire body of some 41,000 HTB observations.
Moreover, the interesting coefficient functions ' (x,L), A’(L), and z. (L)
have stable statistical properties as has the physically interpretable
coefficient, Ly.

However, the model has two statistical defects: Firstly, although
the model gives an extremely good fit to the data, the parameters
@y, as, ag, and 5 of the A’(L) part of the model have exceedingly high
mutual correlations (see Table IV), and these were shown not to be
due to an obviously defective design. Secondly, the model coefficients
exhibited distressingly high nonlinearity of behavior even within
rather close neighborhoods of their least squares estimates, with
erounds to suspect that this was eaused by the a,, as, as,  group of
coefficients. In addition, most of the coefficients of Model 1 do not
have any directly meaningful physical interpretation.

The modifications which led to Model II, as discussed in the
following Section IX, overcome these defects of Model T while re-
taining all its virtues.

IX. THE MODEL II FIT TO THE HTB DATA

This section presents the statistical analysis of the HTB data
using Model 11, a modified version of Model I. The emphasis in the
presentation is on comparizons of Models I and II. Since it is shown
how very closely the fit of Model 1I approximates that of Model I,
such aspeets as the direct presentation of Model IT residuals overall
the data are unnecessary, and hence omittted.

9.1 Model 11

The definition of Model 1T has been given in Section 4.6, together
with a discussion of the physical interpretation of its coefficients and
its mathematical relation to Model 1. Specifically, the 8-coefficient
Model 11 constitutes a specialization and reparameterization of the
9-coefficient Model I. Thus, it follows that the minimum sum of
squares in fitting Model II to any body of data can not be less than
that from fitting Model I, though this may not be true of the mean
square error.

The evolution of Model IT from Model I did not arise from any
simply deseribed systematie process, as is indeed true in other aspects
of this study. Once the basic achievements of Model I were estab-
lished it was then opportune to focus on major remaining defects. The
character of these defects strongly urged elimination of one or more
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coefficients in conjunetion with a nonlinear reparameterization of
the coefficients. The solution achieved was arrived at by empirieism,
persistence and good luck.

The remainder of this section documents the assertion that Model
IT retains all the virtues of Model T while overcoming its defeets.

9.2 The Iit of Model 11 to the 960-point HTB Sample.

The analysis of variance from fitting the 960-point HTB sample
by means of the 8-coefficient Model 1I is given in Table V. As ex-
peeted, the residual sum of squares, 34.7126, of Table V exceeds that of
Table IV, namely 34.6675. This difference is associated with the
one-degree-of-freedom nonlinear constraint defined in (13). Thus,
we see that the sum of squares associated with the one-degree-of-
freedom non-linear constraint is (34.7126-34.6675) = 0.0451 and this
gives a ratio of less than 1.24 in relation to the mean square error
of 0.03645. The value 1.24 corresponds to the upper tail 27 pereent
point of the -chi-squared-with-one-degree-of-freedom distribution.
The proportionate inereases in the sum of squares for error is about
0.13 percent and the increase in the mean square error is less than
one part in 3000. Multiple B* = 0.989 is effectively unchanged.

For the models of both Tables IV and V, the coefficient S is treated
as constant with L. If Model II is modified so that S(L) = s, + &L,
then, fitting this 9-parameter version of Model II yields a sum of
squares for error of 34.520. Thus, we would have a sum of squares of
(34.713-34.520) = 0.193 associated with the “hypothesis” s, = 0.
The main point of quoting this result is to indieate that these minor
differences in the sums of squares for error are judged as unimportant
in this context, even if under some highly formalized assumptions the
distinetions are “statistically significant.”

Of greater interest and sensitivity are the following considerations:
(i) the behavior of the residuals from Model IT as funetions of z,L
and ¥; (it) the behavior of the differences hetween Models T and II;
(117) comparisons of the estimates of A”(L) of Model I and A”(L)
of Model IT [see (6) and (11)]; (iv) comparisons of the estimates of
r.(L) from the two models; (v) the pattern of correlations of the
estimates of the eight Model 11 cocfficients; and (vi) the indices of
nonlinearity for the coefficients of Model I1.

9.3 Residuals of Model IT Fit and Differences Between Models T and I1.
Tigs. 32, 33, and 34 are plots of the residuals of the 960-point HTB
sample from the fitted values of Model IT against L, x and Y, re-
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spectively. These plots show no systematic structure and are quite
similar to analogous plots for Model I. Furthermore, Fig. 35, showing
the observed Y versus fitted y” for Model II, is as well-behaved as
the eorresponding Fig. 20 for Model I.

Figs. 36, 37, and 38 show the deviations between the fitted Models
I and II plotted against L, z, and Y, respectively. Of course these
figures show a systematic structure since one is plotting the difference
of two smooth functions. However, the actual differences are totally
insignificant in the light of the data. (Note that the scale for Figs.
36, 37, and 38 differs from that of Figs. 32, 33, and 34 by a factor of
10.)

Thus, on the basis of one less coefficient, Model II fits the data
essentially as well as Model I, to which indeed it is a very excellent
approximation. It has the merit that the physically arbitrary coef-
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Fig. 32 — Residuals (¥ — y) from the fit of Model IT to the 960-point HTB
sample vs L.
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Tig. 33 — Residuals (¥ — p) from the fit of Model II fo the 960-point HTB
sample vs. z.

ficients a; , a2, and as of Model I have been replaced by 4, and L, which
do have direct physical interpretations. As will be detailed in the
next subsection, Model II also has additional attractive statistical
attributes.

9.4 Coefficient Estimates

Table V gives the least squares estimates of the eight coefficients of
Model II together with their approximate standard errors, correla-
tions and « values. The estimates are seen to be extremely well-
determined. In particular, for the physically meaningful quantities
A,, Ly, and L, the standard errors are about 0.4, 0.1, and 0.15 percent,
respectively, while for the shape coefficients » and S they are about
1 and 1.5 percent, respectively.

Comparison with Table IV shows that the standard error has de-
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ereased for every coefficient which is common to the models. The
most dramatic change is for » for which the standard error diminished
by a factor of about 8.

The estimates of A’(L) and A” (L) are in very close correspondence
as implied by Fig. 36. The comparison of Fig. 22(b) with Fig. 22(a)
indicates that the standard error of A”(L) is uniformly lower than
{but in general agreement with) that of A’ (L).

Entirely similar remarks apply to comparison of estimates of x,(1)
from Models I and II, as also documented by Figs. 22(a) and 22(b).

It has already been shown that the fitted values of y'(x, L) and
y"”(zx, L) are in very close agreement. The pattern of contours of the
percent standard errors of [y”(x, L)]* in Fig. 24(h), shows that the
standard error is everywhere smaller than the corresponding results
for Model I, in Fig. 24(a).

0.8 T T T T T T T

RESIDUALS OF Y

-0.8 | | | ] | | |
v

Fig. 34 — Residuals (V' — 3) from the fit of Model II to the 960-point HTB
sample vs V.
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One of the most dramatic changes between Models I and II is
indicated by comparison of the correlations in Tables IV and V. The
very large correlations (|p| > 0.99, |a| > 0.9) among the A4’ (L) coef-
ficients of Model I do not oceur for Model II. Only the (r;, r2) and
(79, r3) coefficient pairs of Model II have Ia\ values above 0.5. This is
inconsequential since these are physically arbitrary coefficients of a
cubic polynomial.

The correlations of A”(L), 2.(L), and S from Model II remain much
like the corresponding results for Model I, as shown in Fig. 30.

9.5 Nonlinearity Indices

The further virtuosity of Model II is indicated by the behavior of
the nonlinearity index shown for the examples of “confidence regions”
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Fig. 35 — The value of 3" computed from the fit of Model II vs the observed
value, ¥, for the 960-point HTB sample.
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Fig. 36 — Deviations between the Model-T fit, 3, and the Model-II fit, 3", vs
L, for the 960-point HTB sample.

m Fig. 39. (Sce Appendix B for general discussion and definition.)
Specifically, it is seen that the numbers on the ellipses vary very
little and this is true for all 28 of these ellipses. These numbers would
be eonstant and all equal to 1.023 if the model were linear in the
fitted coefficients. Comparatively, Model II does indeed bhehave in a
reassuringly linear fashion. For sharp contrast, we may compare Fig.
39 with Fig. 31, for Model I, in which the values range up to 1000
around the 9-dimensional ellipsoid.

The nonlinear behavior of Model T in relation to the linear be-
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Fig. 37 — Deviations between the Model-I fit, &, and the Model-II fit, ", vs
z, for the 960-point HTB sample,
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Fig. 38 — Deviations between the Model-I fit, ¥, and the Model-II fit, ¥”, vs
Y, for the 960-point HTB sample.

havior of its specialized reparameterized version, Model II, 1s n-
dicative of the reason for the high nonlinearity indices for Model L.
Effectively, a p-coefficient model defines a constraining “surface”
of p dimensions (p is 9 and 8 for Models I and II, respectively) in
the n-dimensional space of the observations (n is 960 in the present
case). In a small neighborhood of the least squares estimate, this
p-dimensional surface may or may not be planar. If the latter, one
will obtain high indices of nonlinearity. If the former, then one will
or will not obtain high nonlinearity indices according to whether
the individual coefficient coordinates within the p-dimensional surface
are or are not linearly behaved.

It is likely that the 9-dimensional surface defined by Model T is
indeed reasonably planar, but the coordinate system defined by the
coefficients is highly nonlinear.

The correlation and nonlinearity effects, it should be noted, are not
in principle related. One can have very high correlations with linear
models and very low correlations with very nonlinear ones.

9.6 Summary Comments

Model II has been presented and validated as an evolution of Model
I. Though Model II represents the current recommended fit from
this study, several aspects of its justification, and of other comparisons
in this paper, are based on the Model I fit. For example, the statistical
study of residuals over all the HTB data, discussed in various places
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including Appendix C, is based on Model I. This hybrid attitude is
entirely sound, since the range of deviation between Models I and IT is
small compared to the range of residuals from the fitted sample.

Thus Model IT provides a fit to the HTB in which the 8 estimated
coefficients provide a “good description” of about 41,000 observations.
The deviations of the fit from the data are within reasonable statistical
fluctuations—variation in telemetered counting rates, orbital errors,
observational errors, mapping-to-magnetie-coordinate uncertainties,
cte. (See Appendix C.3). A number of the coefficients have physical
interpretations and these are statistically well-determined and rela-
tively uncorrelated. Model 1I, though nonlinear in the cocflicients,
behaves in a very linear fashion in the neighborhood of the least
squares estimates.

X. TEMPORAL VARIATIONS

This section and the two to follow are devoted to discussion of
some specifiec physical results of the analysis.

Temporal variations are considered in three classes: diurnal (day-
night), secular, and short term. Residual plots were used to study these
cffects.

10.1 Diwrnal Effects

The HTB residuals were plotted against local time for various
x,L regions. The HTB data are not well-distributed in loeal time
near the magnetie dipole equator, making it difficult to draw firm con-
clusions. However, no evidence of a diurnal variation was found.

Specifieally, to produce a change of about two percent in the
average value of Y on the cquator (x = 0) would require a diurnal
shift in the radial position of the magnetic field line of about 0.01
R, at L. = 1.35, and a shift of about 0.02 R, at L = 1.55, if there
were no other effects. At these two positions, the value of y is large
(y = 8) and ay/aL is large, and a two-percent change in y would
correspond to a shift in the mean of the residuals of =0.16 between
noon and midnight local time. An effect of this magnitude would be
readily observable on the residual plots.

Thus, it is unlikely that displacements larger than 70 km and 140
km, at equatorial L’s of 1.35 and 1.55, respectively, would escape de-
tection, and these distances are offered as upper limits to the day-
night changes of the magnetic field at the two positions. As both of
these displacements are equivalent to a change in field strength of
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Fig. 39 — Examples of projections of the approximate “0.99 joint confidence
region” for the estimates of Model II. (Axes are scaled by standard errors.)
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about 300 gamma (0.003 gauss), this particle experiment does not
qualify as a sensitive indicator of adiabatic changes in the earth's

magnetie field.

10.2 Secular ffects

The HTB residuals are plotted against elapsed time, in days, for
1.85 < L < 1.90, in Fig. 40. It would appear that the average value of
Y decreased between days 191 and 255. This decrease is exhibited in all
parts of the belt where we have measurements during this interval.
Between days 191 and 225, the orbit of the Telstar® 1 satellite did not
take it into the central region of the belt {1.3 £ L < 1.8, X = 10°}. In
other regions the decrease in the average value of ¥ over this period is
about ten percent. The extremes are two percent and 20 percent, but it

I I T | T I T I T T

0.8

RESIDUALS OF Y

-0.8— 1.85< L <190 —

| L | | 1 [ | | | | 1
180 220 260 300 340 380 220

TIME IN DAYS FROM JAN. 0, 1962

Fig. 40 —HTB residuals of ¥ (ie., ¥ —y calculated from the HTB coeflicients)
plotted against time for 1.85 < L < 1.90. The arrows indicate + the approximate
standard deviation if ¥* were Poisson distributed.
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is not possible to separate out other variables which may be influencing
the results.

From the magnitude of this effect, it is clear that it must be con-
tributing substantially to the MSR. A decrease of ten percent in the
average value of Y corresponds to a decrease of about 20 percent in
the flux, A fractional change in the flux which is independent of x
and L cannot be distinguished from a change in the characteristics
of the instrument. Among other possibilities, radiation damage or the
decay of protons which might have been associated with the Star-
fish high-altitude nuclear test of July 9, (day 190) 1962 might have
produced the observed effects. Because of this ambiguity, we are
unable to offer any well-founded interpretation of the time depend-
ence of the data before day 225. For reasons to be noted shortly,
ambiguities are also encountered when interpretation of the temporal
behavior of data acquired after day 400 is attempted. In the inter-
mediate period, the time dependence does vary with z and L. By
using Fig. 40, which shows comparatively little fluctuation during
this intermediate period, as a standard we are able to measure
relative changes in the helt. The stretches of sparse data near days
240 and 320 in Fig. 40 are a result of the orbital configuration, there
being less opportunity to aequire “‘high-temperature” data during
these periods. The absence of HTB data between day 325 and 373
was caused, as noted in Section 6.9, by the low bias condition that
existed during that time. However, an examination of residuals from
the CB fit between days 325 and 373 reveals nothing that vitiates the
conclusions drawn from the HTB data in what follows.

Residuals versus time-in-days have also been plotted for x,L cells
of size 0.1 in L by 0.2 in . Below L = 1.9 we find only one change
with time within the sensitivity of our measurements, namely, a
secular deerease between days 225 and 400 which oeccurs only near the
ends of the field lines (x = 2, — 0.2). We are unable to quantify this
effect because, in order to see the droop above the noise, we need to
colleet residuals from a fairly sizable region of space. The term “sizable”
means a region over which y changes so much that an average value of y
in the region is not sufficiently representative to be used as a basis for
computing a percent change in the flux. Fig. 41 gives an example of an
z,L cell near the cutoff where this decrease may be seen. However, in
the adjacent lower-x region, Iig. 42, where the ability to diseriminate
absolute changes in the average value of Y is the same and the ability
to discriminate percent change in the average value of Y is much greater



1398 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1907

T T T | I I T ! I
HTB l !
0.8 f— |
04— -
> B
w
Q
4 0
< L .
2 - B
=} -
0w —= '
w - -
[+ 4
—0.4— ]
16 <L =17
-08 . 0.8 <T <1.0
! ! ! ! ! | | | ! ! !
180 220 260 300 340 380 420

TIME IN DAYS FROM JAN. O, 1962

Fig. 41— HTB residuals of ¥ (ie,, ¥ —y calculated from the HTB coefficients)
plotted against time for 1.6 < L < 1.7 and 0.8 < z < 1.0. The arrows indicate
=+ the approximate standard deviation if ¥? were Poisson distributed.

than for the region of Fig. 41, no corresponding secular decrease be-
tween days 225 and 400 is evident.

The droop in the residuals after day 400, which is noticeable in
Fig. 42, is characteristic of many of the plots of residuals versus
time-in-days. The widespread occurrence of this effect confuses in-
strumental and “real” variations and introduces unresolvable am-
biguities when attempts are made to identify the source of the droop.

The observation of the general downward slope in Fig. 41 might
be explained by a small deerease in x,, which corresponds to a small
increase in the altitude of the cutoff, between August 1962 and
January 1963 on L-shells below 1.9.2* Alternatively, one might be
ohserving the decay of the 55 MeV protons whose perturbation by
the Starfish high-altitude nuclear test of July 10, (day 190) 1962 and
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subsequent behavior have been measured by Filz?* near the bottom
of the trapped proton belt. There are too few data for us to attempt
further interpretation of this qualitative observation eoncerning the
secular behavior of x,. The number of points affected and the mag-
nitude of the shift are too small for this effect to contribute interest-
ingly to the M=SR.

10.3 Short-Term Effect

The plots of the residuals versus time-in-days, for x,L regions,
show a short-term fluctuation which is sufficiently singular to be re-
ferred to as an event. This event is an increase in the average value
of ¥ over the 30-day period which starts about day 280. It can be
seen clearly in Fig. 43. The increase is discernible only for L > 1.9.

‘ | I I T I I
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0.8
0.4 ) —
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-08| —]
! ! | 1 | 1 I
180 220 260 300 340 380 420

TIME IN DAYS FROM JAN.,Q,1962

Fig. 422—HTB residuals of Y (i.e., ¥ — y calculated from the HTB coefficients)
plotted against time for 1.6 < . < 1.7 and 0.6 < = < 0.8. The arrows indicate
=+ the approximate standard deviation if ¥* were Poisson distributed.
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TaBLE VI —FRrAcTIONAL INCREASE IN FLux BETWEEN DAys 280

AND 310, 1962.

L z 0.1 0.3 0.5 0.7 0.9
<1.9 — — — — —
1.95 0.05 0.07 0.12 0.20 0.70
2.05 — — 0.37 0.46 0.90
2.15 — — 0.28 0.33 —

Table VI gives the fractional inerease in the average counting rate
(Y2) during this period at various values of x and L. By L = 225
the change is barely observable and for L > 2.3 it has disappeared.
The data acquired between days 325 and 373, which are not included
among the HTB data because the bias voltage was low, were ex-
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Fig. 43— HTB residuals of ¥ (i.e., ¥ — y calculated from the HTB coefficients)
plotted against time for 2.0 < L < 2.1 and 0.6 < = < 0.8. The arrows indicate

=+ the approximate standard deviation if ¥* were Poisson distributed.
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amined; and there appears no reason to believe that there were any
changes in the intensity of the >50 MeV protons for L > 1.9 during
these 48 days.

While it is not possible to be quite sure that we are observing a
“true” temporal effect, it is difficult to contrive any alternate ex-
planation. This event can be compared with the changes produced in
the high energy proton distribution by the magnetic storm of Septem-
ber 22, 1963, and observed with Relay 129 and the Telstar® 2 satellite.®
In both cases only L shells with values above 1.9 were affected, and the
effect is more pronounced at higher z'’s. However, the storm produced a
decrease in flux whereas an increase was observed in 1962; the effects of
the storm were more severe at larger L's, whereas in this event, a max-
imum fractional change was observed near L = 2.05; and the effect
of the storm was sudden, ie., the flux decrease took place within 24
hours, while the inerease observed in 1962 was gradual and required
a month to complete. Increases in flux having some of the features
deseribed here were observed with Explorer 7.2 However, it is dif-
fieult to be certain that those increases were caused by protons with
energies above 18 MeV, rather than electrons with energies greater
than 1.1 MeV.

The high-energy protons appear very stable over the seven months
covered by our data. In particular, no effects associated with the
USSR high-altitude nuclear tests of October 22, October 28, and No-
vember 1, 1962, or the large magnetic storm of December 18, 1962 have
been observed.

In summary, changes through time in the observed values of the
flux are generally less than 20 percent, although they may be larger
in some regions of space. We have not been able to detect a diurnal
effect. Often, secular changes are not separable from other variables,
an exception being an apparent change in the position of the cutoff.
An event which appears to comprise a measurable redistribution of
the proton flux over an appreciable volume of space and period of
time has been noted. We do not know whether the redistribution is
in energy or space, and find no indication of the mechanism in the
data.

XI1. THE CUTOFF

As discussed in Sections V, 6.3, and 7.5, the cutoff funetion, x,. (L), is
defined in terms of our instrument, model and fitting procedure. For
L < 2, the value of z.(L) corresponds to the position on the given L
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shell at which the omnidirectional flux is of the order of 1 proton/cm?
sec, more than three orders of magnitude helow the highest flux in
the belt. However, because the flux is falling so fast with =z, this
position is almost certainly very close to the place at which the flux
becomes 0. The last statement is not true for L > 2. Here, although
the value of z.(L) (the place at which y = 0) still corresponds to
the point at which the limit of sensitivity of our instrument is
reached, the position of z, is not so well-defined by the fit. In addition,
one has only to examine Fig. 23 to realize that x, may be significantly
removed from the value of  at which the flux falls to zero.

The Model-I HTB coefficients of Table IV define the cutoff fune-
tion, and we have made use of a modification of R. H. Pennington’s
mirror trace program* to caleulate the minimum altitude correspond-
ing to x.(L) for L < 2.2. This inversion was accomplished using the
Jensen and Cain magnitude field coefficients for 1960, the same set
used to calculate z and L (see Table I). (Other sets of coefficients are
available.?” However, using the GSFC (7/65) coefficients®® does not
produce significantly different altitudes.)

The minimum altitude is smallest in the Southern Hemisphere over
the Atlantic Ocean. Fig. 44 shows the results in graphical form. The
minimum altitude is =270 km near the equator (L = L, =~ 1.13),
decreases to a minimum of =160 km at I. = 1.6, and increases very
rapidly thereafter. For L less than 1.5, the standard error in altitude,
derived from the standard error in z. (see Fig. 22), is about 10 km,
which is roughly the accuracy of the inversion procedure as we used
it. The standard error in altitude for L > 1.5 is indicated by the
dashed lines in Fig. 44. At L = 2, where the cutoff mechanism is only
partially atmospherie, the standard error is nearly 50 km.

The minimum near L = 1.6 in the altitude curve of Fig. 44 appears
to reflect the existence of the South American magnetic anomaly.
Although R.(L) [see (5)] increases monotonically with L for L > 1,
the increase is apparently not fast enough to override the influence of
the anomaly. This result is true for all the sets of coefficients pro-
duced in many trial fits as well as for the HTB coefficients in Table
IV. We have not yet carried out the obvious next step of averaging the
atmospheric density over the orbital path of the protons to see
whether or not the shape of Fig. 44 can be explained on the basis of
present models of the atmosphere.

Although the shape of the minimum altitude curve remains the

* Kindly communicated to us by D.J. Williams.
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same, the value of the altitude is sensitive to the method of select-
ing the sample (see Section 7.1). For example, the minimum value of
altitude caleulated from the CB coefficients is 100 km (again at
L = 1.6), 60 km lower than the 160 km calculated from the HTB
coefficients. The weighting of the HTB sample emphasizes the high
v data and gives better representation, and therefore a better ex-
pectation of fitting well, near the cutoff. However, the Telstar® 1 satel-
lite, with its eceentric orbit and relatively high (950 km) perigee, could
not give detailed information about particles near the top of the atmos-
phere, and this is reflected in the results of the analysis.

In conclusion, the curve of Fig. 44 probably represents the quali-
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Fig. 44— The minimum altitude reached by > 50 MeV protons as a function
of L. This altitude is determined in geographic coordinates from the transform
of z,(L). The dashed curves are 4 one standard error.
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tative behavior of the minimum altitude of the cutoff reasonably well,
but the uncertainty in the value of the altitude is larger than a
simple examination of the standard error plotted in the figure would
lead one to believe. The implications of these results for the details
of the cutoff mechanism have not been examined in detail; however,
it is clear from the sudden upturn of the curve in Fig. 44 that the
mechanism is principally atmospheric for L less than about 1.9 and
principally nonatmospheric on higher L shells.

XII. COMPARISON WITH OTHER WORK

12.1 Introduction

When making comparisons among the various high-energy proton
measurements it is desirable that the results be extensive in time and
space, reported in terms of omnidirectional fluxes at various positions,
and that these positions be expressed in magnetic coordinates de-
rivable from the B,L set. A list of some experiments which meet these
desiderata is given in Table VII.

Following a presentation of flux maps, comparisons among these
experiments are made with respect to the following features: the
absolute intensity at one point in the belt, as close to the maximum of
intensity as is practical; the intensity vs L in the equatorial plane;
the behavior of the intensity on selected L shells; the flux near the
top of the atmosphere, and the equatorial pitch angle distribution.
Comparisons covering a larger range of proton energies have also
been made by Vette** and Fillius.*

One of the difficulties encountered in making comparisons among
the various bodies of data is that most of the results have been pub-
lished in graphical form, rendering it necessary to scale numerical
values from small plots, an inaccurate procedure at best. A welcome
exception is the Explorer 15 data, which MecIlwain'® has made avail-
able by means of a series of interpolation functions in the form of a
FORTRAN computer program.

12.2 Telstar™ 1 Flux M aps

For this discussion, the Telstar™ 1 HTB results have been converted
to omnidirectional flux, J, where J = 4xy°/§. (Note that the value of
§ derives from the assumptions of Appendix A regarding the energy
spectrum.) This procedure provides an estimate of the flux of protons
with energies between 50 and 130 MeV at positions, (z, L), in mag-
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MAGNETIC
INVARIANT EQUATOR 0°

Fig. 45— Omnidirectional isoflux contours derived from the HTB coefficients
and plotted in R\ space. Dashes indicate extrapolation beyond the region n
which data were acquired. Long dashes form contours of constant percent standard

deviation.

Label w A 1 B C D W E L
Omnidirectional | 5 X 10° 2 X 108 1 X108 5 X 10% x 2 X 10 1 X 109 protons/
flux (J) cm? sec

netic space on the basis of the presently provided model and fit to the
HTB data.

For ease of reference, Telstar® 1 HTB flux maps are presented in
three. commonly used forms: Fig. 45 shows contours of constant flux
in R\ coordinates; Fig. 46, contours of constant flux in B,L co-
ordinates; and Fig. 47, log flux vs log B curves for various values of L.
These three graphs give an overall picture of the particle distribution.
In these figures, dashed lines are used to indicate the extrapolation of
fitted values to regions not penetrated by the satellite. Note the way
the geometry of the coordinate transformations affects the extrap-
olated regions. In particular, the functional extrapolation in B,L
coordinates gives much more curvature to the contours than might
be anticipated. The difference between the functional and straight
line extrapolation in B,L can be as large as a factor of 2 in the
flux (a shift of 0.2 in L) at L = 3. Except for the region of the
secondary local maximum in the flux near . = 2.2, this functional
extrapolation compares surprisingly well with the measurements made
on higher altitude satellites.™ **

In the altitude range covered by the data, a single maximum is
observed. This maximum in the omnidirectional flux of = 6 X 10°
protons/cm? sec is located on the magnetic equator at B = L = 1.46.
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The intensity falls abruptly near the bottom of the belt (the top of the
atmosphere) and decreases more gradually toward the sides and top
of the belt. On a given L shell, the intensity is a maximum at the
magnetic equator, and deceases monotonically as the distance from
the equator inereases.

Neglecting the uncertainties in the calibration of the instrument
(=25 to +50 percent), which are discussed in Appendix A and are
mentioned in the next subsection, the estimated standard deviation of
the estimate of J is less than 2 percent of J over much of the region of
space diseussed in this seetion. Smoothed contours of 1 percent, 2
percent and 5 percent standard error are plotted as the dotted
lines in Fig. 45. Near the cutoff, where the counting rate is falling to
zero, the standard deviation in x, (see Figs. 44 and 22) is a useful
indication of uncertainty in the flux. Other information concerning

0.30
0.25 - a
0.20 |-

[z}

un

2 o

3 ous

z

@
o0~

MAGNETIC .
0.05 INVARIANT =
EQUATOR
L 1
1.0 1.2 ) 2.2 26 3.0

Fig. 46 — Omnidirectional isoflux contours derived from the HTB coefficients
and plotted in B,L space. Dashes indicate extrapolation beyond the region in
which data were acquired. Labeling is given in Fig. 45.
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standard deviations may be found in Sections 7.4 to 7.6 and 8.4, Figs.
22,23(a), 23(c), and 24.

The equations defining Model 1T (see Section 4.6) and coefficients
of Table V, together with the transformation equations among various
magnetic coordinate systems, allow accurate relative flux values to
be easily calculated in any coordinate system.

12.3 Comparison of Absolute Intensities

The solid curve in Fig. 48 is the fitted omnidirectional equatorial
flux of 50-130 MeV protons measured by the Telstar® 1 satellite. The
points are fluxes observed on other satellites (Table VII) at the mag-
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L

Fig. 48 — Values of equatorial omnidirectional flux, for the satellites indicated
in the legend, corrected to the energy range 50-130 MeV and plotted at the ap-
propriate value of L. An integral power-law energy spectrum [see (17)] of ex-
ponent —M, where M is given is a function of L by the dashed curve, was used
in making the corrections. References are given in Table VII.



1410 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

netic equator and corrected to 50-130 MeV by using a single-com-
ponent integral energy spectrum of the form

N(>E) « E™" . an
The values of M at the magnetic equator are plotted as the dashed
line in Fig. 48. Thesc values were taken from Gabbe and Brown® and
are consistent with those of Brown, Gabbe, and Rosenzweig,* and also
those of Fillius and MecIlwain,® and Freden et al,* where the data
overlap. Because of uncertainties in the geometric factors of the de-
tectors (see Appendix A) and changes in the belt with time (see
Section X), one might expect agreement only within a factor of about
2. On this basis the agreement in absolute intensity is quite reason-
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2L u o N
A, O o
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6 ® H2 > 59 —
AN ¥ B H3 > 59
O EXPLORER 15  40-110 )
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L A INJUN 3 40-110 N
x
10 1 |
1.0 1.4 .8 2.2
L

Fig. 40 — Values of equatorial omnidirectional flux, for the satellites and en-
ergy ranges indicated in the legend, plotted against L. The dashed curve is the
ratio of Telstar® 1 to Explorer 15 measurements. References are given in Table
VII
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able. However, the Telstar® measurements are somewhat on the low
side, and those of Imhof and Smith** (H, and Hj3 on Fig. 48) are
much higher than the other observations,

The points represent measurements taken before, after, and during
the Telstar® 1 experiment so it is unlikely that changes in the flux
with time explain these differences. It is difficult to account for the
diserepancies in absolute flux in terms of the spectral correction,
unless more complex spectral forms than those of Appendix A are
considered, because the comparisons are among results of detectors
whose threshold energies are close to 50 MeV. The most likely sources
of the differences are errors in absolute calibration. It follows that
a good deal of caution should be exercised in drawing conclusions
about temporal effects and energy spectra from measurements made
with different instruments.

12.4 Intensity vs L in the Equalorial Plane

Fig. 49 is a plot of the omnidirectional equatorial flux for each of
the satellites listed in the legend of the figure. The data are from de-
tectors having several different energy ranges and no spectral cor-
rections have been made. The general features of the data in these
energy ranges have been noted previously in the literature. The flux
increases rapidly with L, goes through a maximum near L = 1.5 and
then decreases. The deerease is not as rapid as the initial rise and in
this energy range the flux generally does not decrease monotoni-
cally*®2® for L. > 2. Excepting the measurements of Imhof and
Smith,32 the flux decreases with increasing energy, indicating a falling
energy spectrum.

The dashed line in Fig. 49 is the ratio of the 50-130 MeV proton flux
measured with Telstar® 1 to the 40-110 MeV proton flux measured with
Explorer 15. This ratio is a good qualitative index of the energy spec-
trum near 45 MeV, and in these circumstances the change in this index
is independent of the absolute calibrations of the instruments. The
ratio is seen to decrease monotonically as L goes from 1.25 to 1.9,
indicating, in agreement with the references cited in the previous sub-
section, a softer spectrum® at higher L.

12.5 Intensity vs B on L Shells
In Fig. 50 [parts (a), (b), and (¢)] measurements from various
satellites are compared on the three I shells, 1.3, 1.5, and 1.8. The

* A softer spectrum contains a larger fraction of low-energy particles.
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Explorer 15 and Injun 3 measurements have been compared in more
detail by Valerio.”? Observe that J decreases monotonically with B
on all the L shells and the shape of J vs B is very similar for all the
measurements on the same shell except for the lowest L shell where
the dependence on the energy response of the detector is most im-
portant. Information concerning the energy spectrum near 45 MeV
is contained in the changes in the ratios of the measurements, and in
these circumstances the changes are independent of the absolute
calibrations of the instrument.

To cast more light on the qualitative behavior of the energy spec-
trum, the ratio of the 50-130 MeV proton flux measured with the
Telstar® 1 satellite to the 40-110 MeV proton flux measured with Ex-
plorer 15 has been caleulated as a function of B for fixed L. The results
are plotted in Fig. 50(d). All the ratios increase with increasing B for
L from 1.2 to 1.9 inclusive. The values of B in the plot cover the range
from the magnetic equator to a magnetic dipole latitude (A) of about
30°. The increase in the ratio indicates a spectrum that hardens with in-
creasing B in the neighborhood of 45 MeV. At L = 1.8 Freden et al*®
find a spectrum that hardens with increasing B for proton energies
hetween 10 and 35 MeV, but softens with increasing B for proton
energies above about 55 MeV. Our results suggest that this change in
behavior cannot have oceurred below 50 MeV.

12.6 The Intensity Near the Top of the Aimsophere

The position of the 8-protons/em? sec flux contour from the Telstar® 1
satellite is plotted in B,L coordinates in Fig. 51 (a), together with our
own extrapolation of the published Injun 3 data'® to a flux of about 10
protons/em? sec,* and the 16-proton/cm? sec flux contour from Explorer
4. The purpose of this figure is to test whether or not the altitude
dependence of contours of constant counting rate at low altitudes is
consistent with other data. The qualitative agreement of the results
plotted in Fig. 51(a) is quite good, especially for I. < 1.8, where the
atmosphere is controlling. A number of effects may contribute to the
divergence of the results for L > 1.8. Among them are: temporal ef-
fects, this region of the belt is shown to be subject to temporal varia-
tions in Section X; instrumental effects, the instruments are near their
threshold sensitivities in a region of magnetic space in which the en-
ergy spectrum may be anomalous; and biases in the fitting procedure,

* Valeriol? states that his fits (and therefore his Fig. 8) are not intended to
represent the data accurately at low altitude.
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examination of residuals give some indication of a slight bias in the
fitted function in this region.

It is difficult to get direct insight into the altitude dependence
from a B,L plot, so the values of B have been transformed into mini-

0,28 | T - T -
ENERGY FLUX
SATELLITE MeVv PROTONS /CM2 SEC
027l —TELSTAR® 1 50-130 8 N
' A INJUN 3 40-110 10
X EXPLORER 4 >43 « 16
0.26|
? o.2s}- _
2
<
]
z
0.24(- -
m
023
0.22
o.21
600 T T T T
(b)
5001~
= 400~ -
x
F4
4 300 -
=
L_ x
5 A
3
200(- x\h\‘/‘n -
x < ox %
X X oy : x i %
100}~ _
0 | | | ]
1.0 14 18 2.2
L

Tig. 51 — Comparison of isoflux contours obtained from three satellites near
the top of the atmosphere. Part (a) B, L coordinates, part (b) minimum altitude
(near the South American magnetic anomoly). References are given in Table VIL
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mum altitude by using the procedure mentioned in Section XI. The
minimum altitudes are plotted against L in Fig. 51 (b). It is character-
istic of all three bodies of data that the minimum in the minimum
altitude curve does not oceur at minimum L.

It is tempting to consider whether the lower altitude of the Explorer
4 points, coupled with the lower low-energy threshold and high flux asso-
ciated with the Explorer 4 measurements, might imply that the exo-
sphere was less dense when the Explorer 4 measurements were made.
However, the uncertainty in the position of the Telstar® contour (see
Section XI) is so large that the use of this figure to refute the hy-
pothesis that the atmosphere contracted?® between 1958 (=~ solar
maximum), when the Explorer 4 measurements were made, and 1962,
when the T'elstar® data were taken is precluded, even if one were pre-
pared to overlook the possibility that the energy spectrum at these low
altitudes is anomalous® and consequently that the calculated geometric
factors of the instruments may be in substantial error near the cutoff.

12.7 Equalorial Pitch Angle Distribution

The solid curves in Fig. 52(a) represent the equatorial pitch angle
distributions, at various values of L, calculated from (8) and the co-
efficients in Table V. When these are compared with the equatorial
piteh angle distributions obtained from the Injun 3 data,'® which have
been replotted as the dashed curves in Fig. 52(a), they are found to
be very similar in shape, although the Telstar® curves are a trifle
flatter. This would be anticipated from the previous diseussion of the
tendency of the energy spectrum of protons with energies near 45 MeV
to harden at high values of B. The shape of the distributions are, how-
ever, appreciably different from those derived by Lenchek and Singer®’
from consideration of possible injection and loss mechanisms. This
may be seen in Fig. 52(b) which contains the present results as the
solid lines, and the results of Lenchek and Singer®” as the dashed lines.

12.8 Other Bodies of Data

A portion of the considerable body of relevent high-energy proton
data, some of which does not meet the requirements for inclusion in
Table VII, is noted here. The earliest measurements of proton intensi-
ties were made on Explorers 1 and 3 by Van Allen.?® His historie esti-
mate of = 2 X 10* protons/em? sec with energies >40 MeV at the heart
of the inner belt (x = 0, I, = 1.56) has been substantiated by all the
measurements reported to date. In particular, the high-energy proton
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(a)

J1 (50 MeVv < E <130 MeV) PROTONS/CM2 SEC STER

Fig. 52 — Unidirectional flux vs z on various L-shells. The solid curves are de-
rived from the HTB coefficients using (8). The dashed curves in part (a) are
Injun 3 results (from Valerio'® Fig. 8). The dashed curves in part (b) are the
results of the theoretical calculations of Lenchek and Singer,3? taken from their
Fig. 10 and arbitrarily normalized to reasonable values of j at z = 0.
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measurements made in the inner belt by Explorers 6, 12, and 14 and
Pioneers 3 and 4, have been noted by Frank et al®® to agree with each
other and with those on Explorers 1 and 3. Reference to some measure-
ments made with ballistic probes may be found in the article by Freden
et al.?

XIII. QUO VADIS

The mathematical model which has evolved along the lines summa-
rized in Section IV has provided a very satisfactory representation of
the high-energy proton data from the Telstar® 1 satellite, as discussed
in both statistical and physical terms in Sections VI through XII. It is
appropriate to consider how this work might be extended.

13.1 Further Improvements within the Present Scheme

The final fit of Model IT has a mean square error which is less than
twice the variance to be expected on the assumption of a Poisson dis-
tribution of the count data. Some of this excess is surely due to “ex-
perimental error.” However, one might seek some additional improve-
ment by the addition of more parameters to the fitting function as
indicated in Model III of Section 4.7. Such fits, carried out on an
approximately 1000-point selected data set, will almost surely lead to
a reduction in the mean square residuals beeause of the increased free-
dom the additional parameters provide. However, as noted in Section
4.7, preliminary work with Model IIT has not led to a really substan-
tial improvement, either statistically or aesthetically as judged by plots
of the residuals.

Additionally, one might try to improve further on the representative-
ness of the sample by simple iteration. Using the HTB fit to Model 1T
to determine new x,L eells, another sample might be selected and fitted.
The very small differences between the Model-I CB fit and the Model-T
(or IT) HTB fit do not suggest that this would be fruitful in the present
case. If the preliminary fit used for determining the x boundaries of
the cells were a poorer fit, iteration would clearly be worthwhile.

A further extension of the procedure for designating representative
cells would involve the development of a two-dimensional version of
the basic idea and procedure outlined in Section 7.1. Specifically, one
would try to define approximately 1000 x,L cells within each of which
the preliminary fit to y(x, L) has the same range. In the present case,
the anticipated gain from this refinement did not seem to justify the
practical difficulties. However, a practical, well-defined algorithm for
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such a process in several dimensions simultaneously might prove very
useful.

13.2 Another Approach to the Model
All the models presented so far are of the form

y(x, L) = A(L)-b(x; eiL), (18)
where A (L) represents the variation in intensity along the magnetic
equator and b(xz; e;(L)) represents the variation with x on an L-shell.
The {e;(L)} adjust the nature of the dependence on z, as a function
of L. This approach arises from the L-shell orientation of the adiabatic
theory of trapped particle motion.

Alternatively, one might focus attention on the shape of y as a func-
tion of L at constant z, rather than on y as a function of x at constant
L. It is shown in Fig. 19(a) and discussed in Section 7.2 that y(z, L)
as a function of L for fixed x forms a simple nesting set of curves at
successive values of z. This is a consequence of the monotonic decrease
of y with 2 at any fixed L. With this orientation, a model might be
expressed as:

y(a‘-l L) = F(Ll Pi(l')), (19)
where F(L) is the shape of a constant-r section, whose parameters,
the {p;}, are expressed as functions of x. Although this approach would
not contain the L-shell orientation of the particle motion explicitly, it
seems to offer very significant practical possibilities.

13.3 Full Data Utilization

In the two-dimensional fits that were carried out, only a selected set
of data were used, either chosen at random within a set of narrow,
contiguous L-slices, as in the fit of Section VI, or chosen on the basis
of a preliminary fit to the data as in Section VII. All the data were
examined by residual plots and mean square residual measures of the
fits, but only a small part of the data were actually used in determin-
ing the values of the fitting parameters. With this procedure, informa-
tion is clearly being lost that could be used to “better” determine the
funetion.

Several methods have been applied in the past to allow all of an
existing body of satellite data to influence the mathematical deserip-
tion of that data. The most direct method uses interpolation or smooth-
ing functions. It is often the case that consecutive satellite observa-
tions from a particular detector are closely enough spaced to determine
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the local spatial variation. Under these conditions a sequence of data
points can be averaged or fitted to a local smoothing funetion. A num-
ber of points in a sequence may thus be replaced and represented by a
single point which is determined by them all. The replacement may
also be made at some particularly convenient coordinate location, for
example, at one of a fixed set of L or z values on which funetional
fitting may subsequently be carried out. This method has been used
on the data of Explorer 15, portions of which have been deseribed by
Mecllwain,*® Roberts'® and Brown.*!

In the context of the high-energy proton data from the Telstar® 1
satellite, a different but analogous procedure could be used. Rather
than selecting at random one data point within each of approximately
1000 z,L cells, all points within a given cell could be used to determine
a value which would represent the observable at the central point of
the cell. This might be done by simply averaging the points within the
cell, but the cell size is large enough so that the x and L dependence
within the cell generally cannot be neglected. A more representative
procedure would be to fit the points within an x,I cell with a local
smoothing function. This function can be the same function with which
the finally seleeted data values would be fitted across the complete
range of x,L space (see Appendix B.7). Although in the present case
the average number of points per cell is about 40, in many cells the
number of points is fewer than the number of cocfficients of the Model
11 function, and some coefficient constraint would be required. This is
not a substantial objection, however, since the function is only being
used for smoothing and does not need to be eapable of elaborate varia-
tion over an x,L cell.

A procedure of this kind greatly reduces the chance that members
of a final 1000-point set will be nonrepresentative and acknowledges
the experimental weight of adjacent observations in fixing the values
of the set. Accordingly, one would expect a reduction in the mean
square residuals overall the data, from a fit to such a smoothed sample.

The procedure of smoothing within a cell could be used with larger
z, L cells (with more points per cell) to define a point set smaller than
1000. It can of course also be used with much larger bodies of data
up to a maximum of 1000 points per cell with the existing computer
program.

13.4 Extension to Other Cases
There are very evident values in being able to communicate the
essence of a large body of data in terms of a mathematical model with
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a small number of coefficients. This is very effectively accomplished by
the present empirical representation of the Telstar® 1 high-energy
protons, but the model is very specialized. As previously noted, includ-
ing a wider range of space such as that explored by the Telstar® 2
satellite requires modification of the function. Characterizing the pro-
ton distribution for substantially lower energy protons may well re-
quire functions outside the generality of even Model III. Treating
electrons in almost any region of space requires treating time as well
as position variables because a complete set of measurements of the
spatial distribution of the particles eannot readily be obtained in a
time short compared with significant time variations.

No single formulation yet exists which is capable of coping in a use-
ful way with the range of measurements of particles trapped in the
magnetic field of the earth. However, the success of the present formu-
lation as it has been evolved and the general methods that have been
developed gives us confidence that other and more complicated cases

can be treated.

X1V. SUMMARY AND CONCLUSIONS
This section provides a summary, with references, for the entire
document including the appendices.

14.1 General Accomplishment

The main accomplishment is the development of a relatively simple
(empirical) mathematical model which gives a statistically accurate
representation of the spatial distribution of high-energy protons meas-
ured with the Telstar® 1 satellite.

14.2 The Data
14.2.1 Space and Time Coverage (Sections I and 1)

The data were acquired between July 1962 and February 1963 within
the region of space bounded by 1.09 R, = B = 195K, and 0 = A = 58°.
Inside these boundaries good temporal and spatial coverage were

achieved.
14.2.2 Energy Range and Instrumental Sensitivity (Appendix A)
The nominal energy interval of the detector is 50 < E < 130 MeV

and its nominal geometric factor is 0.143%0:03; cm® ster. The in-
strument is effectively omnidirectional and the lower threshold of

sensitivity is =1 proton/cm” sec.
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14.2.3 Telemetry (Section 1I)

Each observation consisted of the number of counts registered in 11
seconds. With this was associated the time at which the telemetry was
received, and auxilliary information.

14.3 The Models

14.3.1 Coordinate System (Section I11)

Each model relates the omnidirectional intensity of high-energy pro-
tons to a two-dimensional magnetic space whose coordinates, z,L, de-
rive from a mapping of the earth’s main magnetic field onto an axially
symmetric dipole field through the adiabatic invariants of the particle
motion.

14.3.2 General Form and Properties (Section 1V)

The models have the form of a product, A(L) -G (x,L), in which
the first term expresses the equatorial intensity as a funetion of L, and
the second term deseribes the diminishment of intensity, as a funetion
of increasing x, for fixed L. The funectional expressions for (¢ (exclud-
ing ') transform in closed form to equivalent piteh angle distribu-
tions,

14.3.3 Specializations (Sections IV and IX)

Retrospectively, all the models may be considered to be specializa-
tions of Model ITI, but historically the two-dimensional models evolved
from a series of one-dimensional fits on L-slices. These fits led to the
L-slice model which was then generalized empirically to the two-di-
mensional Model I. Model I was in turn specialized to Model II to
overcome some statistical (nonlincarities and high correlations) and
interpretive difficulties encountered with Model T.

14.4 Fitting

14.4.1 Criterton (Section III and Appendix B)

The least squares criterion was used in deriving estimates of the 8
(or 9 or 10) coefficients required by the models to fit the data.

14.4.2 Seale (Section IIT and Appendix B)

To stabilize the variance of the observations, the models have heen
fitted to the square root of the observed counting rate,
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14.4.3 Sampling (Sections 6.1, 6.9, 7.1 and Appendix B.3)

Coefficients of Models I and II were estimated by fitting samples
containing about 1000 of the nearly 80,000 available observations.
Sampling is necessary to avoid exaggerating the importance of regions
of z,L space where data are abundant, and also for compatability with
existing computer programs. A method of sample selection based on a
preliminary fit has been developed to provide a good overall represen-
tation of the data. Before selecting the sample, the data were parti-
tioned to remove instrumental effects and outliers identified by study-
ing residuals from preliminary fits.

14.5 Quality of Fit

14.5.1 Criteria of Judgment (Sections VI to IX and Appendices B
and C)

Judgments regarding the quality of fit were largely based on graph-
ical studies of residuals, the behavior of the fit at the boundaries of
the radiation belt and various statistical measures. Residuals (equal
to observed minus fitted), on the square root scale, were particularly
useful as sensitive indicators of the quality and nature of the fit.

14.5.2 Comparisons Among Models (Sections V and IX)

The L-slice fits give good one-dimensional representations of very
limited regions of data. Both the standard errors of the coefficients and
the correlations among coefficients are high compared to the corre-
sponding measures derived from the two-dimensional fits. The fits of
Models T and II to the 960-point HTB sample are practically equiva-
lent. However, Model IT is superior in the following respects: one less
coefficient is required, standard errors are uniformly smaller, correla-
tions among the coefficients are uniformly smaller, the index of non-
linearity is very much smaller, and more of its coefficients have a phys-
ical meaning,.

14.5.3 Coordinales (Sections VI and VII)
Plots of residuals vs z, L, time, ete. indicate the general adequacy
of 2, coordinates for the organization of the data.

14.5.4 Quantitative Measures (Sections VII, VIII, IX, and Appendices
B and C)

Typically, the fits account for nearly 99 percent of the variability
about the data mean. The mean square error of fit is about 1} times
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as large as would be anticipated on the basis of assumed Poisson sta-
tistics. Even in the worst of quite small spatial regions, the mean
square residual does not exceed 24 times the Poisson-based prediction.
Probability plotting procedures indicate that the residuals are closely
normally distributed and lead to an estimate of the variance which is
about twice the Poisson-based prediction.

14.5.5 General Limitations (Appendix C)

Statistical examination of all the data, eategorized in 2,L cells de-
fined from a preliminary fit, indicates that it is unlikely that the fit
given by the present model could be significantly improved by any
simple modification based on x,L coordinates alone.

14.6 Numerical Values of Fitted Coefficients, Standard Errors, elc.

14.6.1 L-Slices (Section V)

Coefficient values and other statisties for four L-slices appear in
Table II, and values of coefficients for a large number of L-slices are
shown in Figs. 8 to 10.

14.6.2 Models I and IT (Sections VI to IX, also Sections V, XI, and
XII1)

Model 1T is the preferred model. Coefficients, standard errors, cor-
relations, and other summary analysis-of-variance statistics appear in
Table IV for Model I and Table V for Model I1. The coefficient func-
tions: (i) square root of average counting rate, y(x,L); (i) square
root, of average equatorial counting rate, A(L); and (iif) position of
cutoff, x.(L); are well-determined and applicable values, standard
errors, and correlations appear in Figs. 19 and 24 for y(z, L) (and
Figs. 45 to 47 for the flux); Figs. 8, 11, 21, 22, and 30 for A(L); and
Figs. 9,12, 22, 23, and 30 for x.(L)} (and Fig. 44 for altitude).

14.7 Some Physical Resulls

14.7.1 Flux Maps (Section XII)

Flux maps are given in B,L and R\ coordinates and as J,B contours
for constant I, based on the fitted model and using a ealibration of the
detector assuming certain single-component energy spectra. Neglecting
uncertainties of calibration, the relative fluxes have a standard error of
about 2 percent. The value of the maximum flux is (5.7:1%) X
10° protons/em”® sec at L = 1.46 on the magnetic equator.
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14.7.2 The Cutoff (Section XI)

The minimum geographical altitude corresponding to the fitted cut-
off funetion was computed. This altitude varies as a function of L and
has a value of about 270 km at the magnetic equator at L. = Ly = 1.13
and a minimum of about 160 km at L = 1.6. The shape of this L de-
pendence suggests that the interaction between the protons and the
residual atmosphere is of major importance in determining the cutoff
for values of L less than 1.9. For larger L values, the loss mechanism
determining the cutoff is of different origin.

14.7.3 Temporal Effects (Section X)

The general spatial distribution of high-energy protons is very stable
in time over the period eovered by the present data; however, using
residuals as a sensitive indicator, we find two temporal effects that are
distinguishable from instrumental effects. Firstly, there appears to be
an increase in the flux in the 1.9 < L < 2.2 region during the 30-day
period starting about day 280, 1962. This inerease varied from about
5 to 90 percent depending on both z and L. Secondly, there is an indica-
tion of a qualitative increase in the altitude of the cutoff over the pe-
riod of the observations. The present results indicate that any diurnal
variability of the earth’s magnetic field would have an upper limit of
0.003 Gauss at L. = 1.5.

14.7.4 Comparison with Other Experiments and Theory (Section X1I)

The absolute fluxes measured in this experiment agree well (within
a factor of two) with other extensive experimental measurements, but
the present values are in general slightly lower. Spatial distribution of
the flux agrees very well with other measurements but differs appreci-
ably from published theoretical calculations.

14.8 Extensions (Sections XIII, IV, and Appendix B)

The methods developed in this work have lead to a very satisfactory
representation of the high-energy proton data from the Telstar® 1
satellite.

With the better methods of utilizing data and selecting samples
noted in this paper, and with more general functional forms (some
approaches to which have been indicated), it should be possible to rep-
resent the radiation intensity for other more extensive and less “well-
behaved” bodies of data than the one treated here. Most aspects of
the statistical methods developed are generally applicable to problems
of modeling data mathematically.
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APPENDIX A.

The Instrument

Energetic electrons and protons were measured on the Telstar® 1
satellite by a group of detectors in all of which the sensitive element
was a phosphorous-diffused silicon diode specially developed for such
particle measurements.” The active volume of the device is the disk-
shaped space-charge region of the diode under reverse bias. For the
detector measuring protons with energies above 50 MeV, the reverse
bias was approximately 100 volts, the space-charge region was approx-
imately 2.8 mm in diameter and 0.39 mm thick, and the diode was
shielded by about 12 mm of aluminum over a solid angle of 2= and
somewhat more than 12 mm of aluminum equivalent over the remain-
ing hemisphere (see Fig, 53).

The thickness of the space-charge region of the detector was meas-
ured with protons from a eyclotron. A caleulation of the path-length
distribution for unseattered partieles in the space-charge region and in
the surrounding shielding materials has been made. These ealculated
results have been combined with range-energy information, and the
properties of the associated electronic eircuits, to give the geometric
factor of the instrument, g(E), as a function of the energy, E, of pro-
tons incident on the spacecraft. The geometrie factor varies with the
reverse bias voltage and the temperature of the detector, both of which
affect the effective thickness of the active volume of the diode. Fig. 54
is a graph of g(E) vs E for a bias voltage of —97.5 volts and a temp-
erature of 20°C, the nominal operating conditions of the instrument.
Note that protons with energies below 50 MeV were not detected.

The geometry of the detector and shield is only approximately omni-
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Fig. 53 — The instrument.

directional. However, the satellite was spin stabilized, the symmetry
axis of the detector was nearly perpendicular to the spin axis of the
satellite, and the telemetered counting rate was an average over at
least 15 revolutions of the satellite. This averaging process tends to
remove any directionality inherent in the detector geometry. A sensi-
tive analysis noted in Section 7.10 failed to show any directional de-
pendence in the data.
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Tig. 54 — Dependenco of geometric factor on energy of protons incident on the
shielding.
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For a differential energy spectrum N (E), where N (E)dE is the number
of protons with energies between ¥ and I + dE, the average geometric
factor, (&, I,), of the detector for particles with energies between
I, and F, is defined by

[ swnNw) az

g, B = (20)

N(E) dE
Ea
The function (50 MeV, E,) has been evaluated numerically for various
values of F, and forms of N(¥). The values of §(50 MeV, 130 MeV)
are plotted in Iig. 55 as a function of n for the single-component power-
law spectrum N () « E7", and also as a funetion of F, for the single-
component exponential spectrum N(F) « exp(—FE/E,). It may be
seen from the figure that §(50 MeV, 130 MeV) varies by less than
6 percent from 0.143 em® ster for 0 < n < 7.5 and 10 MeV < E, <
90 MeV. These ranges of n and FE, include most experimentally de-
termined values by a comfortable margin.®-*"******** The omnidirectional
flux, J(E,, E.), of protons with energies between E, and E, is given by
, 4rY*?

J(E,, Ey) = AR (21)
where Y” is the counting rate of the detector. In the body of this paper,
the values 7, = 50 MeV, F, = 130 MeV and

g = (50 MeV, 130 MeV) = 0.143 em® ster (22)
are used. The flux J(50 MeV, 130 MeV) is designated simply by J,
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Fig. 55 — Dependence of average geometrie factor on the exponent of a dif-
ferential power-law energy spectrum and the e-folding energy of an exponential
energy spectrum,
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and the counting rate to flux conversion is considered to be independent
of the proton energy spectrum.

While the relative value of § shows a variation of less than 6 percent
for the wide range of single-component energy spectra noted above,
the absolute value of § is less well specified. Variations in the ambient
temperature and reverse bias voltage may change the effective geo-
metric factor by as much as 25 percent. The difficulty of dealing with
the complexities in shielding geometry, caused by embedding the
instrument in the spacecraft, introduces additional uncertainties in
the absolute value of . These uncertainties are in the range of —25
to 450 percent.

No provision was made for recalibrating the detector once the
satellite was in orbit. However, the evidence, which is discussed in
Section X, concerning the temporal variations of the proton distribution
is that neither the detector nor the associated circuit elements were
substantially affected by the space environment. Instrumental (e.g.,
temperature and bias voltage) effects are often quite different in char-
acter from temporal changes in the proton belts and may be separated
from them in many circumstances. It is, of course, possible to postulate
instrumental effects that will be inextricably confounded with certain
secular changes that might take place in the proton distribution.

APPENDIX B.
Some Statistical Details
B.1 Introduction

This appendix presents, heuristically, some facts and formulae con-
cerning the statistical analysis of the data. While a variety of statis-
tical principles, precepts and procedures were employed as guides, the
main judgments came from empiricism, scientific intuition and com-
mon sense. Various kinds of plots of residuals, used informally, have
been of key importance, both for evaluation and for suggestion.

Simply stated, the objective was to produce a statistically accurate
analytical description of the intensity distribution of high-energy pro-
tons in space surrounding the earth. The process of analysis involved
the empirical evolution of a mathematical model, in interaction with
the application of fitting and evaluative techniques. The data source
and processing have been deseribed in Sections IT and III. The itera-
tive and interactive processes of the final stages of model development,
fitting, data partitioning and data sampling are deseribed in Sections
IV to IX.
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Appendix B.2 deals with the basis for use of the square root trans-
formation, Y, of the counting rate data, Y2, Appendix B.3 discusses the
selection of a sub-sample used in fitting. The use of the method of least
squares in nonlinear model fitting, to estimate unknown coefficients,
or funetions of the coefficients, and their standard errors and correla-
tions is reviewed briefly in Appendix B.4. Some remarks on construc-
tion of sums of squares contours, often referred to as confidence re-
gions, and of indices of local nonlinearity of the model are given in
Appendix B.5. Appendix B.6 discusses several issues relevant to the
interpretation of the analysis of variance results. Appendix B.7 de-
scribes a mode of “smoothing” data within cells, which could have
been used in conjunction with the sub-sampling procedure. Appendix
B .8 concerns the technique of probability plotting.

B.2 The Square Root Transformation

It appears a reasonable assumption (supported by some empirical
evidence) that, in the absence of geophysical disturbances, at a fixed
point in space relative to the earth, the number of counts Z, recorded
in the detector in 11 seconds, will vary in time according to a Poisson
distribution, i.e.,

—-r z

e
2!

Probability {Z = 2z} = , 2=0,1,2,3, -+, (23)
where the parameter of the distribution, », is the mean value of Z.

With this statistical model, the average intensity of radiation in the
region of space measured by the detector is proportional to v, where
the proportionality factor depends on the counter geometry and effi-
ciency. The objective is to develop a function which describes how v
varies in space, based on observations of the quantity Z at different
positions in the satellite orbit.

For the Poisson distribution, the variance of Z is also v, i.e., the
average of the squared deviations, (Z — »)?2, is v. Thus, as the value of
v changes, the variance of the associated random variable Z also
changes, Hence, the scatter of Z about its average value will he differ-
ent in different regions of space as the average intensity fluctuates.

Working with the experimental data on the scale of Z has two draw-
backs. Firstly, if one fitted a mathematical model to the data using a
least squares criterion, the different observations would have variable
weight, which would require appropriate, troublesome, allowance in
the fitting procedure. Secondly, graphical judgment of the adequacy of
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any particular fit would be difficult because of the variable seatter of
the data about a fitted function in different regions.

Thus, the square root transformation, Y, of the counting rate
(Y2 = Z/11 counts per sec) was used to “stabilize” the variance and
the model-fitting procedure employed unweighted nonlinear least
squares on Y (but with some data weighting as discussed in Section
7.1 and Appendix B.3).

Heuristically, consider the linear Taylor’s expansion of Z about v

= Z —v)
Z=Vh ( = e 24
v YV 24
Then, the variance of +/Z is approximately
— 1 2
v Zﬁ(ﬂ)V'Z— 25
ar (V'Z) A ar ( v) + (25)
It
Var (Z — ») « », (26)
then
: . 1w 1
Var (VZ) ¢ 15 =1, (27)

that is, Var (v/Z) would be approximately a constant.

Discussions of this transformation are given by Bartlett” and
Anscombe.® If the distribution is in fact Poisson, then Anscombe shows
that the average value of v/Z is approximately

Vi

I

1 7
T g/ 1284
while the variance of v/Z is, asymptotically,

1 3 17

32)°

Again for the Poisson distribution, Bartlett gives exact values of the
dependence of the variance of \V/Z on v, summarized in the following:
w005 1 | 2 13 | 4 | 6 |9 |15
Var v/Z:/0/0.310/0.402/0.390/0.340/0.306/0.276|0.263]0.256
For a Poisson distribution, a transformation of the form v'Z 4 1 /2

or VZ + 3/8 or (VZ + VZ +1—1) will improve the variance
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stabilization at smaller » values. In the present application, such a
modification would have appeared physically artificial and incon-
venient. Moreover, the actual variance of the observations exceeds
the Poisson variance (see Appendix C) and the “correction’” was thus
felt to be unwarranted. Some response to the (empirically defined)
variance instability remaining after the square root transformation
was made in the form of some weighting in the data selection (described
in Section 7.1 and Appendix B.3).

Of course, if one wished to adopt the assumption of a Poisson dis-
tribution as an absolute basis for procedure, instead of as a guide, then
one might choose to use maximum likelihood to estimate the coeffi-
cients of the model. This would mean developing a procedure for de-
termining values of the coefficients [of the funection v(x,L)] which
would maximize

e x, )] /2.

observations

In the present case, a general program for nonlinear least squares was
available while a procedure for Poisson likelihood maximization would
need to be evolved. Apart from this practical consideration, however,
it seemed more robust to use the Poisson assumption as a guide to
developing an appropriate transformation preliminary to fitting by
least squares. The point is that the square root transformation will
effect an approximate variance stabilization not only when the variance
is equal to the mean (as in the case of the Poisson distribution) but
also when, more generally, the variance is proportional to the mean.
Empirieal vindication of this caution is given in Appendix C. More-
over, the least squares approach enables the approximate statistical
interpretation of results using familiar procedures from linear multiple
regression methods.

The present analysis is based on the quantity Y, where ¥? = count-
ing rate = Z/11 counts per sec. Thus, if in fact Z were a Poisson vari-
able,

Var (V) = (111)&) —~ 0.023, (28)

as a reasonable approximation. When the average counting rate ex-
ceeds 1/11, this value of 0.023 is a lower bound on the variance of ¥,
even with the Poisson assumption. Moreover, there are many other
possible sources of intrinsie variability and experimental error in this
situation.
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A further benefit which one might expect from the square root trans-
formation in this circumstance is that the distribution of residuals
would tend to be more symmetric and more nearly normal (Gaussian).

Some empirical properties of this square root transformation in the
present, body of data are given in Appendix C.

B.3 Sample Selection

As a practical requirement, the available multivariable, multicoeffi-
cient, nonlinear least squares fitting program could operate with a
maximum of 1000 data points. Hence, the 41,135 HTB observations
needed to be sampled or condensed at a 1 in 40 ratio.

As in all real sampling or experimental design situations, many com-
peting criteria and practical difficulties were relevant. Perhaps the
overriding point, explicitly understood here (and probably true in most
actual model fitting problems), is that the model which was being de-
veloped was not the “truth” but was really just a smoothing function
which one wanted to fit well over a wide region of space. Thus, it was
not appropriate to think of estimating the model coeflicients, say, so
as to optimize their apparent (indicated) statistical reliability, nor
would it be appropriate to try to use all the available data in an
equally weighted manner, since accidents of orbital position and in-
strumental behavior would have too great an effect on the distribution
of data points.

The procedure developed for the present use is outlined in Section
7.1, with pertinent remarks also in Section 13.3 and Appendix B.7.

The method of Section 7.1 yielded 960 observations to which the
model was then fitted using unweighted least squares. The 960 sampled
observations were selected so as to be roughly speaking, “widely
spaced,” the metric being change in average counting rate. Thus, the
challenge of fitting the 960-point sample, as measured by sum of
squares of residuals, is greater, on a per-observation basis, then would
be that of fitting the entire body of 41,135 HTB observations, very
many of which are quite close together. The “model bias” difficulties of
the entire body of data are concentrated in the sample. The statistical
fluctuation would be approximately the same, on a per observation
basis, in the sample as in the whole body of data.

B.4 Estimation Procedure

The unspecified coefficients of the models defined in Section IV were
estimated so as to minimize the sum of squares of deviations between
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the observed Y and fitted y, for the sample array of data. The itera-
tive, multivariable, multicoefficient, nonlinear least squares fitting
was cxecuted using a computer program due to Huyett and Wilk,*
based on a procedure outlined by Wilk* (see also Lundberg, Wilk and
Huyett). " 17

The classical statistical properties of least squares estimation,
namely unbiased estimates with minimum variance, apply in the case
of statistically uncorrelated observations having equal variances and
with the coefficients to be estimated oceurring linearly in the model
(see, for example, Wilks'®). In the present case, even with the square
root transformation, the observations do not have equal variances but,
for practical purposes, the weighting implied by the selection proced-
ure (see Section 7.1) compensates adequately. The model is, however,
quite nonlinear in the coefficients, Still, one hopes that the attractive
statistical properties of linear least squares carry over approximately
to the nonlinear ease because, in small enough neighborhoods, non-
linear funetions can be linearly approximated. (An index for measur-
ing model nonlinearity is deseribed in Appendix B.5.) In any case,
the least squares eriterion is geometrically appealing and primitively
meaningful.

Among the by-products of the fitting procedure, applied to the par-
tieular array of data in 2.L gpace, are approximate values for the
standard errors of the estimated coefficients, a matrix of approximate
pairwise correlation coefficients for the estimated coefficients, an anal-
ysis-of-variance table giving the sum of squares accounted for and
not accounted for by the fitted model, a list of residuals (equal to
observed minus fitted), and various plots.

The least squares estimates of single-valued funetions of the coeffi-
cients, such as A(L), x.(L), or y(r, L) are simply the same functions
of the estimates of the coefficients (since least squares is an invariant
process). Approximate variances and correlations of functions of the
coefficients may be derived as follows: If 8 = (6,, --- , 8,) denotes
the coefficients of the model, and @ their estimates, then the approximate
covariance of the estimates ¢(f) and A(f) of the functions g(8) and
h(8) is

Covariance (g(6), h(8)

Cov (g(d), 1(8))

Il

Statistical average of | (g(8) — g(8))(h(8) — h(6))}
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where p;; is the correlation of 8; and 6; . The formula for the approx-
imate variance of g(f) is then just a specialization of the above, putting
g = h

Some associated facts and issues are worth mentioning here. First,
the approximate statistical correlations p;; of the estimated coeffi-
cients of the model, or of functions of these, depend on (?) the distribu-
tion of the sample in z,L space, (i) the values of the coefficients and
(#47) the nature of the mathematical model; but do not depend on the
actual adequacy or appropriateness of the fit. Similarly, the approximate
standard errors of estimates are each made up as a product of which
one term depends upon the square root of the mean square of the
residuals of fit and the other depends only on the same factors as do
the p,;. Second, the various statistical measures, such as standard
errors of estimated coefficients which are obtained from the fit to the
960-point HTB sample are, in a narrow statistical sense, conservative
because they refer to the sample only and do not make allowance for
the fact that the fitted model does indeed fit very well to the enfire
body of 41,135 HTB data. Thus, if statistical fluctuations were the
only factor in the uncertainty of the estimates, one might further
reduce this uncertainty by some factor, roughly approximated by
6 ~ +/41,135/960. This view of statistical uncertainty does not,
however, give appropriate weight to the “model bias”, which will not
be eliminated by any number of observations. Third, all the summary
statistical measures, which are referred to as standard errors, correla-
tions, confidence regions, ete., should be used and interpreted in a
data analytic way, i.e., as indicating facets of the body of data and the
adequacy of its description by the model and analysis—rather than in
terms of some supposedly “true” model or hypothesis which one is
trying to evaluate in probabilistic terms.

B.5 Sums of Squares Contours, “Confidence Regions” and
Nonlinearity Indices

The models of Section IV are defined up to the values of the un-
specified coefficients. Any set of values for these coefficients may be
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said to provide a “fit” to the 960-point sample of data. Thence one can
define a sum of squares function of the set of coefficients as

S8 (coefficients) = » (observed — “fitted”)?, (30)

which will take on various (positive) values as one varies the values
of the coefficients. In the space of the coefficients there exist then, in
principle, contours of this “sum of squares” function.

While standard errors provide information on reasonable allowances
for the estimate of a single parameter in the light of the fit of the
model to the actual body of data, they do not carry any information
on the joint statistical properties of the estimates. A reasonable (ro-
bust and primitive) indication of joint statistical behavior is provided
by these “sum of squares” contours in coefficient space.

In the case of models in which the unknown coefficients occur lin-
early, these contours are a family of ellipsoids defined by certain sim-
ple quadratic functions of the coefficients. The orientation and shape
of this family of ellipsoids indicate the interdependence of the esti-
mates of the coefficients in the light of the data, and show which
coefficients are well-determined and which poorly. However, the in-
terpretive value depends heavily on geometrical appreciation and, for
more than a few coefficients, high-dimensional representation eannot
he achieved directly.

The ellipsoid (even in the linear case) is not defined, in general, by
its one-dimensional projections. (The standard error of a coefficient
estimate is half the length of the projection of the unit ellipsoid of
the family onto the coefficient axis.) But, as a matter of simple geo-
metrical fact, all pairs of two-dimensional projections do uniquely de-
fine the ellipsoid. Thus, one practical means of a complete graphical
representation of the high-dimensional ellipsoid is in terms of all possi-
ble pairwise planar projections.

For the case of linear models, on the basis of a series of assumptions
—mnamely that the differences between the model and the observations
are due to statistical fluctuations which are normally and independ-
ently distributed all with zero mean and the same variance—some may
choose the abstract probabilistic interpretation of these ellipsoids as
“confidence regions” (see, for example, Wilks!®), If this interpretation
is used, it is necessary that the distinctions and relationships between
the joint, pairwise and marginal confidence coefficients and regions or
intervals be understood. Details will not be provided here. Briefly, if
a nine-dimensional ellipsoid were specified to have a confidence coeffi-
cient of By, then any two-dimensional projection would have a con-
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fidence coefficient of B., interpreted marginally. The relation between
Bg and B, is indicated by the following:

Bo B
0.13  0.90
025 095
0.50  0.984
0.75  0.997
0.90  0.9994

0.95 0.99995

In the present case, the model is nonlinear and the fluctuations are
not normal. Contours of the sums of squares funetion as a function of
the coefficients can, in prineiple, be obtained for a given body of data
and will not be ellipsoids. In practice, however, obtaining these con-
tours is so laborious as to be virtually impossible.

However, one may consider a linear (planar) approximation to the
nonlinear model in the neighborhood of the least squares estimates of
the coefficients and thence obtain expressions for a family of ellipsoids
which may be reasonably good approximations to contours of the sums
of squares function. An index of the effective nonlinearity of the
model is the nonconstancy of the sums of squares of residuals on these
ellipsoids and this can be normalized by division by the value of the
minimum sum of squares. Such measures are presented and discussed
in Seetions VIII and IX.

Gliven that the linear approximation is adequate, the nonnormality
of the observations should not deter those who seek (and who believe
in) the general probabilistic confidence interpretation since the statis-
tical process is likely very robust.

Seetions VIIT and IX contain specific examples of some of the pair-
wise projections of these “approximations to sum of squares contours.”
Specifically, the size of the 9-dimensional cllipsoid was such that, if
all the statistical assumptions applied, a joint 0.99 confidence coeffi-
cient could be attached. Since a complete set of pairwise projections
for nine coefficients involves 36 ellipses only a few are shown. As a
summary indicator of the nature and behavior of these ellipses the
quantity

a = (sign of p)-(1 — V1 — g (31)
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is tabulated (in Tables IV and V), where p is the correlation of the pair
of coefficients involved. The value of 1 — |a| is the ratio of the area of
the actual ellipse to that of the largest ellipse which could be inscribed
in the rectangle formed by the horizontal and vertical tangents to the
actual ellipse (see Wilk*®). The range of @ is —1 £ a = 1 and large
values of |a| (say above 0.75) corresponds to narrow ellipses with major
axis oblique to the coordinate axes, and represent situations of high
interdependence of the coefficient estimates.

B.6 The Analysis of Variance

The analysis of variance provides a summary description of the
apportionment of the “variability’” of a body of data in the light of
the model employed for analysis, where variability is defined in terms
of sum of squares.

Given n observations, one may visualize an n-dimensional observation
space, whose coordinates represent the possible values of each of the
n observations. The data are then represented by a fixed point in this
space,

The model, having p unspecified coeflicients, implies certain functional
relationships amongst the coordinates of the observation space. Thus
the model effectively defines a constraining “surface” of p dimensions,
and each point on this surface corresponds to some set of values of
the unspecified coefficients of the model. The least squares estimate
of the coefficients corresponds to that point on the constraining surface
which is closest to the actual data point. If the coeflicients in the model
occur linearly then the constraining surface is a hyperplane which
ordinarily, by definition of the observations, contains the origin, and,
if the model includes o constant term, also contains the equiangular
line (corresponding to the mean).

The squared distance of the data point to the origin is then the total
sum of squares, ». Y?, while its shortest squared distance to the
constraining surface is the error or residual sum of squares, associated
with lack of fit. The difference between these may be termed the model
sum of squares and, for linear models, this is actually the squared
distance from the least squares estimates point to the origin.* If a
constant term is included in a linear model, then the model sum of
squares may be further decomposed additively in terms of the squared

*In the linear ease, the model sum of squares is easily computed directly as
the squared length of the projection onto the hyperplane of the line joining the
data point and the origin. This fact is used in the present iterative computer pro-
gram in checking convergence.
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perpendicular distance (call it D}) of the least squares estimate point
to the equiangular line and the squared distance (call it D7) along the
equiangular line, from the foot of that perpendicular, to the origin.
This latter quantity D? is usually termed the sum of squares due to
the mean. The squared distance of the above-defined point on the
equiangular line to the data point is called the corrected total sum
of squares, 3 (¥, — ¥)* and is just J, ¥? — Dj. The ratio of the
squared length D} to the corrected total sum of squares is defined as
the squared multiple correlation, R’, and often used as a measure
of accomplishment of a model. It is easy to show that R* defined above
is equal to
sum of squares for error

total corrected sum of squares

This latter quantity is computable even when the model is nonlinear
and/or does not contain a constant term.

One may define contours of sums of squares of residuals in the con-
straining surface as the loci of the intersections with the surface of
given radii from the observation point. In the event that the constrain-
ing surface was a hyperplane, which would be true if the unspecified
coefficients in the model oceur linearly, then these loci (or contours)
would be a family of p-dimensional spheres. For nonlinear models,
this will be approximately true for a sufficiently small neighborhood
of the least squares point.

The particular form of the model, in regard to the unspecified co-
efficients, defines a coordinate system within the constraining surface.
Three cases are worth distinguishing. First, the constraining surface
is a hyperplane and the coefficients are linear. Second, the surface is
a hyperplane but its eoordinates are nonlinear. The second case may
be reduced to the first by appropriately transforming the coefficient
coordinate system. Third, the surface is nonlinear. In this case one
can approximate the surface by a hyperplane in a small neighborhood.
Thus, in a sufficiently small neighborhood, the situation can be re-
garded as linear.

The approximately or exactly linear coordinates implied by the
model will in general be nonorthogonal. Thus, the representation of
the spherical (exact or approximate) contours in an orthogonal co-
ordinate system for the coefficients yields a family of ellipsoids. In the
sense of measuring lack of fit by sums of squares between fitted and
observed values, these contours in coefficient space constitute sets
whose members are “equidistant” from the data point.
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B.7 A Procedure for Smoothing in Cells

In Sections 7.1, 13.3 and Appendix B.3, discussion of why and how
to sample and possibly “smooth’ the data has been given. One specific
practical possibility is now described.

Suppose one has a preliminary fit of the model, represented by
g(w, ; 8), where & = (8,, 6,, --- , 8,) are the fitted coefficient values
and w; denotes the independent variables. Suppose this preliminary
fit is used to partition the space of the independent variables (here
xz and L) into some approximation of equirange cells, as deseribed
earlier, As argued in Section XIII, it may be profitable to “smooth”
the data in each cell so as to yield a value generally representative
of all the observations in that cell, instead of using a random selection
from the cell.

A sensible smoothing funection for each cell is, clearly, the model
g(w; 6). A simple procedure is, for each cell separately, to carry out
one stage of linear adjustment, doing the linear least squares regression
of {¥; — g(w, ;6)} ondg/ae, |;, ---,dg/a8, |;, to obtain the regression
coefficients § = (3, , - - -, §,), for that particular cell. Then the smooth-
ing function for that cell would be g(w; §) where § = 6 + 3. A rep-
resentative “smoothed observation” for that cell might then be the
quantity g(«w; §), where 0 is, say, the mid-point of the cell.

This process permits each cell, overall, to determine a single value
to represent it in the entire fitting process and diminishes the chance
that a random selection from a cell may be unnecessarily nonrepresenta-
tive of that cell behavior.

If one had wished to fit to all the available data, then the smoothed
cell values would be weighted in proportion to the number of data
in the cell. In the present case, this was deliberately not done.

The goodness of fit of a model to smoothed cell values, not dif-
ferentially weighted, cannot be statistically judged directly from the
analysis of variance since the residuals are no longer individually
statistically comparable and the mean square residual is not an estimate
of the error variance of the observations. However, the fitted model
can be assessed by functions of its residuals from the original data
(or a sample thereof).

B.8 Probability Plotting

The techniques of probability plotting are useful for data analysis
in a wide variety of circumstances. (See Wilk and Gnanadesikan'” for
a general discussion of probability plotting techniques.) For instance,
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in the present work, plots of residuals against various variables have
provided invaluable guidance, but one is also interested in the dis-
tributional behavior per se of the collection of residuals. As presented
in Section 8.1, normal and half-normal probability plots have been
used for this purpose.

The rationale for such probability plots is roughly as follows: If one
draws a random sample of size n from a population which is normally
distributed with mean x and variance o® then the ordered observations
would be expected to approximate, roughly, to a linear function, p +
ozi(n), of appropriate “representative” values z;(n) from a standard
normal (x = 0, ¢* = 1) distribution. Thence a plot of the ordered ob-
servations against the z;(n) would tend to be linear, with intercept
approximately p and slope approximately o. For the representative
value, z;(n), corresponding to the ith ordered observation, one ean use
the standard normal quantile for the proportion (i—%) /n.

This plotting technique displays the individual observations in a
sample graphically and does so against a backdrop such that the ex-
istence of outliers and asymmetry, as well as other distributional prop-
erties, are sensitively indicated. Of course such plots are usually profit-
ably supplemented by others that order or partition the data according
to information extraneous to the responses themselves.

We expect the mean of the residuals, ¥ — g, in the present study (see
Section 8.1) to lie near 0. Also we expect that their variances will be
approximately the same, since that is the purpose of the square root,
transformation. As a further benefit of the square root transformation
we expect that the distribution of the residuals will tend to be sym-
metrie and to approach normality; thence the present application of
normal probability plotting of the residuals. The fact that these resid-
uals are not entirely statistically independent—since they derive from
a commonly estimated fitted function—is a minor issue since the num-
ber of observations is so much larger than the number of fitted coeffi-
cients.

Half-normal probability plotting employs the ordered absolute re-
siduals plotted against standard half-normal (standard normal folded
at 0) distribution quantiles. Such a plot eliminates any symmetry-type
information but provides an ineisive focus in bringing together on the
plot the largest departures from fit.

Probability plots ean provide very sensitive indications of distribu-
tional peculiarities especially in regard to “overly” large values. Some-
times the indications are of little practical interest, such as minor
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lumps which one can see in Fig. 29, but in other regards, such as in
estimating an “intrinsie” error standard deviation, the plots may per-
mit a good judgment on how to discount or correct for apparently
aberrant values which might otherwise have an undue influence, say,
0N mean square error.

Error standard deviations may be estimated from normal or half-
normal probability plots as the “slope of the linear configuration.”
Typically, it will not be relevant to make a great show of objectivity
in this proecess since the deelared purpose is to permit an informal dis-
counting of unexpected distributional peculiarities, Thus, in Fig. 29,
one takes the slope as defined essentially by the bulk of residuals,
ignoring the few largest.

APPENDIX C

Statistical Measures Over All the HTB Data

This appendix presents various statistical measures over all the
41,135 HTB data. These measures concern the fit of Models T and IT
and the partition of the a.[. space (as deseribed in Section 7.1 and
Appendix B.3) into 1034 cells of which 813 were nonempty of obser-
vations. The partition is such that the range of i within cells is rela-
tively small. For each cell, two functions are used: (i) The mean
square deviation (MSD) defined as

MSD (w) = ,Tiil Z (u, — a)°, (32)

where the cell has n observations and u; denotes some function of a
cell observation, e.g., Y, or Y7, and @ is the mean of the u; in the cell;
(77) The mean square residual (MSR) defined as

MSR (V) = £ 3 (1, = ), (33)

where y; is the fitted value (from Model I or II) corresponding to the
observed Y;.

C.1 Empirical Justification of Square Root Transformation

Figs. 56 and 57 show plots of MSD(Y?) versus the cell mean of ¥*
and MSD (V) versus the cell mean of Y, respectively. Tt is seen that
MSD(Y?) shows a distinet and major dependence on the average
value of the counting rate, Y, while MSD(Y) does not show syste-
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matic increase relative to the average value of Y, except, as expected,
in the close neighborhood of zero counting rate.

A more detailed analsis of the results of Fig. 56 indicates that the
dependence of MSD(Y?2) on cell mean of ¥? is somewhat curvilinear
having larger slope for larger ¥? values. This curvilinearity is very
likely mainly due to the mode of definition of the x,L cells. The
procedure used tends to produce cells which are “too large” in regions
where the counting rate is also large, thus leading to an apparent
extra inerease in MSD(Y?) with Y2 At all values, however, the
dependence of MSD(Y?) on Y? is greater than the slope 0.09 (=1/11)
which would be associated with the Poisson distribution. The em-
pirically observed slope varies from about 0.15, based on small values,
to 0.3, based on large values of the MSD (Y?).

These results suggest that one cannot hope to achieve, by means of

20

I I I I [ | T I I I I I

ceLL MSD(Y2)
T

ceLL MEAN(Y2)

Fig. 56 — Cell MSD (¥*) vs cell mean of Y? for the x, L cells defined in Sec-
tion 7.1 and Appendix B.
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Fig. 57 — Cell MSD (Y) vs cell mean of Y for the z, L cells defined in Section
7.1 and Appendix B.

any fitted model based on 2,L coordinates, on the scale of ¥, a mean
square residual (error) as low as 0.023 which is associated with the
Poisson assumption.

Although the Poisson assuinption provided a useful stimulus toward
a profitable transformation of the data, these results confirm that
it would have been unwise to have tied oneself too closely to the
assumption as a complete basis for analysis, as for instance in basing
the fit on maximization of the Poisson likelihood function (see
Appendix B.2). Possible sources of variability and error in the data,
beyond Poisson fluctuations in counts, have been discussed elsewhere
in this paper.

C.2 Determination of Weights

The sample selection procedure involved ‘“weighting” the 813 non-
empty cells by selecting 2, 3/2, or 1 observation per cell. The observed
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MSD (Y) were classified into three groups defined by: 0 = MSD =
0.013; 0.013 < MSD = 0.02; 0.02 < MSD. The z,L coordinates of the
midpoints of cells so identified are shown in Fig. 58. The actual assign-
ment of weights was based on applying contiguity considerations to this
plot.

C.3 Analysis of Variance Qver All the HT'B Dala

Table VIII summarizes the analysis of variance over all the 41,135
HTB data. The table covers the fit of Models I and II to all the data,
using the estimated coefficients (see Tables IV and V) from the fit
to the 960-point sample. Also, one can regard the collection of
averages of the ¥ values in each of the 813 nonempty cells as pro-
viding a fit depending on 813 fitted quantities. The corresponding
“arror” (cell deviations) is the pooled cell MSD(Y). Finally, the
residuals of the fit of Model T (or II) can be “fitted” by 813 ecell

1.0 1
0.8 .
s
0.6
T ot S e
0.4 100 o -—R=20Re —
Uu 5a=
= o%a © CELL MSD (Y) ]
N ool ¢ 0EMSDZ0.013
0.2 ., 4 0.013<MSD Z0.02 _
. . © 0.02 < MSD
| | | | ] | |
1.0 1.4 18 2.2 2.6 3.0

Fig. 58— Positions of centers of regions in =, L space having certain ranges of
cell MSD (Y). The ranges are indicated in the legend.
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TaBLE VIII— ANALYSIS OF VARIANCE OVER ALL THE HTB DaTa
(41,135 Points Minus 226 OUTLIERS).

l T
Due to | d.f. l Sum of squares Mean square

Total (41,135-226) I 40,009 | 230,267.45

Mean 1 ' 115,755.39

Corrected total 40,908 | 114 ,512.07

Model I residuals 40,900 | 1,411.3 0.0345

Model IT residuals 40,901 1,419.6 0.0347

Cell deviations 40,096 | 15414 0.0384

Cell dev. of Model T res. 40,085 | 1,167.0 0.0291

Cell dev. of Model 11 res. 40,086 | 1,166.9 0.0291

Multiple K2 value
Model 1 0.988
Model IT 0.988

averages of the residuals, leading to an “error” which is the pooled
cell MSD (Y — ), i.e., due to the cell deviations of the Model T (or
I1) residuals.

The fits to all the data provided by Models T and 1I are equally
good, as was true for the 960-point sample. The mean square resid-
uals over all the data (about 0.035) is lower than the value (about
0.036) obtained for the sample even though the fit of the model was
determined by the sample. This hears out the expectation (see Ap-
pendix B.3) that the mode of selection of the sample is such that the
sample was harder to fit on o per-observation basis than the entire
body of data.

The cell means provide overall a poorer actual fit than Model I or IT,
and allowing for the number of fitted coefficients, the mean square for
cell deviations exceeds that for the models by about 12 percent.

Fitting cell means to the model residuals yields an additional sub-
stantial reduction in the sum of squares of the model residuals and a
mean square of about 0.029, which is some 17 pereent lower than the
value for the models. If in fact the models gave an “unbiased” fit every-
where, then one would expeet that the values of pooled MSR(Y) and
pooled MSD(Y — ¥) would be nearly the same. The excess of the
former is duc mainly to systematie inadequacies of the fit (see
Appendix C.4).

The value 0.029 represents virtually a lower bound on the achiev-
able ‘mean square error’ for this body of data. Despite its downward
bias from the substantial number of ‘zero counting rate’ observations,
it exceeds the ‘Poisson’ variance of 0.023 by about 25 percent. This
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excess is probably due to a combination of factors, including incom-
plete elimination of temperature and bias voltage instrumental effects,
as discussed further below.

The ‘improvement’ of the MSD (Y — y) over MSR cannot be taken
to mean that some smooth “simple” adjustment of the model based on
x,L coordinates might be found so as to yield similar improvement.
Some of the bias apparently associated with z,L coordinates in dif-
ferent regions may be due to artifactual association with temporal,
instrumental, or other small effects and such corrections could not be
made overall in terms of a “simple” z,L dependence.

C.4 Analysis of the Excess Variation

A study of plots of cell MSD(Y) against each of y, x, and L
indieates that large MSD values occur mainly in the 1.2 < L < 1.7
region, at high average counting rates. This excess is due largely to
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Fig. 59— Cell MSR (Y) vs central value of " for cell.
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I'ig. 60 — Positions of centers of regions in z, L space having eertain ranges of
cell MSR(Y)/MSD(Y). The ranges are indicated in the legend. (Plotted
points are mid-points for the cells. Points appearing to the right of the boundary
R =20 R, represent cells which have data only in one corner.)

the hybrid mode of x,L cell formation, in which the L-slices were
equal length intervals, while within each L-slice, the x segments were
chosen to have equal increments of y. Thus, at L values where y is
large, the x,L cells will tend to have a larger y range.

The tendency of MSD to rise with cell average counting rate is
not mirrored by cell MSR behaviour. As shown by Fig. 59, the level
of MSR is not dependent on y except, as expected, for those cells
where the counting rate is near zero. Roughly speaking, the average
level of cell MSR for y values away from zero is about 0.04, in agree-
ment with the probability plot estimate of Section 8.1. Of course, Fig.
59 shows both smaller ordinate values and less dependence on the
abscissa values than the comparable plot of Fig. 57.

The relation of cell MSR to cell MSD is partially indicated in Fig.
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60, showing positions in x,L space of various ranges of the value of
the ratio MSR/MSD. One sees that MSR tends to exceed MSD along
the “outside” of the data region. The excess along the R = 2 R.
boundary is due mainly to model bias or inadequacy. The excess at
high L-high x is probably associated with temporal effects. The large
ratios along the left edge of the data, which is the cutoff region, is
likely a reflection of deficiency of the function. The excess of MSR
over MSD is associated in the main with small 3 values.

Fig. 61 shows cell mean square deviations of residuals, MSD(Y —y),
plotted against y. This plot shows less scatter (most noticably for
MSD(Y — y) > 0.075) than that of Fig. 59, and a lower average level
of MSD (Y — y) for y > 0, as expected. The high values of MSD (Y — )
are not related to y as such but rather, as other plots show, with
“oxtra fluctuations” in the 1.2 < L < 1.7 region. This is probably
associated with the coarse HTB data partition which does not com-

°'2°|— T T T T T T T
i
Ll

cELL MSD(v-y’)

CENTRAL (FITTED) Y' FOR CELL

Tig. 61 — Cell MSD (¥ — y’) vs central value of i for cell.
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pletely take care of the temperature and bias voltage instrumental
effects.
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