The Excitation of Planar Dielectric
Waveguides at p-n Junctions, |

By J. McKENNA
(Manuseript received April 26, 1967)

The fields excited within a planar dieleciric waveguide by an externally
incident electromagnetic field are studied in this paper. The dieleciric
waveguide fills the half space z > 0, while the half space z < 0 is air.
The waveguide is formed by a nonuniform, anisotropic, nonabsorbing,
dielectric medium. Different choices of the dielectric tensor for this medium
yield different waveguides. Certain models which are particularly relevant
to electro-optic diode waveguides and laser diode amplifiers are studied
in some detail. An arbitary incident field will, in general, excite not only
a finite number of propagating modes, but also a background of continuum
modes. Integral representations of the total transmitled field within the
waveguide as well as of the reflected field are obtained. The representation
of the total transmitted field can be decomposed into a finite sum of discrete
propagating modes, a continuum propagating field, and an evanescent
field. Explicit evaluation of the fields depends on the solulion of a pair
of integral equations. In practice, the dielectric tensor of the waveguide
differs but liltle from the dielectric conslant of the surrounding material.
An approximate solution is found for this case, and numerical resulls
will appear in a following paper.

I. INTRODUCTION

Recently there has been great interest in the guiding of light by the
p-n junction region in certain piezoelectric semiconductors, for it has
heen noted that the Pockels effeet due to the eleetric field within the
p-n junction can be used to modulate light which propagates parallel
to the junction plane.~ This effect was first observed, and has been
most intensively studied, with visible light in GaP junctions,' but it
has also been observed with infrared light in GaAs junctions.™*

All treatments of the effect so far have assumed that the p-n june-
tion region, which has a higher dielectric constant than the surround-
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ing, normal GaP, behaves like a dielectric waveguide.*® A detailed
analysis of this waveguide would require a knowledge of the optical
properties in the neighborhood of the junction. However, since these
properties change significantly in a fraction of a wavelength, it is ex-
tremely difficult to investigate them individually by experimental
means. In order to get around this difficulty it has been necessary to
adopt an indirect approach based on analyzing a number of different
mathematical models and comparing their predictions with experiment.

As part of this program Nelson and McKenna® have investigated
the possible discrete modes which can propagate in a number of dif-
ferent models and have studied in considerable detail the properties of
the lowest-order mode of each polarization. Recent experimental work
has made it increasingly clear, however, that a knowledge of the dis-
crete modes alone is not enough to provide an understanding of these
p-n junction dielectric waveguides. This is because a beam of light,
when foeused on the face of a junction waveguide, excites within the
waveguide not only a finite number of discrete modes, but also a back-
ground of continuum modes. In many cases this background light is
intense enough to mask important features of the discrete propagat-
ing modes. Thus, unless an understanding of this background light is
available, the task of comparing the predictions of different mathe-
matical models with experiment is almost impossible. An understand-
ing of the electromagnetic boundary value problem involved also has
great relevance to understanding what happens when light is intro-
duced into a laser diode amplifier.

The purpose of this paper is to study in some detail a class of math-
ematical models of the excitation of dielectric waveguides. These mod-
els are simple enough so that the mathematical analysis can be per-
formed and the background light can be investigated carefully. At the
same time, it is felt that the models are realistic enough so that their
predictions can be compared with experiment.

The models can be described as follows. The waveguide consists of
the half space z > 0, as shown in Fig. 1, while the region z < 0 is air.
The waveguide itself is assumed to be formed by a nonuniform, aniso-
tropic, nonabsorbing dielectric. The components of the dielectric ten-
sor are functions of the coordinate x only, and for each value of x the
dielectric tensor is diagonal in the fixed coordinate system shown in
Fig. 1. As an example, for the GaP electro-optic diode modulator stud-
ied in NM this corresponds to the cases where the junction field is in
the [111] or [100] directions. Each such model is determined by its
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Fig. 1 —Symmetric step model illustrating the coordmnte system used in all
the models. The diclectric tensor is always diagonal in this fixed coordinate sys-
tem.

dielectric tensor whose diagonal elements we will denote by K,(z)
(n=u=a,y,2).

It was shown in NM that the amount of absorption encountered in
GaP electro-optic diode modulators was too small to affect significantly
the shape of the modes. It is, therefore, felt that the study of absorp-
tionless models here is well justified. It was also shown in NM that
the detailed analytical form of the functions K,(z) is not important
when only the lowest-order discrete mode of each polarization can
propagate. The most important features of the discrete modes can be
determined by studying models for which the functions K,(zx) are
step functions (piece-wise constant). Although it is possible to carry
out a good deal of the analysis without specifying the functions K, (),
the final detailed results naturally depend on the choice of K,(z). We
shall concentrate here on two models, the symmetrie step model and
the asymmetric step model. The symmetrie step model is defined by
the equations®

K. (x) =K, , le | <w (1)
= K, [z ]| >w (2)
and the asymmetric step model is defined by the equations®

K.(x) = K, , [o] <w (3)
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=K,, r< —w (4)
=K, , r > w, (5)

where K < Ky, and K,, > K; = 1, m = x,y,2j =0,1,2 (see Fig.
2). In the case of the GaP electro-optic diode modulators there are
relations of the form®

K, =n'(1 + 8.), (m=ux,y,2) (6)
n'(1 — A), K; =2%(1 — Ay, (j=1,2). (7)
In (6) and (7) n is the index of refraction of normal GaP, the quan-
tities 8, are linear in the junction field (the linear electro-optic effect),
and 0 = |3, < AK 1

In Section II we will write down general integral representations for
incident waves in the region z < 0, as well as integral representations
for the resulting reflected and transmitted fields. These integral rep-
resentations will involve a number of unknown functions. Some of
these functions are determined directly from the structure of the wave-
guide and are independent of the incident field and the boundary con-
dition at z = 0. The remaining unknown functions are determined by
the incident field and the boundary conditions at z = 0. We show that
these functions satisfy a set of linear integral equations. The results
of Section IT are independent of the specific form of K, (x) and the
incident field. In Section IIT we explicitly calculate the unknown func-
tions which depend only on the structure of the waveguide for the
symmetric and asymmetric step models. In Section IV we obtain ap-
proximate solutions of the integral equations for a special class of
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Fig. 2— (a) The function K.(z) for the symmetric step model. (b) The
function K. (z) for the asymmetric step model,
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waveguide models. The remaining unknown functions are determined
for these models in terms of the incident field. In a second paper on
this subject we will give asymptotic expansions and numerical results
for the fields within the waveguide for the symmetric and asymmetric
models when they are excited by a (Giaussian incident wave.

II. A GENERAL DESCRIPTION OF THE FIELDS

In this section we study formal solutions of Maxwell’s equations
which describe an incident wave in the region z < 0 moving to the
right and striking the waveguide from the left, a reflected wave in the
region z < 0, and a transmitted wave in the region z > 0. The fields
are assumed to be monochromatic and independent of the coordinate
y. We write for the total electric and magnetic field vectors

E(r,z, 1) = Re (e(x,2)e’™"),  Hlz,z, 1) = Re (h(x, 2)e’*"), (8)
and for the total eleetrie displacement and magnetic induction vectors
D(z, 2, 1) = Re (d(x,2)e"*"),  Blx,2, ) = Re (b(z,2)e™"), (9)

where Re denotes the real part and w = 2#f is the angular frequency
of the radiation. Then Maxwell’s equations are

V X e = —iuwb, V.d =0,
V X h = iud, Vb =0.

(10)

From our assumptions about the model, the constitutive equations can
be written as

b = ph, d = ¢K- e, (11)

where ¢ and g, are, respectively, the permittivity and permeability
of free space. The dielectric matrix K = K(x, z) is the unit matrix
forz < 0, and for z > 01t is a diagonal matrix whose diagonal elements,
K.(x) (n = x, y, 2), are functions of v only. It is a straightforward
matter to show that any solution of Maxwell’s equations satisfying
the above assumptions can be written as the linear combination of a
TE solution and a 7'M/ solution. We consider these solutions separately.

2.1 TE Fuields

We first look for TE solutions having the form

e(x,z) = [0, e,(x, 2), 0], hir,2) = [h{x, 2), 0, h.(x,2)]. (12)
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In the region z < 0, e, must satisfy the Helmholtz equation

6_2‘32 e,
az” az"

where the free-space wavenumber k is defined by

+ Ke, = 0, (13)

k= w(fu#u)% = 27"/)\

and A is the free-space wavelength. The total field in z < 0 is the sum
of the incident field ¢! and the reflected field e;” and both ¢,” and el
are solutions of (13). In the region z > 0 there is only the transmitted
field which satisfies the equation

&e, | Pe,
ax® ' o7
A solution of (13), which can be found by separation of variables,

and which deseribes a general incident field due to sources in z < 0
at a finite distance from the plane z = 0, is

+ KK, (x)e, = 0. (14)

6,2 =5 [ ") exp {—i9(e — ila) dl, (1)
where
o) = +VE — I, [l =k (16)

= —iVE=F, |l|zk
The components of the magnetie field vector can be obtained with the
aid of Maxwell’s equations by differentiating (15). Let =(zo) denote
the strip —o0 < & < o0, 0 = y = 1, lying in the plane z = z,. Then
the time averaged power incident on %(z), z = 0, is independent of 2
and is

Pi= —iRe [ @ ol (@, 9" do

k r——
— (dmop)™" f CVESE 0 Fa, ()

where * denotes complex conjugation. We will assume that

f 16°() [Pdl < » and f o) | |60 Fdl < .
(15) is to deseribe an incident field due to sources at z = — o, then
it is easy to see that we must have &/” () = 0, | | > k. Since the incident
field must be specified, it will always be assumed that &,” (I) is known.
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A solution of (13) deseribing a general wave reflected from the wave-
guide surface z = 0 is

ez, 2) = Tl,rf &8, (1) exp 1)z — ilx} dl. (18)

We will always assume that the source of the incident radiation is
perfectly absorbing so that e{” (x, z) + e[ (x, 2) is the total field in
the region between the source and the surface of the waveguide at
z = 0. It will be seen that because of the boundary conditions at z = 0,
&."(l) generally does not vanish outside some finite [ interval. Because
of the factor exp [iQ(l)z}, that part of the integral in (18) between
the limits —k and k&, [%, | | dl, represents a traveling field, while
the remainder of the integral represents an evanescent field which
damps out very rapidly in the negative z direction. The time averaged
power reflected back through the strip =(2), z £ 0, is

k I
P, = (4mop)™ f VIE = &) | dl. (19)
—k

We now turn to the transmitted field. We use the method of separa-
tion of variables, and we seck transmitted waves which are linear
superpositions of solutions of (14) of the form

ey (x,2) X e,(x) exp | —iV =iz}, (20)

In (20) » is a real separation parameter, and if » > 0, v/ —» = —iv/.
If (20) is substituted into (14) we get the eigenvalue equation

de,
P

Equation (21) defines a singular, self-adjoint, second-order boun-
dary value problem on the interval — e < 2 < . The theory of this
equation is well known, and we refer the reader to Coddington and
Levinson® for a detailed treatment. We give a summary here of those
properties of such equations which we will need.

For all the models under consideration, the functions K, (z) are
positive, bounded functions, which are bounded away from zero, and
which are differentiable except for at most a finite number of step dis-
continuities. Equation (21), therefore, defines a problem which is ealled
limit-point type at both plus and minus infinity. This means that for
arbitrary, complex v, (21) possesses exactly one solution {up to a con-
stant factor) which is square integrable over 0 < 2 < o0, and exactly
one solution which is square integrable over —s0 < 1 < 0.

+ (K, (x) + v)e, = 0. (21)
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For a given real number v, let ¢, (z, ») and . (x, ») be the two solutions
of (21) which satisfy the conditions that ¢;(z, ») and ¢}(z, ») be con-
tinuous and which satisfy the initial conditions

@0, =1, «(0,» =0, (22)
‘F2(Or V) = 01 ‘Pé(or I”) = 1, (23)

where / = d/dx. Equation (21) also determines a 2 X 2 matrix-valued
function p(»), — < » < o, having the following properties: (i) p(»)
is Hermitian (p;x(») = pX(»)). (1) o(») — p(u) is positive semidefinite
if » > p (i47) p;u(v) is of bounded variation on every finite interval.
The matrix p(v) is called the spectral density matrix and its construction
is outlined in Section III. Then if {(z) is any square integrable funetion
(f=.] {(z) |*dz < =), we can define two transforms of /(x), g;(») 1=1, 2),
such that

tim [© 3 {g,.(,,) ~ [ @eta s}

'{gk(”) - f{ (@), v) dx}* dp;(v) = 0. (24a)

4 . . - -

This is referred to as convergence in the mean with respect to the
measure p(»), and in the manner of Fourier transforms of £* functions,
we write

o0 = [ J@ete, e G=1,2). (24)
In terms of these transforms, the Parseval equality
[ rae = 5 [ 0600 deut), (25)
and the expansion
W= % [ el a6 dout) (26)
k=1 —-:

are valid. Equation (26) is defined in terms of convergence in the
mean. The set of real points v at which the functions pj(v) are noncon-
stant is the spectrum of (21). The set of points where any pj(v) is
discontinuous is the point spectrum and for each such value of », (21)
has exactly one square integrable solution. The continuous spectrum
is the set of points of continuity of p(v) which are in the spectrum. In
Qection 11T we will exhibit the spectral density matrices for two im-
portant models.
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We can now write down a formal expression for the transmitted
field:

el e, z) = 5 [ exp f—f\/i—_;zlr,:,-(;t'. ) g:(v) dp;(v). (27)
J k=1 V—x

The two initial value solutions ¢;(x, v) (7 = 1, 2), as well as the func-
tions py(v) (j, k = 1, 2) are determined, independently of the bound-
ary conditions at z = 0, by (21) and we can assume that they are
known. The two unknown funetions g;(v) (j = 1, 2) in (27) are de-
termined by the field at z = 0, since with the aid of (24) we ecan write

0.0) = [ e, 0,ta, ) de. (28)

It is clear that beeause of the factor exp | —iV/—yz!, the parts of the
integrals [2, in (27) represent the propagating portion of the trans-
mitted field, while the parts [{ reprent the evanescent portion of the
transmitted field. With the aid of the Parseval relation, (25), we can
write down an expression for the time averaged power transmitted
across any Z(z), z = 0,

Po= o X [V 0 deut). (20

We now make use of the conditions that e,(x, z) and h,(x, z) must
be continuous at z = 0 in order to write down a set of integral equations
which determines & (1), g,(»), and g,(»).

2

ilf [65°() + &7 al = 3 [ oz, 1)) dpulv), (30)

ik

_)i [ (s, () — &7 (D) """ dl
2T J_

> /- V =g (2, )g) dppv).  (31)

fok=1 v —=

Although there appear to be only two equations in three unknown
functions, because of (24) and (26), (30) and (31) are sufficient to
determine the unknown funections. We indicate formally why this is
true, although it will be clear from the results of Seetion IV that this
scheme must be modified in specific cases. We do not go into these
modifications, because in Section IV we use a different scheme to get
approximate solutions. With the aid of (24b), solve (30) and (31) for
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g;(v), giving the four equations

00 = [ ete g [ 1800 800K, 6

Vo) = [ e drg [ o0"0) — &0k dl, @3

for j = 1, 2. On eliminating g;(») between these equations we get the

two equations in the unknown &;” ().

[ °° oie, ) dz 5 [ ” (V= + a)ES e dl, .

- [ ety [ : (= v/ + QES e dl,

for j = 1, 2. Now from (26) we can write f(z) = fi(x) + fa(x) where
1@ = 2 [ el a6 dout) k=12, G
i=1 v -

f_i fu(@)e(x, v) dx = 6;:0:(v) G,k =1,2), (36)

and §;, is the Kronecker delta function. It is this decomposition of
an arbitrary f(z) into components lying in the two subspaces spanned
by ¢.(z, ) and e.(z, ») which is reflected in the two integral equations
(34). The solution of (34) with given j yields the component of the
reflected field lying in the subspace spanned by the corresponding
o (x, v). Let &{7(1), i = 1, 2, denote the two solutions. Then &N (1) =
g () + &!7(1) describes the total reflected field. With this result
g;(») (7 = 1, 2) can be obtained from either (32) or (33). We have been
unable to obtain exact solutions for the integral equations (30)—(31)
for any of the models considered here. However, in Section IV approx-
imate solutions are obtained for certain situations of interest.

2.2 TM Fields
We next seek TM solutions of Maxwell’s equations of the form
e(x: Z) = (e-t(x? z): 0, 6,(1‘, 2)), h(xa z) = (Or h,(ﬂ?, z)r 0). (37)

In the region z < 0, h, must satisfy (13). In the region z > 0, h, must
satisfy the equation

- {(I/K,(.r)) "’;‘_;} + 5"’;{(1/1{,@)) %f‘;} +Kh, =0.  (38)




PLANAR DIELECTRIC WAVEGUIDES 1501

Just as for the TE fields, a general incident field due to sources in
z < 0 at a finite distance from the plane z = 0 is

K (x, 2) = ﬁf 507(1) exp {—i@(Dz — ilx) dl. (39)

The time averaged power due to this wave which is incident on Z(z),
z2=0,is

-] k
P, = %Ref (@, DRz, 2)* de = (drwe)” f o) | 3¢ ) | dl.
- -k

(40)
We assume that [2, | 5¢{”(0) [*dl < = and [Z,| Q@) | [3(1) *dl < .
As for the TE field if the sources of the 7'M field are at 2z = — o

then 3¢,”(l) = 0, | 1| > k. Furthermore, it will always be assumed
that 3¢{” () is known.
A solution of (13) describing a general reflected wave is

O (x, ) = ﬁf_ 50 (1) exp (102 — ilx} dl. 41)
Just as in the case of the T'E field, A{” (z, z) can be split into a prop-

agating field and an evanescent field. The time averaged power re-
flected back through the strip 2(2), z £ 0, is

P, = (4mwe)”! f_ Z ) | 3" [ dl. 42)

The transmitted field is again treated by separation of variables,
and we write

Iy (x, 2) ~ h(x) exp {—iV —»z].

Then b, (x) satisfies the eigenvalue equation

K (,L} = {(1/1 () f"‘"} + (K. (x) + »)h, = 0. (43)

Equation (43) is not in the canonical form of a self-adjoint boundary
value problem. However, if we make the change of variables

w = f (K.(0))™" dt, (44)

(43) is transformed to the equation

X [{K,( VK. (w)] ™ """]+M(u)+»>h = 0. (45)
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This equation defines a self-adjoint boundary value problem,® and
even though the function {K,(u)K.(x)}™" may have step discontinuities,
the techniques of Ref. 7 can be shown to be still valid. Equation (45)
is limit-point at u = = =, and so on transforming back to the variable
z, the following statements can be made.

For a given real number », let ¢,(z, ») and ¥.(z, ») be the two solu-
tions of (43) which satisfy the requirements that

¥i(@,») and {K.(2)}7'Yi(z,»)
be continuous for all z, and which satisfy the initial conditions
00,2 =1, (1/K.(0)¢(0,») =0, (46)

(0,7 =1, (1/K.(0)¢:0,7) = 1. (47)
Equation (43) determines a 2 X 2 spectral density matrix ¢(v) whose
construction is given in Section IIIL. If f(x) is any square integrable
function of z, we define two transforms of f(z),

no = [ @ue K@) e =12, 9

where equality in (48) is defined in terms of convergence in the mean
with respect to the measure o(v). In terms of these transforms, the

Parseval equality

[ 1@ et de = 3 [ e o), @)

- ik=1
and the expansion

2

@ = 3 [ i ) dout). (50)
are valid. The last equality is again defined in the sense of convergence

in the mean.
We can write down a formal expression for the transmitted field

10w = X [ ew =iV el ite ) dou). (5D
i.k=1 -0

The two initial value solutions y;(z, v) (j = 1, 2), as well as the func-

tions o (v) (j, k = 1, 2) are determined, independently of the bound-

ary conditions at z = 0, by (43) and we can assume that they are

known. The two unknown functions h;(v) (7 = 1, 2) in (51) are de-

termined by the field at z = 0 since with the aid of (48) we can write
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hi(v) = fi by (x, 0) g, (x, ) K (2)) 7" da. (52)

With the aid of the Parseval relation, (49), we can write down an ex-

pression for the time averaged power transmitted across any 3(z),
z2=0:

Po= Qo)™ 3 [~ VT hOIG) dou). (53)

k=1
We can now make use of the conditions that e,(z, 2) and h,(z, z)

must be continuous at z = 0 in order to write down a set of integral

equations from which 3¢{” (1), h,(v), and h.(») can be determined.

2%'- f:n [ () + 3 (e dl = 3 f_: ¥ilx, V() do(v), (54)

iok=1

% .[m QDae,” (1) — e (D]e” " dl

= WK [V bl ) dout). 69

k=1

Just as in the case of the TE field, the solution of (54) and (55) re-
duces to the solution of the two integral equations

fm V”i(ﬂf, V) da Sl;r f"“ { vV —y/I{I(x) + Q(l)li}(f,(,”(l)e—ih dl

- [_ " bz, d.::i f_ i {—V—v/K.(x) + )}

30 (De™ ' dl, (7 =1,2). (56)
I, THE SPECTRAL DENSITY MATRIX FOR SEVERAL MODELS

3.1 General Oulline of the Construction

In Section II it was shown that the determination of the transmitted
field for a given model depended on a knowledge of the initial value
solutions ¢;(z, ») and ¢,(x, ») (j = 1, 2) and the spectral density ma-
trices p(v) and o(v). In this section we study these functions in some
detail for two simple but important models, the symmetric step model
and the asymmetric step model. These calculations illustrate the
technique for treating the whole class of piecewise constant models.

We first outline the general construction of the spectral density
matrices.” The solutions of (21) have the property that the functions
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ei(z, v), @i(z, v) (7 = 1, 2) are entire functions of » for each fixed z,
when » is a complex variable. The first step is to determine the two
functions of », m=(v) and m_o(v) such that when Im » > 0, ¢,(z, v) +
ma(v)es(z, v) is a square integrable function of z over [0, «] and
o:(z, ¥) + m_o(v)gs(z, v) is square integrable over [— «, 0]. The ele-
ments of the spectral density matrix are then given by the formula

o) — () = lim > [ Im My (n + ie) dn 57)

e—+0 T Jy
where x and v are real, Im denotes the imaginary part, and for arbi-
trary complex v

M) = (m-o) — ma())™, (58)
M) = Myu() = 3(m_u() + ma@)(m-u@) — ma)",  (59)
M) = moa)ma()(m-u() — ma())". (60)

Equation (57) defines p;i(») uniquely at points of continuity up to
an arbitrary, additive constant. The functions M a0 G, k=1, 2)
are meromorphic if Im » > 0 and all their real poles are simple. The
point spectrum consists exactly of the points which are real poles
of one of the M ;.(v). There are at most a countable number of such
points. Let », be a real pole of M;,(v) and let a; be the residue there,

Mu() = = 4 oo (61)

VvV — ¥V

Then it follows from (57) and (61) that
pitlvo + 0) — pixlvo — 0) = —Re (a;i). (62)

If », is not a pole of any M;(»), and Im M ;:(v,) 5 O for some (7, k),
then v, is a point of the continuous spectrum and

dp(ve) = }r Im M ,(0). 63)

If v, is not a pole of any My (v) and Im M. (v) = 0 for all (j, k) in
some neighborhood of vy, then v, is not in the spectrum and

doiv) =0 (G, k=1,2) (64)
in a neighborhood of .

3.2 TE Fields for Symmetric Step Model

We now apply these formulas to the symmetric step model for the
case of the TE field. The functions K,(z) (n = =z, y, 2) are defined by
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(1 and 2). Equation (21) has constant coefficients in the two regions
|z] < w and |z| > w. Since e,(z, z) and h.(z, z2) must be continuous
at ¥ = +w, the desired solution of (21) must be continuous and have
a continuous derivative. We have

ez, v) = cos (w,2), e | =w (65)
= cos (w,w) cos {w(| z | — w)}

— (w./w0) sin (w,w) sin fw(| x | — w)}, [z|zw  (66)

eo(z,v) = (1/w,) sin (w,z), |z|=w (67)

(1/w,) sin (w,w) cos {wy(z — w)]

+ (1/wo) cos (w,w) sin {wo(z — w)}, T=w (68)
ez, 1) = —@u(—2,7), = —w (69)
where

w, = p+ K} =0,z ). (70)

In (70) w, is defined as a single-valued function of » in the complex
plane cut along the real axis from —k*K, to w. That branch is chosen
which is positive real on the upper side of the cut. Simple caleulations
now yield

Me(v) = —m_,(¥)
= |, sin (w,w) + iw, cos (w,w)} {cos (w,w) — i(w,/w,) sin (w,w)} ™",
(71)
Therefore,
M) = —1/{4M,0)) = 1/{2m_.()}, (72)
—~ Mi(y) = M, () = 0. (73)

= In order to determine the spectrum, we begin by decomposing the
whole real axis into the union of three intervals

I = [~=, =k'K)], I. = (=k'K, , =k'K,), I, = [-F'K, , »]. (74)

From (57) and (73) it is clear that py2(v) and pa1(v) are constant for
all », hence

dpi2() = dpn(v) = 0, —® =y = o, (75)

It is easily seen that M, (v) and M., (v) are real and have no poles or
zeros in Iy, Therefore, I, contains no points of the spectrum, and

P:‘i("') = Pii(_ 00), dpi:’(’") = 0 ve Il (.7 = 1! 2) (76)
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In the interval I, My, (v) and Mas:(v) can each have a finite num-
ber of poles, and from (72) it follows that the poles M1, (v) are the
zeros of Mas(v) and vice versa. The real poles of My, (v) are the real
solutions of

w, Sin (w,w) + tw, cos (w,w) = 0 (77)
and the real poles of M. are the real solutions of

cos (w,w) — t(wo/w,) sin (ww) = 0. (78)
For v € I, w, is real while wg is purely imaginary. If we let
bo) = w,(), pO) = —iwl) = (—v — KK, (79)

then (77) in the single unknown v can be replaced by the set of three
equations

—v = 'K, + p°, —» = k'K, — b, btan bw = p, (80)
in the two positive real unknowns b and p and the original unknown
v. Similarly, (78) can be replaced by the set of equations

—v = 'K, + p°, —y = kKK, — b, becotbw = —p. (81)
These equations are well known and their solutions have been deter-
mined.® ® The set of equations (80) has a finite number of real solu-
tions and always has at least one solution for all positive values of the
parameters, w, k, K, — Ko. These are the even modes of NM. We
denote corresponding values of v by vy, j = 1, 2, -+, Bi. The set of
equations (81) also has a most finite number of solutions, although if
(wk)® % (K, — K,) is small enough it has no real solutions. These are
the odd modes of NM. We denote the values of v corresponding to these

roots vy, j = 1,2, *++, Ry. The points vy, ve;, which are all in the in-
terval I., comprise the point spectrum of (21). Let
dp(v) = lim {p(r + € — p(v — &}. (82)
e—+0

Then with the aid of (62) it is easy to show that

Spulr) = p("’li)/{l + uyp("lr‘)}: 5,023(1’1,;) = 0: i=1, 2,---, R, ’ (83)
8pn(v2;) = 0, Bp2a(va;) = bz(Vzi)P("ni)/{l + 'wP(Vzi)}s
j=1,21"':R2- (84)

With the aid of (65) through (69) and (77) through (79) it is readily
shown that
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e, vy;) = cos (b(v,;)z), [z ]| =w (85)
= cos (b(v,)w) exp {pl)w — [z D},  |zlzw  (86)
oo, v2;) = {1/b(vy;)} sin (b(ra)2), |2 | S w (87)
= {1/b(v:)} sin (b(vs;)w) exp [pls)(w — )}, 2=z w (88)
@2, vay) = —@a(—2, va;). TS —w (89)

It is also true that

-]

f ez, ij)2 dx = 1/5Pir(”ﬁk)x

The remaining points in I, are not in the spectrum.

Finally, in the interval I it is readily shown that M, (v) and Mas(»)
have no poles. It is shown easily then that the whole interval I, is in
the eontinuous spectrum, and in this interval

o

21121“'sR1’: j=1?2' (90)

dp;;(v) = pl;(¥) dv (j=1,2), (91)

where
o) = 51; [} sin® (w,w) + ) cos® (ww)] ws | (92)
phls) = 5 [ cos® () + wf sin’ (1)) "wln (93)

In summary, the spectrum of (21) consists of the points vy, b =
1,2, --+, R;, 7 = 1,2, and the interval I'y. Equation (27) for the trans-
mitted field can be written as

2

R ——
ef,”(:c, z) = E E 59;;(";&)9;{”;&)905(-’5: V,'k) exp {"1—\/—1’“— z)

i=1 k=1

0

+ Z,,: exp {—i\/———vz}ﬁa;(-t', 1)g;i(v)pli(v) dv

—k?Ke

+xf " exp ([ — Vo 2l 19,0)040) db. (94)

i=1
The terms in the first, double summation in (94) are just the possible
TE modes which can be excited in the waveguide. The terms in the
second summation represent the propagating continuum field while
the terms in the last summation represent the evanescent part of the
transmitted field. A useful interpretation of the propagating continuum
field can be obtained as follows, Consider within the waveguide in the
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region x < —w an incident plane wave of the form

ez, 2,v) = exp {—1V —vz — )z}, (95)

so that if @ is the direction of propagation of this wave (measured
clockwise from the positive z axis), then

cos 0 = V —1/kVEK,, sind = w()/kVEK, . (95)

On striking the region of higher dielectric constant, |z| < w, part of
this wave will be reflected and part of it will be transmitted through
the region |z| < w. Denote by x4 (z, 2, v) this total electromagnetic
field set up by the incident wave, (95). Similarly, denote by x— (, 2, v)
the total electromagnetic field set up by the incident wave in the region
T>w

e (x,z,v) = exp {—1V —vz + iw()z}. 97)

In Fig. (3) we give a schematic description of x, and x- . Then it can
be shown that for —k°K, < » £ 0,

exp [—iV —vz)e(, ) = a,0)x.(x,2,9) + bil)x-(2,2,%) (G =1,2).
(98)

For the above values of v the directions of propagation of the incident
waves for x, and x_ fill the interval —x/2 = 6 < = /2. Thus, the prop-
agating continuum field is just a wave packet of plane waves appropriate
to the medium defined by the dielectric tensor K, (x).

Similarly, the evanescent part of the field can be interpreted as a
superposition of waves bound to the surface z = 0 and propagating in

(@)x+

Fig. 3— A schematic diagram of the plane waves appropriate to the dielectic
medium in the symmetric step model. The wave x. is incident on the junction
region from the positive z direction, while x- is 1ncident from the negative z
direction.



PLANAR DIELECTRIC WAVEGUIDES 1509

the positive and negative x directions. The distinction between the
propagating and evanescent parts of the transmitted field is further
shown in the expression for the time averaged transmitted power, (29),
which for the symmetrie step model is

V = l 9’,‘(1’,‘&) |2 5»0:':'(1"5#)

Mu
M=

Py = (2up,)™" ‘

._
-~

+Caw) X[ VT 0 P a 09

i=1
As this expression shows, the evanescent part of the field transmits no
energy on the average.

3.3 T'M Fields For Symmetric Step Model

The TM fields of the symmetric step model can be treated similarly.
Equation (43) has constant coefficients in the two regions [z < w
and [ z | > w. Since e,(z, ) and k,(z, z) must be continuous at z = +w,
the solutions of (43) must be such that ¢,(z, ») and {1/K,(x)}¢}(x, »)
(j = 1, 2) are continuous. We have

Yz, ») = cos (K,w,2), lz| = w (100)
= cos (K,w.w) cos {w(] 2 | — w)}
= (@:Ko)/(@K)} sin (K,ww) sin fwy(|z | —w)], [z]|2w (101)
Yolw,») = {K,/w.} sin (K,0,2), lo| =w (102)
= {K,/w.} sin (K,w,w) cos {w(z — w)}
+ {Ko/wy) cos (K.ww) sin {wy(z — w)], 2= w (103)
Yelz,v) = —¢u(—2,%), 2= -w (104)
where
K, = (K.K.,)), K, =(K./K)!, (105)

and v, and oy are defined in (70). Next,

Mo(p) = —m_,(0) = [(w./K,) sin (K ww) + U(wo/Ky) cos (K,w,w))
“{eos (Kww) — i(K,w/Kw,) sin (K,ww))™". (106)
Therefore,
Mi(v) = —1/14M ()} = 1/({2m_.0n)}, (107)
M,(v) = My (v) =0, (108)
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and from (57) and (108) we have

do(v) = don() = 0, —w <y < ®. (109)

The spectrum in the case of TM fields is determined in the same
way as in the case of TE fields, and we merely state the results. There
are no points of the spectrum in the interval I; = [—o0, —Kk*K,],

0i,0) = o(— ), doy) =0, wvel, (i=12. (110
The interval I, = (—k?*K,, —k*K,) contains a finite number of points

in the point spectrum. The points of discontinuity of a1:(v) are the
real solutions of

(w,/K ) sin (K,ww) + 1(w./K,) cos (K.w,w) = 0, (111)
while the points of discontinuity of asz(v) are the real solutions of
cos (K ww) — (K ,w/Kow,) sin (K,ww) = 0. (112)

If we let
be) = Kw,0), pl) = —iw() = (—v — Ko}, (113)
then (111) in the single unknown v can be replaced by the set of equa-
tions
—v = kK, + p°, — = KK, — K,b'/K, , bK, tan bw = pK, ,
(114)

in the two positive real unknowns b and p and the original unknown
v. In the same way, (112) can be replaced by the set of equations

—y = KK, + p°, —» = k'K, — K.b'/K,, bK, cot bw = —pK, .

(115)
The set of (114) has a finite number of real solutions and for all posi-
tive values of the parameters Ko/K., Ko/K., w, k*(K, — Ko) there is
always at least one solution.® ® These are the even modes of NM. The
corresponding values of v are denoted by vy;, 7 = 1,2, **+, S;. The set
of equations (115) also has at most a finite number of solutions, al-
though if (wk)? (K, — Ko) is small enough it has no real solutions.
These are the odd modes of NM. The corresponding values of » are
denoted by wsj, j = 1,2, - -+, Sz2. The points v, v2; are the point spec-
trum of (43) and they all lie in the interval I,. Furthermore,

acrll(vli) = S(p(vlr')): 60’22(1'”) = 0) j = ll 21 te rSl ] (116)
5'7|1(1’2i) =0, 5022(1’2;') = b(”zf)25(P(V2i))/Ki yi=1,2,--- :Sz ’ (117)
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where

_ KFEK(K, — K,) ]
Se) = K"”["’p T KK, — Ky + PRAK, — Ky

From (100) through (104) and (111) through (113) it follows that

(118)

¥z, ;) = cos (b(;)x), lz | =w (119)

= cos (b(mw) exp [pe)w — |z )}, |2z w (120)

Y, vey) = [K./b(vo,)} sin (b(v,))7), o] = w (121)
= {K./b(v,)} sin (b(v;)7) exp |pz;)(w — x)}, T =W,

(122)

Va(z, v2;) = —o(—2x, ;). T
It is also true that

IIA
|
B

(123)

fm ﬁb,-(I, Vik)Z{Kz(x)}—l dxr = 1/60'1'1‘(”:’&): k= 1) 2:"') Si ’ ]= 11 2.

(124)
The remaining points in I. are not in the spectrum.
The continuous spectrum is the interval Iy = [—k*K,, o]. For
points of the continuous spectrum
(IO',-;(V) - O';,-(V) d].! (.? = ]: 2): (125)
where

o) = 5 (K3 sin? (K )

+ K.K.w; cos® (Kww)] KK, K.w,, (126
ohay) = % (K cos® (K w.w)

+ K.K.w; sin® (K eww)] ™ Kwlw, . (127)
To summarize these results, the spectrum consists of the points vy,

k=1,2 ---,8;,7 =1, 2 and the interval I3, and the transmitted field
can be written in the form

h,‘,”(a,', 5) = -Z ZI o) i, vi) exp {—iv —vi 2}

i=1 k=1

+ Z »[-k’x exp { =iV =y z} (@, Wh6)al6) dv

i=1

+ Z f ) exp | — V2l g, (z, Vh;(p)al,0) dv. (128)
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Just as for the TE fields, the terms in the first, double summation in
(128) are the possible TM modes which can be excited in the wave-
guide. The terms in the second summation represent the propagating
continuum field while the terms in the last summation represent the
evanescent part of the transmitted field. Just as for the TE fields, the
propagating part of the continuum field can be interpreted as a wave
packet of reflected and refracted plane waves, and the evanescent part
of the field can be interpreted in terms of surface waves at z = 0.
Equation (53) for the transmitted energy is

2 8

P, = (2we)™ 20 20 V —vn | hilvi) |* 05i(vie)

=1 k=1

+ (2we,) ™ 221 f:m vV = | ;) |* o)) dv. (129)

3.4 TE Fields For Asymmelric Step Model

We now turn to the second of the two models which are studied in
detail and examine the TE ficlds for the asymmetric step model. The
functions K,(x) (n = z, 9, z) are defined by (3) through (5). Equa-
tion (21) has constant coefficients in the regions |2| < w, x > w, ¥ <
—w, and we seck solutions which are continuous and have continuous
first derivatives. Then

ei(x,v) = cos (war), |z|=w (130)

cos (w,w) cos {w.(r — w)}

Il

— (w,/w2) sin (w,w) sin {w.(z — w)}, rT=w (131)
= cos (w,w) cos {w,(x + w)}
+ (w,/w,) sin (ww) sin {w,(z + w)}, rE —w (132)

992(-7': V) = (1/0),,) sin (‘”uw); l X l =w (]33)

= (l/wrt) SiIl (UHW) COos {Wz(_l7 — 'w)}

+ (1/w,) cos (w,w) sin {w,(z — w)}, x> w (134)
= _(l/wa) sin (\'.A},,W) Cos {wl(x + 'LU)]
+ (1/w)) cos (w,w) sin [w,(x + w)}, r< —w, (135)

where

w) = 0+ FK)  n=1,22z71). (136)
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As before v, is defined as a single-valued funection of » in the complex
plane cut along the real axis from —k2K,, to o. Then

M) = |w,sin (ww) + iw, cos (wmw)}
-{cos (w,w) — P(wy/w,) sin (ww)} ™", (137)
M_o() = — {w, sin (ww) + v, cos (ww)}
- {eos (waw) — i(w,/w,) sin (waw)} ™", (138)
From (58) through (60) and (137) through (138) we obtain
M) = Nu@)/De) (G, k = 1,2), (139)
where
Nu@) = =31 — ww/w]) + (1 + ww/wl) cos (2w,w)
— [(w, + w)/w,} sin Quw)],  (140)
Nio() = Nuor) = (i/2) () — w), (141)
Nu®) = 5w, — ww) — (@, + ww,) cos (2w,w)
+ tw,(w, + w.) sin (2ww)}, (142)
D) = (w, + ww:/w,) sin (2w,w) + (w;, + w,) cos (2w,w). (143)
To determine the spectrum we note first that in the interval I, =
[—o0, —k*K,], the functions My (v) (j, k = 1, 2) are analytic and
real. This interval, therefore, contains no points of the spectrum and
dpj(v) =0 G,k =1,2), vel, . (144)

The only real poles of the functions M;.(v) are in the interval I, =
(=k*K,, —k*K,). These poles are the real solutions of D(y) = 0. In
I3, w, is real while w; and o, are purely imaginary. If we let

bO) = w,(v),  Pal) = —dw) = (—v — FK,)} (0 =1,2), (145)

then the equation D(v) = 0 is equivalent to the set of four equations

—v=FK, +pi, —»=FK +p, —»=FK, -, (146)
tan 20w = [p,/b + p./b]/{1 — (p,/b)(p./)},

in the three positive real unknowns b, p;, p» and the original unknown
v. These equations and their solutions have also been studied in de-
tail.® ¢ In order that (146) have a solution, it is necessary and suffi-
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cient that

K, > K, n=1,2), (147)

2k(K, — K,)! > tan™ (K, — KJ)/(K, — Kt
If conditions (147) are satisfied, D (v) = 0 has a finite number of real
solutions, v;, j = 1, 2, - -+, R which all lie in the interval I». This is
the first significant difference between the symmetric and asymmetrie
step models. The symmetric step model always has at least one point
in its point spectrum while the asymmetric step model may have no

point, spectrum.
We can write, assuming that (146) and (147) are satisfied.

apik(vl) = _Nik(vf)/D’(V!)J j: k= 1, 2; I = 11 2: e rR! (148)
where D’ (v) = (d/dv) D(v). 1f we make use of (145), it is easy to show
that

{5»012(”1)]2 = 6911(Vz)5P22(V:}, =1, 2, e ,R- (149)

Neither of the functions «,(z, »;) or ¢.(z, »;) is square integrable over
—w <z < o forj=12 ---,R. However, because of (149), they
appear in (27) for e’ (z, z) only in the combination

¢I>($, V,-) = 5P11(V1‘) Wl(xa Vi)
+ {5912(”;‘)/'\/5.011(1’:‘)}'#2(% Vi), i=12 -,k (150)
If we define

®o(x, ;) = V 8pu(v;) cos (b(v;)x)
+ {801}/ V 5pulv) b)) sin (b)), (151)

then because of (146)
Bz, v,) = Po(z, v)), |z | s w (152)
= dy(w, v;) exp |p.(v;)(w — )}, T =W (153)
= Bo(—w, v;) exp [p)(w + 2)}. = —w (154

Thus, the functions ®(z, v;) are square integrable, and, as we shall see,
are just the possible propagating modes in the wave guide. The re-
maining points in the interval I; are not in the spectrum.

The remainder of the real axis, the interval —k’K, = » = «, forms
the continuous spectrum. To show this, consider first the interval
I, = [—-F°K,, —F°K.]. In I, w, and w, are real, while w. is purely
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imaginary. The functions A/ ;,(») have no poles in I, and their imaginary
parts are not zero. We introduce the notation

w,) = b0), @) =p6), wb) =ipW), vel,. (155)
Then we can write

dpul) = = PO/AGOnG) & Gk =1,2), (150

where
r(v) = cos bw + (p,/b) sin bw, (157)
ro(¥) = bsin bw — p, cos bw, (158)
A(y) = {bsin 2bw — p, cos 2bw}*

+ {(p,po/b) sin 2bw + p, cos 2bw)®.  (159)

For v e Iy it is clear from (131), (134), and (155) that ¢,(x, ») and ¢.(z, »)
both grow exponentially as x — 4 «. However, from (156) we see
that in (27) for e," (z, 2), the functions ¢,(x, ») (j = 1, 2) appear only
in the combination

Alx,») = r@ei(x, v) + r(n)e(z, v) (160)

when v ¢ I, . However,
A(z,») = cos [b(x — w)} — (p./b) sin {b(x — w)}, |z | < w (161)
=exp {p(w — )}, zTZw (162)

I

(cos 2bw + (p,/b) sin 2bw) cos {p,(x + w))
+ (1/p)(bsin 2bw — p, cos 2bw)

-sin {p,(xz + w)}, r = —w. (163)

Equations (161) through (163) represent the second important differ-
ence between the symmetric and asymmetric step models. In the sym-
metric model all the components of the continuum field are oscillatory
functions of x on both sides of the waveguide while in the asymmetric
model some of the components of the continuum field are exponentially
damped on one side of the waveguide. The physical interpretation of
A(z, v) will be discussed later.

In the remaining interval, I, = [ —k®K,, ], the functions w, (n =
1, 2, ) are all real and the functions M;.(v) (j, & = 1, 2) have no
poles. Therefore,

dp;(v) = pl(v) dv, (164)
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where

P = £ (0 + ) e cos® (w0) + oy, sin’ (@))/9, (165)
p;Q(V) = P;I(p) = %wu(ml - Wz)(‘l’i + wlﬂ-’z) sin (“"vw} cos (wvw)/:DJ (165)

pal®) = %wi(w‘ ¥ o) (e sin? (o) + wws cos® (w,w)}/D, (167)

D) = (i + wyw)’ sin® (2w,w) + wh(w, + w;)® cos’ (2w,w). (168)

The spectrum for the TE fields of the asymmetric model consists of
the (possibly empty) set of points »;, j = 1,2, --+ , E and the interval
—Ik*K, < v £ «. The transmitted field can now be written in the
following way.

85”(37: z) = E {ZE [apll("":‘)}'laplk(”i)gk("’f}} exp {—1V —; 2} @(x, v;)

i=1 \k=1

—k'K,

exp {—1V —vz]Alz, V){Zz: T,-(v)g,»(v)}{pl(v)/A(v)] dv

k31K, =1

L1
™

+ .2 f.m exp {—1iV —v zle(z, V) g:()pii(v) dv

i.k=1
k

2

+ X [ e (= Vezlee, Da6)eie) dr (169)
The expression for e{*’(z, z) has been split up into a sum of parts in
order to facilitate its physical interpretation. The first part represents
the possible discrete, propagating modes which can be excited in the
system. The form of these modes has been studied in detail elsewhere,’"*
and as pointed out earlier, unless condition (147) is satisfied, no such
modes can be excited. In order to interpret the second term, consider
within the waveguide in the region + < —w an incident plane wave

of the form
el (x,2,v) = exp [—1V —vz — i)z} (170)

At the surface z = —w, part of this wave will be reflected and part
will be transmitted. However, at the surface z = w, the wave will
suffer total internal reflection. The total electromagnetic field set up
by e!”(z, 2, v) is proportional to A(z, ») exp {—1¢ v/ —z}. The second
term is then just a superposition of plane waves which are totally
reflected at + = w. In Fig. 4 we give a schematic description of these
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Ko (<Ky)
W_..-__
/\ o
/ ) Z
-W
/\ K,

Fig. 4 — A schematic diagram of the totally reflected wave in the asymmetric
step model. The wave is incident on the junction region at z = —w where it is
partly reflected and partly transmitted. The partly transmitted portion is then
totally reflected at z = w.

waves. In microscopy the theory of the Becke line is based on just such
a superposition of totally reflected plane waves.'® The third term is a
superposition of plane waves which are reflected and refracted at
z = zw. The last term is a superposition of waves bound to the surface
z = 0 and propagating in the positive and negative 2 directions.

The time averaged, transmitted power is

P, = (2uwu,)™! Z V —r I V 6pui(v:) g.(vi)

=1

+ {80020/ V piv) } gl |°

+ @oun)™ [V [10006) + n0)e6) [ i6)/A6) do
+ e [ VS S 00006} . am

3.5 T'M Fields For Asymmetric Step Model

The TM fields for the asymmetric model present no new features,
and we merely record the results. We have

¥ilz, ») = cos (Kw.), |z|=w (172)

Il

cos (K,w,w) cos [w,(x — w))
= (@K, /w,K,) sin (K,ww) sin {w,(zx — w)}, z=w (173)
= cos (K.w,w) cos {w,(r + w)}

+ (w.K,/w,K,) sin (Kw.w)sin {0,z + w)}, z £ —w (174)
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oz, v) = (K,/w,) sin (K,w.1), |z | 2w (175)
= (K,/w,) sin (K.w.w) cos {wy(z — w)]
+ (Ky/ws) cos (K,ww) sin {w(z — w)}, T =W (176)
= —(K,/w,) sin (K,ww) cos {w,(z + w)]
+ (K, /w)) cos (K.ww) sin {w,(z +w)}, 2= —w (177)

where o, (v) (n = 2, 1, 2) are defined in (136) and K, and K, are de-
fined in (105). Next,

Mmo(v) = {(w/K,) sin (Kww) + ilws/Ky) cos (Kw.w)]
- {eos (Kuwow) — i(wK,/w.K>) sin (Kww)}™,  (178)
Meult) = — {(w./K,) sin (K.w.w) + i(w/K,) cos (K.ww)}
-{cos (Kww) — i(w,K,/w.K,) sin (Kw,w)}™". (179)
Then from (58) through (60), (178), and (179) we obtain
Mu() = Na®)/DG6) G,k =1,2), (180)
where
Nu@) = =31 — wwK}/w K K,)
+ (1 + wwKi/wiK,K,) cos (2K, w.w)
— (K, /o) (@ /K, + w/K) sin (2K,w,w)],  (181)
Np@) = Nal) = (@/2)(@/K: — w/Ks), (182)
Na0) = 32/K; — wiwe/K\K)
— (@*/K? + ww./K,K,) cos 2K ,w.w)
+ i(w./K)(@/K;y + w2/Ks) sin 2Kww)],  (183)
Do) = (@./K, + wwK,/0.K,K,) sin (2K w.w)
+ 4w, /K, + w./K>) cos 2K w.w). (184)

There are no points of the spectrum in I; = [— oo, —k*K,]. The
only real poles of the functions M (v) are in the interval I. = (—k*Kg,
—k2K,). In L., v, is real while o, and wp are imaginary. If we let

2y

be) = Kw,w),  pal) = —iw,00), n =12, (185)
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then the equation determining the poles, D () = 0 is equivalent to the
set of equations

K,
K,
tan 2bw = (p,K./bK, + p.K./bK,)/(1 — pp.K:/V’K,K)).

In order that these equations have a solution, it is necessary and suf-
ficient, that® ¢

—v=FKK, +p;, —v=FK +9p;,, —v=FK,— b,

(186)

K.>K, (=12,
2wk | K,(K, — K,)/K.}' > tan™ {K,K.(K, — K.)/Ki(K, — K)}*.

If conditions (187) are satisfied, D(v) = 0 has a finite number of real
solutionsin Io, v, 7 = 1,2, -+, 8.
If (186) and (187) are satisfied, we can write

(187)

do;iv) = — N (v)/D'(v), k=12, l=1,2 ---,8. (188)
Just as for the TE fields, it is true that
{50'12(3%)}2 = ba,,(v))bo22(vy), l=1,2, ..., 8. (189)

Because of (189) the functions y,(x, »;) and y.(x, v,) appear in (49)
for ("’ (z, z) only in the combination

\I’(.’E, ”i) =V 80’11(";‘) 'I/I(I, V:’)
+ {5012(1/':’)/ \% 5“11(”:‘)]'&2(% Vf), j
If we define
Vo, v;) = Vo) cos (br,)z)

+ {K.801.00,)/ Van(p;) b))} sin (br)z),  (191)
then because of (186)

1,2, .-+, 8. (190)

Y(x,v;) = Yolz, vy), [z =w (192)
= ¥y (w, v;) exp {p(v)w — 2)}, = w (193)
= Vo(—w, »;) exp |p,(v;)(w + 2)}. r = —w (194)
The remaining points in I» are not in the spectrum.
The remainder of the real axis, the interval —k*K, £ v = «» forms

the continuous spectrum. In the subinterval I; = [—F°K,, —F°K.),
w, and w, are real while w, is imaginary. If we let

Kw.() = b0), @) =mp0), wb) =1ip6), rel,, (195)
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then we can write

don®) = * (p0)/KAG)sst) dv Gk =1,2), (196)

™

where
5,(v) = cos bw + (p.K,/bK,;) sin bw, (197)
800) = —(po/K,) cos bw + (b/K.) sin bw, (198)

A@) = {(b/K.) sin 2bw — (p,/K.) cos 2bw}*
+ {(p.p.K./bK,K,) sin 2bw + (p,/K,) cos 2bw}*.  (199)

When v e I, ¢.(x, ») and ¥,(z, ») appear in (51) for k" (z, 2) only in
the combination

E(z,v) = s:0)¥u(x, v) + 5:0)¥:(z, v). (200)
We have
E(zx,v) = cos {blz — w)}

— (p.K,/bK,) sin {b(z — w)}, lz] = w (201)
= exp {p(w — 1)}, TZw (202)

{cos 2bw + (p.K,/bK,) sin 2bw} cos {p,(z + w)}

+ (1/p.){(bK,/K.) sin 2bw

— (p.K,/K>) cos 2bw} sin {p,(z + w)}, = = —w. (203)

In the remaining interval, Iy = [—k*K., ], the functions w, (n =
1,2, z) are all real and we can write

do(v) = () dv, (204)

where
o) = 2 (/K + au/ ) (62K cos” (K o)
+ (02/K.K,) sin® (K ww)}/®,  (205)
o) = 7hle) = 1 (/K ) /Ky — 0/
{0t/ + i/ KK} sin (K 0) cos (Kou)/D, (200
7h) = 2 @/K) /K, + 02/K2) (wn/KiIG) cos® (K o)
+ (/KoY sin (Kw0))/D, (207
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D= {(wz/I{g)z + (ﬂhﬂ-’z/I(lI{g)}z sin® (2K,w,w)
+ (wz/Kv)z(wl/I{I + m?/K2)2 cosg (2K;-£I’,’W). (208)

To summarize, the spectrum for the TM waves of the asymmetric
model consists of the (possibly empty) set of points », , 1 =1,2, ---, S,
and the interval —k*K, < v £ . The transmitted field can be written

as
S 2

hr(:”(x; z) = E E t5‘711(1":')}7!50”(";)”4(";') exp i'—"‘\/——":‘ 2| W(z, v;)

i=1 k=1

+71rf‘k“K’ exp [—iV —vz}E(z, v) Es ), () () /K, A} do

—k3K,

-2.1 j‘_k,K exp {_T' v _VZfIP,-(x, ")hk(l')a';,‘(v) dv

+

k
2
+Z

fn " exp (= Vo2, Dhe()on) dv. (200)

The time averaged, transmitted power is

P, = (2we) Z V=l Viou) ) + {000/ Venw) tha) |°

—k?Ka

+ (2we,) ™" ok '\/:-V | ;) (v) + 8:()ha(v) |2 {p(v)/K,Aw) ) dv
+ (2‘-"50)— ek V —v _kzzl h-:'(”)*hk(V)U';k(V) dv. (210)

IV. APPROXIMATE SOLUTION OF THE INTEGRAL EQUATIONS

In Section IT we obtained general expressions for the reflected and
transmitted fields for the TE fields in (18) and (27) and for the TM
fields in (41) and (51). In (27) and (51) there appear the functions
oi(z, ») and ¢,(z, ») and the spectral density matrices p(») and o(»).
A technique for determining these quantities in certain cases was
illustrated in Section III by explicitly calculating them for the sym-
metric and asymmetric step models. In order to complete the determina-
tion of the reflected and transmitted fields, the functions & (1), 3¢¢" (1),
g:(»), and h.(») must be calculated. In Section II we showed that
these functions were determined by the integral equations (30)-(31)
and (54)—-(55).

We have been unable to solve these integral equations exactly for
the general case. However, there are certain cases of great physical
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interest, such as the electro-optic diode modulator, where excellent
approximate solutions can be obtained. Let

M, = max K,(z), m, = min K,(z), (n=u=xu2 (211)

and assume that
(M, — m,)/m, <1 n==zuy37. (212)

Then the incident field impinges on an essentially uniform, plane
dielectric interface, and the reflected field can be caleulated as if the
region z > 0 were a uniform dielectric. Let K. (n = =z, y, z) be suitably
chosen, constant values for the dielectric tensor for z > 0. Then it is
readily shown that for the T'E fields

8" () = R.()&,” (D), (213)
and for the TM fields
3" () = Ri(D3,” (1), (214)
where the reflection coefficients are
R.(D) = {0 — k20/k)} {20 + kV/E) T, (215)
RuD) = (k.00 — /k)} (k.20 + QU/k)}, (216)
k, = (K)o =2,y,2), (217)

and (1) is defined in (16). In this approximation, the total fields at
z = 0 for the TE and TM fields are, respectively,

o, 0 = o [ T0e 0 d, (218)

hiz, 0 = o [ T3 e dl, (219)

where the transmission coefficients are
T.(D) =14+ R.(D, n =e,h. (220)

Now that e,(z, 0) and h,(z, 0) are known, g;(») (j = 1, 2) can be cal-
culated from (28) and h;(») (j = 1, 2) can be calculated from (52),
since e,(z, 0) = e{(z, 0) and h,(z, 0) = A" (z, 0).

We illustrate some features of the calculation of gi(v) and hi(v) with
the symmetric and asymmetric step models. We first note that if these
models are used to study an electro-optic diode modulator, typical
values of the parameters defining the dielectric tensorsin (1) through (7)
are®n = 3.31,A~107°,5,=22 X 107" (n = z,¥,2), A, = 0.964,
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A; = 1.04 A. Then M, — m, = 1.4 X 107°, m, &~ 10.9. Condition
(212) is thus well satisfied.

For the symmetric step model we let K, = K, (n = z, y, 2). If the
funetions &;” (1) and 3¢{”(l) are sharply peaked about I = 0, then
(218) and (219) can be further approximated by

afe, 0) = T.0)5- [ &0 dl = 7.0 @, 0),  (221)

hy(z, 0) = TWO0)h"(z, 0). (222)

The calculation of g,(v) and hi(v) is now reduced to quadratures. 1f
the incident field is not sharply peaked, we define

(1, v) = ler j.i eilx, Ve d, (223)
v, = o [ : Vi, ) k(2)) e d, (224)
so that
7.0) = [ : (DS ()%, (1, ») dl, (225)
W) = f_ i T3 O, 0 dl, = 1,2. (226)

If v is in the continuous spectrum, ®;(, v) and ¥;(l, v) are distributions
which are easily determined with the aid of the relation!®

f "o dz = 1/(ia) + 8(0), (227)
1]

where 6(c) is the delta function and when 1/ appears under an integral
sign, it is assumed that the Cauchy principal value is taken. If » is in
the point spectrum, ®,(l, ») and ¥, (I, ») are ordinary functions.

For the asymmetric step model we let K, = (K, + K.), (n = g, y, 2).
For this model, a straightforward application of (28) and (62) fails
in general if » is the point spectrum or if » & I, , because e;(z, v) and
¥;(z, v) now grow exponentially as z tends to either plus infinity or
minus infinity. This apparent difficulty is merely a reflection of the
manner of convergence of the integrals defining g.(v) and h.(v). For
our purposes here, it is enough to note from (169) and (209) that
when » is in the point spectrum, the functions g,(») and h.(») do not
appear independently, but only in the linear combinations
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E”Zl [5Pu(”:‘)}“*5ﬂxk(”i)gk("i) = LZ ez, 0)‘1’(5: v;)dz, j=1, 2,01, R,
(228)
E {lSCl'n(l’;‘)]_laﬂ'lk(ﬂi)hk(l’;) = f_: h,,(x, 0)‘11(1:, v‘-) d;[;r J = ]_’ 2,. -, S.
(229)

The integrals on the right of (218) and (219) are now well defined.
Similarly, if » € I, , the relevant quantities to calculate are

gr,‘(v)g,‘(v) - f : e(z, 0)Az, ) dz, (230)
kf_; sOhe) = [ ® bz, 0)E(z, ¥) dx. 231)

If v e I, , (28) and (52) can be applied directly. Now, all the techniques
discussed in the case of the symmetric model can be applied here.

V. SUMMARY

In Section I we have defined a class of dielectric waveguide models.
The waveguide is formed by an anisotropic, nonuniform dielectric
filling the half space z > 0. The dielectric tensor is diagonal in the
fixed coordinate system of Fig. 1, and the diagonal matrix elements
are functions of z only, K.(x) (n = =z, y, 2).

Integral representations for the incident, reflected, and transmitted
fields were given in (15), (18), and (27), respectively, for the T'E fields,
and in (39), (41) and (51), respectively, for the T'M fields. These rep-
resentations are very general, holding for a large class of functions
K.(z) and incident fields. These integral representations, however, con-
tain the unknown functions ¢;(z, »), ¥;(z, v), ps(v) and a5 (¥) (j, k= 1, 2),
which are determined solely by the dielectric tensor, K,.(z), and the
unknown functions g.(v), hu(»), (k = 1, 2), &7 (1), and 5¢,” (1), which
also depend on the incident field and the boundary conditions at z = 0.
It was shown that this latter group of unknown functions are the solu-
tions of two sets of integral equations, (30)-(31) for the TE fields
and (54)—(55) for the TM fields. These equations are very complicated,
and we have been unable to solve them exactly for any specific models
of interest.

In Section IIT we gave a detailed calculation of the functions ¢;(z, »),
¥i(z, v), pi(¥), and o (») (G, k& = 1, 2) for both the symmetric and
asymmetric step models. These caleulations are important in their own
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right, since the symmetric and asymmetric step models have been
used extensively in the study of the electro-optic diode modulators.'™®
However, these computations also illustrate the technique for treating
the whole class of piecewise constant models. This is important, for
it is not yet completely established which is the correct model to use
in exploring the behavior of the electro-optic diode modulator, and
it is felt that any actual physical situation can be well approximated
by a piecewise constant model.

It should be noted that the success of the techniques used in this
paper depends on being able to obtain exact analytic solutions of (21)
and (43), or at least good analytic approximations to these solutions.
There are a number of other models for which the exact solutions of (21)
can be obtained, for example the continuous dielectric constant models
deseribed in Secticn III of NAf. It is, however, much more difficult
to find models, other than the piecewise constant models, for which
(43) is solvable in terms of known functions. Nevertheless, the pos-
sibility remains of investigating the TE fields for a fairly wide varity
of models.

The calculations of Section III provide a method of determining
the discrete modes which is different from the methods used in earlier
treatments.®®"" These calculations showed also that the asymmetry
of the background light is accentuated in the asymmetric step model
by total internal reflection at the junction region boundary.

Finally, in Section IV it was shown that good approximations can
be found for the functions g.(v), hu(v), 3 (1), and &”(l) in certain
cases of physical interest. In particular, these approximations are valid
for the electro-optic diode modulator. These approximations do not
depend on a particular choice of the incident field.

The final results of this paper then are integral representations for
the fields for both the TE and TM fields. Of the various functions in
the integrands, some have been determined exactly and good approxi-
mations have been found for the remainder for a number of important
models and for arbitrary incident fields.

These integral representations are complicated in appearance, but
when z is large enough, asymptotic expansions of them can be found
which lend themselves to numerical analysis. In a subsequent paper
asymptotic expansions of the transmitted fields will be presented for
the symmetric and asymmetric step models in the case that the inci-
dent field is Gaussian and numerical results for cases of experimental
interest will be presented.
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