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Demagnetizing fields play an important role in the operation of many
thin magnetic film devices. A requirement of high packing density leads to
strong localization of induced changes in magnetization; and, therefore, to
correspondingly large demagnetizing fields and drive currents. A treatment of
the demagnetizing field problem for thin film materials is given here for
film properties and fields which are nonuniform along the hard anisotropy
axis. Specifically considered are saturating fields, variations in film thick-
ness and anisolropy constant, interaction between films, and the effect of
easy direction bias fields.

I. INTRODUCTION

The behavior of the magnetization in thin magnetic films of large
lateral extent subject to a uniform applied field may be calculated
directly from a knowledge of film properties and field strength. The
calculation of the behavior of magnetization in the presence of non-
uniformity of film properties or of applied field, however, must take
into account the demagnetizing field that arises from a local non-
uniformity of magnetization. Such a situation oecurs in many problems
of practical interest. Internally generated fields give rise to a number
of effects when nonuniform fields are applied to thin uniaxially ani-
sotropic films.»»2 For example, the hard axis field required for satura-
tion may be several times the anisotropy field and the induced mag-
netization component may spread to regions where the applied field
is very small. The occurrence of such effects in thin films has been
considered by Rosenberg® using a calculus of variations approach and
by Kump and Greene* and Kump?® using an iterative numerical pro-
cedure. More recently Dove and Long® have shown that there is a
simple solution to the nonuniform field problem in the case of non-
saturating spatially periodie applied fields, and have treated localized
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fields by using a Fourier series technique. Good agreement was found
with Kerr-effect probe measurements on flat and cylindrical permalloy
films. .

The purpose of the present work is to show how the Fourier series
technique permits straightforward solution of a number of thin film
magnetostatic problems. Flat and cylindrical film geometries are
treated; however, the results are of special interest to the case of
cylindrical films with axial hard direction, owing to the circumferential
flux closure. Specifically, we consider the cases of;

(¢) nonuniform hard axis field,
(2} nonuniform saturating field,
(i27) variation in film thickness,
(iv) variation in anisotropy constant,
(v) external fields due to magnetization distribution in film, flux
linkage with conductors, magnetic shielding,
(vi) interaction between parallel films, keepers, and
(vii) nonuniform hard axis field in presence of easy direction bias
field.

It is assumed that the quantities of interest vary along the film hard
axis only and that properties and fields are uniform along the easy
axis. Film thickness is taken to be sufficiently small that the direction
of magnetization always lies in the plane of the film, exchange forces
are neglected, being insignificant for cases considered, and anisotropy
dispersion effects are not included.

II. GENERAL CONSIDERATIONS

We consider demagnetizing field effects that arise in thin uniaxially
anisotropic films when relevant parameters vary only along the hard
anisotropy axis. Many applications fall within this category and will
be treated in following sections. Many of the results may be applied
to thin films of other types of magnetic materials in the range where
they exhibit a constant permeability, if the effective anisotropy field
is taken to be equal to the saturation magnetization divided by the
permeability.

Although the demagnetizing field may be found if the magnetization
distribution is known, and conversely a knowledge of the field enables
the distribution to be found, there is considerably greater difficulty in
determining both distribution and field directly. In the thin film case,
the Fourier series technique provides a means of representing the field
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distribution for which the demagnetizing field can be found quite
generally. The rotation of magnetization within a film may then be
found by balancing, for example, (for nonsaturating fields) anisotropy
torque versus the torque due to applied field and demagnetizing field.
This leads to equations relating the coefficients of the various series
which in a practical application may be most conveniently evaluated
by computer.

The number of terms included in the series determines the resolu-
tion with which a particular curve may be delineated. However, a
series with, say, 100 terms may be made to fit ordinates at 100 loca-
tions exactly, with oscillations about the required curve elsewhere.
The procedure followed here is to use the series to calculate ordinates
at the 100 locations, and a smooth curve is then drawn through the
calculated ordinates. Refs. 7 and 8 have been found of value for the
evaluation of integrals occurring in the following sections.

Numerical examples, where given, refer to nonmagnetostrictive 80/20
NiFe films. The films are finely polyerystalline and are characterized
by a uniaxial anistropy. The easy direction is taken to be circumferen-
tialin the cylindrical film case.

III. NONUNIFORM HARD AXIS FIELD

This case has been discussed previously® but is included here briefly
for completeness. Let = represent distance along the film hard direc-
tion, M is the value of saturation magnetization, T' the film thickness,
K the anisotropy constant and #(z) the angle which the direction of
magnetization (at 2) makes with the film easy anisotropy direction.
We now assume that the applied field H (x) may be adequately repre-
sented over a range —A/2 to +A/2 by the series

H(x) = i h, exp (2winx/\) (1)

and that the resulting hard direction component of magnetization
M (x) may be similarly represented,

M) =M i m, exp (2rinx/\). @)

The distribution M (z) gives rise to a local (positive) pole density at
location (X, ¥) of amount —div M(X, Y). This gives rise to a field
dH at (z, y) distance R from (X, Y) given by

dH(z, y) = —div M(X, T)- (d""l) (R)(R)



1530 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

Tig. 1— A divergence of magnetization at (X,Y) gives rise to a field dH at
(x, y). The z direction is taken to eoincide with the film hard (anisotropy) direc-
tion. Under no applied field the direction of magnetization lies along the ¢, or
easy, direction.

where dH is parallel to R, as in Fig. 1. Since the only variation of mag-
netization is along the z direction, variation with thickness being ne-
glected, then div M reduces to dM (X)/dxz where M (X) is the z direction
component of M, at X,

The field dH has both easy and hard direction components, however,
symmetry ensures that the resultant field H.,.(z), obtained by integrating
over the film volume, lies along the hard direction. Then, we find, for a
flat film

Hod) = — :_ﬂ f: @dfcﬂ(ﬁ%dx av T, ®)

where T is the film thickness. Substituting R = [(z—X)? + (y—Y)*]*
and integrating over ¥ we have

— _ = dM(X) 1
H,(x) = —2T SR IX.
Now substituting for M (X) in terms of the Fourier series, we have
£ @ 0,7 .
Ho(z) = +2TM f ) ,,,,,,n(n;\m) exp ,EZT”){/)‘) x

% n=—m X

and evaluating the integral,

H,.(z) = i a,M, exp (2rinz/N), 4)
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where ¢, = 47*TMn/A, n > 0, and a, = a,. A similar result holds for
cylindrieal films having a circumferential easy direction, where x now
refers to distance along the cylinder axis. In this case, we find

a, = 4xM(T/a)2mna/N)I,(2mna/NK ,(2mna/N),

where a is the eylinder radius and I,, K, are modified Bessel functions.

The local rotation 6(x) of magnetization away from the easy direc-
tion due to the applied field is determined by balancing the torque due
to the applied field against the torques due to anisotropy and the
demagnetizing field

2K sin 6(x) cos 6(x) + MH,(x) cos 8(x) = MH(z) cos 6(z), all z. (5)

We note that sin 8(x) = M (z) /M, and providing cos f(x) # 0, we
may rewrite (5) as

2K M(2)

M M
If the field is sufficiently large that 6(z) becomes equal to =/2 then the
film is said to have saturated (at x) and the torque equation (5) is
replaced by M (x) = M. In the nonsaturating case the series represen-
tations (1), (2), (4) are now substituted in (6) giving

+ H,(z) = H(z). (6)

Hy 3 m, exp (2rinz/N) + 3. aum, exp (2minz/N)

= 2 h, exp (2minz/)),
where Hy = 2K/M. Equating coefficients of corresponding terms gives
the result,

m, = ho/(Hg + o).
Hence, the series for the M (x) distribution may be obtained in terms
of the coefficients of the applied field and geometrical parameters a,
which automatically take into account the demagnetizing field,

M@) =M _i ﬁ!— exp (2winx/\). (7)

As an example, we consider a wire at distance d from a flat film,
lying parallel to the film easy direction. A current I along the wire
produces a hard direction field component given by H(z) =
CdI/(d*+z*), where the origin for x is taken directly beneath the wire,
and C is a calibration constant whose value depends on the units used,
(C =788 for d and z in mil inches, I in amperes, H in oersteds). It is
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next assumed that the field is repeated at intervals A along the hard

direction in such a way that the field over one wavelength is given by

cdr A

Ho) =gy 2

To determine the Fourier coefficients we proceed in the usual way, and

find that for A sufficiently large H () is given to a good approximation
by the cosine series,

A
2

IIA
I\

T

H(z) = gi;w + Xl

> e cos 2rna/\.
) S ——

Substituting into (7) we have

CIMr 2CIMnr = e 2™
M@ =gt N ZHita

If such a drive wire arrangement is used to apply a field to a
cylindrical film, there is some variation in axial field strength across
the cylinder. In many cases of interest, the cylinder diameter is
small compared with axial dimensions and there is very tight magneto-
static coupling around the circumference. We therefore take the ef-
fective axial field as that applied along the wire axis, a reasonable
approximation for many cases. The result (8a) then applies to the
cylindrical film case provided a, is given the appropriate value.

When a field is applied by a circular loop of radius d around the
film (of radius a), it may be shown that the axial field at the surface
is given by the series, for A sufficiently large,

Clr | 2CIt ~=2mnd 2rnd\, (2mna 2mna

H@ ) = 57+ =0 27 K‘( A )I"( A )cos N

where K, I, are modified Bessel functions. The field is defined over

—A/2 to +A/2 and d > a. The axial component of magnetization in
a cylinder excited by such a field is then,

2rnd K (and) 7 (21rna) cos 2rnx
CIM~ 20T M~ i N oA DY A )

ﬂ[(J;) B AH ¢ T A n=1 Hi + an
Similar results may be derived for fields applied by more complicated
drive wire or drive strap arrangements. It can be noted that the effect
of superimposing several applied fields results simply in superimposing
the magnetization distributions obtained for the fields separately.
Hence, one approach to designing a magnetization distribution of a re-
quired shape is to approximate the shape by superimposing a set of

cos 2rnx/\. (8a)

(8b)
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known distributions. Many distributions of practical interest may he
described by a cosine series and discussion in the following sections is,
for clarity, limited to the cosine rather than the full series. Results for
the full series may be readily derived, if required.

Fig. 2(a) to (f) shows the relative fall off in applied field H (x)
and in axial magnetization component M (x) for a range of drive
strap geometries. The plots are for a 1 pm thick cylindrical permalloy
film of 5.0 mil diameter. Curves a, b, ¢, d correspond to drive strap
half widths of 1.0, 5.0, 10.0, 20.0 mils, respectively. In Fig. 2(a),
(b) the distance between drive strap (or return strap) and film axis
is 3.5 mils. Fig. 2(¢), (d) and (e), (f) correspond, respectively, to a
distance of 5.0 and 10.0 mils. It can be noted that the magnetization
distributions extend to a considerable distance and do not vary as
strongly as the applied field. The fields of Fig. 2(a), (¢), (e) are
shown to normalized scale, however, the peak field or drive current
required to just saturate the axial component at a2 = 0 varies signifi-
cantly with geometry, and is shown in Fig. 3.

In a plated wire memory, the local state of a region of film may be
assigned as positive or negative depending on the remanent circum-
ferential component of magnetization. To read out the circumferen-
tial component in a nondestructive manner, a local axial field is
applied by a drive strap surrounding the wire at the location of in-
terest, and the signal appearing across the ends of the plated wire
is measured. The signal is due to the circumferential flux change
integrated along the wire (neglecting capacitive or other emfs). The
circumferential component distribution is obtained simply from the
axial component using the relation, M (circumferential) = (M* — M
(axial)2)*. The total area under this curve is proportional to the signal
obtained when the circumferential component has been set completely
into one direction. It is convenient to equate the integrated circum-
ferential component to an equivalent length of film that has every-
where a 90° rotation of magnetization. Fig. 4 shows the equivalent
lengths of film for the curves of Fig. 2.

If now a locally reversed region is established and the readout field
applied again, the signal will have decreased, since the reversed region
contributes to the signal with reversed sign. It has been found previ-
ously® that the presence of a domain wall has little effect on the macro-
scopic magnetization distribution; hence, the curves of Fig. 2 may be
used to estimate the new signal. In this case, the area under the ecir-
cumferential plot is taken negatively over the length of the reversed
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region and positively for the remainder. Fig. 5 shows curves of net
equivalent length versus width of reversed region. Curves a, and b
correspond to strap half width of 1.0 mil but half separations of 3.5
and 5.0 mils, respectively. Curves ¢ and d correspond to strap half
width of 10.0 mils, and half separations of 5.0 and 10.0 mils, respec-
tively.
IV. NONUNIFORM FIELDS LARGE ENOUGH TO PRODUCE LOCAL SATURATION
When the local effective field reaches the value Hy then the local
magnetization rotation has the value =/2; hence, M (z) = M, the
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Fig. 2 — The curves denoted a, b, ¢, d refer, respectively, to a parallel drive strap
arrangement of half widths 1.0, 5.0, 10.0, and 20.0 mils. (a) and (b) correspond
to a strap-to-film axis distance of 3.5 mils, (¢) and (d) correspond to 5.0 mils and
(e) and (f) to 100 mils, (a), (¢), and (e) give to normalized scale the field
H(z)/H(0) applied along the axis of a 50 mil diameter, 1um thick eylindrieal
permalloy film with Hx = 3.0. (b), (d), and (f) show the resulting axial mag-
netization components M(x)/M due to the actual (i.e., non-normalized) ap-
plied field.

saturation value. A further increase in the field cannot therefore, pro-
duce any further increase in M (z) and it is necessary to modify the
preceding discussion to take the effect of saturation into account.

We assume that the magnetization distribution is monotonie, and
the width of the saturated region is specified at the outset. The cur-
rent required to produce this degree of saturation may then be found
for a given drive strap geometry, and the resulting magnetization dis-
tribution is calculated. This somewhat arbitrary procedure renders
the problem tractable.

If the film has saturated over a region —R = x = R then the
material within this region has M (x) = M a constant; hence,
dM (z) /dx vanishes within this region. It is convenient to introduce a
modifying funection S(zx), having period A, that is zero over the range
—R =2 = R, but is otherwise unity. The product S(z)dM (x)/dx
then has the property of being zero over —R = & = R but, is otherwise
equal to d)M () /dx. By introducing this product into the integral for
the demagnetizing field in place of dM (x)/dx, we have effectively
modified the integral without changing the limits of integration. Let
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Fig. 3— Current in drive strap required to just saturate the film of Fig. 2 at
x = 0, for the several drive strap geometries of Fig. 2.

H(x) and M (z) be represented by the finite series
N N
H(z) = 2 h, cos 2mnz/\, M(z) = M Y, m, cos 2mnx/X\,
0 0
also let S(z) be represented by a cosine series, then

S(x) = 2 8, cos 2mnx/\,

n=0

where for the required step function

& =1— QR/N), 5, = 4R (sm 2l /A

» \ 2mR/\ )’ n > 0.
Differentiating the series for M (z), we have

dM(z) = 27M < .
e . ”chnm,.smdmx/)\.

Then the produet may be written,

S(z) dM(z) = _2=M P Z snm, cos 2rjx/\ sin 2rna/N
dm A i=0 n=0
—ﬂl- o0 N

= 3 3 smm,(sin 2 (5 + n)a/N — sin 2x(j — n)z/N).

h i=0 n=0
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This represents a series of the form A, + A,sin 2rx/A + ... and we
may rearrange by grouping the coefficients to obtain

dM{(: M &
S(x) —dgst) = —Tr—h- Z.; ps,m,

ar N N

- Tri_[ E I:Z (Slzz-al — Spin + 305:)'1""1»] sin QTFHRT/A,
n=1 p=1

where 8, = 1 when p = n, but is otherwise zero, and the series for S(z)

is terminated for subscripts greater than 2N. Using this final series in

place of the series for dM (x)/dx in the integral (3) for the demagnetizing

field we obtain,

N N
H,(x) = E {%1 E (Sin=pi — Snip + soa’,f)pm,,}a,. cos 2rnx/\, 9)

n=1 p=1

where the a, have the values calculated previously for the nonsaturat-
ing case. There are now several conditions that the magnetization dis-
tribution must satisfy: it has the value 3 (z) = M over the range
—R = » = R and satisfies the torque equation (6) outside this range,
and finally, the amplitude of the applied field is such that M (x)
determined from (6) has also the value M at z = =R. The required
field value is given by the caleulation for any particular drive strap
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Fig. 4 — The change in circumferential component of magnetization averaged
along the film is proportional to the signal obtained during readout. This is ex-
pressed in terms of equivalent length of film that would produce the same signal
when uniformly excited to saturation. The plots are derived fram the axial com-
ponent distributions of Fig. 2.
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configuration. We now substitute the series (1), (2), and (9) into
the torque equation (6) and gathering coeflicients, we obtain,

Hymo = hy, for n =0

and the set of N equations,

N
pay — %o =
Hgm, + :/;] o (Sinepl — Snsp)My + g @il ha
n=12---,N. (10)

These N equations constitute a set of linear simultaneous equations in
the N unknown coeflicients m,. These equations may be expressed,

Zc,.,m,,=h,., n=1:2:"'st

p=1
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Fig. 5— Change in net equivalent length of film (proportional to output signal
during NDRO), versus width of reversed domain established beneath drive strap.
Curves a, b refer to strap half width of 1.0 mils, and strap to film axis distances of
3.5 and 5.0 mils, respectively. Curves ¢ and d refer to strap half width of 10.0 mils
and strap to film axis distances of 50 and 100 mils, respectively. The curves are
derived from the axial distributions of Fig. 2.
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Fig., 6 — (a) Theoretical curve and experimental points taken with the Kerr
effect probe® for a saturated cylindrical film. The broken curve shows the relative
fall off of the axial applied field. (b) The field is applied by a parallel drive wire
arrangement shown in cross section, The current I applied in the drive wires is
1.14 A.

where the ¢,, are given hy

cnp = {gi:“ (sLnpr Sn%p) + ( (2 + HK)BD}

Such a set of equations may be conveniently inverted by computer
for any particular case giving the m, coefficients in terms of the h,’s.
Since the m, and h, coefficients are linearly related, a scale factor, e.g.,
current in drive strap, is applied to H(x) to ensure that the distribu-
tion has a value M at @ = =+R. The resulting series indicates a non-
uniform distribution for A/ (x) within the range —R = z = R, but, by
the action of S(x), this produces no demagnetizing field and therefore
does not influence the distribution obtained outside the range. The
value of M (z) is therefore set equal to A/ inside the saturation range.
The plot obtained within''this range reflects instead the value of
(H — H,)/H.
Fig. 6(a) shows a plot of the axial magnetization distribution where
the film has saturated over a length of 30 mils, for a eylindrical film
of 5.2 mil diameter, 0.69xm thickness and Hx = 3.1 Oe. The broken




1540 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

1.0
0.8
WIDTH OF FILM
SATURATED, MILS
0.6
M(T)
M \
i s
0.2 \§\\
e}
o 20 40 60 80 100

T, MILS ALONG AXIS

Fig. 7‘—Axia1.c0mponent of magnetization for the cylindrical film of Fig. 6
when driven to different degrees of saturation.

curve of Fig. 6(a) shows a normalized plot of the applied field. The
field is applied by a drive wire, and the separation between drive and
return wire is 20 mils as shown in 6(b). The calculation indicates a
current of 1.14 amps to produce this degree of saturation. The points
represent measurements made previously® using the Kerr Effect probe.

Tig. 7 shows the axial magnetization component for the geometry
of Fig. 6 where the film has saturated to widths of 0, 10, 20, 30, 40 mils.
The applied field is shown in Fig. 8, curve a, versus width of saturated
region produced by the field. Curve b is for a drive strap of half width
10 mils and strap to film axis distance of 10 mils. The shape of the
curve does not appear to vary markedly with drive strap geometry.
It can be noted that little increase in current is required to extend the
saturated region from 1 to 10 mils, but that saturation to greater
widths requires increasingly larger currents.

V. FILM THICKNESS VARIATION

Now let T'(x) be the variable film thickness and assume that T (x)
and H (z) have the same periodic distance A, then we may write

T(x) = i t, cos (2rnx/N).

n=0
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In the thin film approximation, magnetization variations within the
thickness of the film are neglected and demagnetizing fields are cal-
culated from the net pole density per unit area of film. To take into ac-
count a variation in thickness we take the product T (2)M(x) as the
total magnetization component in the hard direction and evidently the
pole density is then given by — (d/dx) [T (x) M (x)].

Taking the product of the series, we obtain

, M X
T@M(@) = 5 \lmo + > tm,

p=0
N N
+ 20 2omyl(taey + tiwer) + 1,87] cos 211-113:/)\},
n=1 p=0
hence, replacing M (x) by T(x)M(x) in (3), the demagnetizing field
is given by

N N

Ho@) = 22 2 Mytuey + tinep + £o82) cos 2rnz/n,  (11)
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Fig. 8—Current required to produce a given width of saturated region along
a cylindrical film of radius 2.6 mils, thickness 0.69um, Hx = 3.1 Oe. Curve a is for
the arrangement of Fig. 6. Curve b is for a parallel conductor drive strap of width
20 mils situated at £10 mils from the film axis.
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where 8 = 1 when n = p but is otherwise zero. Substituting into the
torque equation (6), and equating coefficients we have finally

HKTI‘?-” = hn
and
Y (24
Z [2—" (losp + Linew + Lodh) + HKBZ]'.'n,, =hy, mn=1,2,---, N
p=0
lLe.,
v (a4
Z [Qﬂ (tn-t-p + tln—ﬂl + 505:) + HKB::IHE‘, = h,, - a“i"hﬂ/HK . (12)
»=1

This last expression represents a set of linear simultaneous equations
which may be solved numerically to give the coefficients m, in terms
of t, and h,. The calculation, when applied to the case of a flat film
strip having an ellipsoidal cross section along the hard direction, sub-
ject to a uniform field, predicts a uniform demagnetizing field of
magnitude very close to that indicated by the tables of Osborne® based
on the solution of Maxwell’s equation for the general ellipsoid. Fig. 9
shows the magnetization distribution near an edge of a uniform thick-
ness (0.22 pm) flat film with Hy = 2.62 Oe. The points represent data
taken with the Kerr effeet probe.

1.0 I" §L
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T=o0.22pem
UNIFORM FIELD
0.4
0.2 |
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X, MILS FROM EDGE OF FILM

Fig. 9— Magnetization component near the edge of a flat film of thickness
0.22ym, and Hx = 262 Oe. The applied field is uniform and equal to Hx. The
edge runs parallel to the film easy direction. The points show measurements
taken with the Kerr effect probe.
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Fig. 10— Axial magnetization component for cylindrical film segments of differing
length due to the field from a parallel wire drive strap at distance 7.5 mils from
film axis. Curves a, b, and ¢ refer to segments of length 40, 80, 160 mils, respectively.
d refers to a continuous film. The current in the drive wire is 0.5 A. (b) shows a
cross section of the drive wire arrangement.

Fig. 10 shows, for comparison the magnetization distribution for a
nonsaturating hard direction field applied to 5.2 mil diameter cylindri-
cal film segments of differing lengths, but uniform thickness of 0.7um,
and Hy = 3.0. The field is applied by a parallel drive wire arrangement
of separation 15 mils. Finally, Fig. 11 shows the axial magnetization
distribution for a uniform field applied to a eylindrieal film having a
circumferential cut. Film radius is 2.6 mils, thickness is 1.0 ym and Hy
= 3.0 Oe. It is to be noted that the present technique has a spatial
resolution limited both by the number of terms of the series that can
be retained for computation, and by the basic limitation that exchange
forces are neglected. We cannot, therefore, expeet to obtain detail of
magnetic behavior very close to an edge, for example, or for an ex-
tremely narrow serateh.

VI. ANISOTROPY MAGNITUDE VARIATION

Let us assume that the anisotropy constant is represented by a
cosine series, i.e.,

K(x) = Yk, cos 2rnx/\.
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Fig. 11— Plot of axial magnetization component for a 5.2 mil diameter cylindri-
cal film with a circumferential gap. The curves show the result for a 4 mil, 6 mil
and wide gap. The axial applied field is uniform and equal to 3.0 oe. Film thickness
19 1.0um and Hx = 3.0 Oe.

Then substituting into the torque equation (6), and gathering terms
we find

N
Z‘s % (k, + kodn)m, = hq (13)

and

N
E {% (i\"l'l*‘ﬂ + kh’l—tﬂ + 7\7052) + CY,;B::}”% = hn y

p=0
n=1121"'1N' (14)

Together these equations represent NV 4 1 linear simultaneous equations
in N 4+ 1 unknown coefficients m, , and may be solved by computer.
This calculation may be used for example to find the local behavior of M
at the junction between two regions with differing anisotropy constants,
or to find the effective permeability of a film having some systematic
variation in anisotropy constant. A simplified discussion of this latter
problem has been given previously.'® Fig. 12 shows the effect of using a
high Hx buffer region surrounding a normal H section of film. Curve a
shows the distribution for a uniform wire with Hx = 3.0, b shows the
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modification when Hp is increased to a value Hx = 15 for all distances
beyond 2 = 10 mils and ¢ shows the result when H is further increased
to 30 oc in the buffer region. The effectiveness of the high Hyx buffer
region in sharpening the distribution can be noted. This is achieved,
however, at the expense of greater current required to just saturate at
x = 0. For curves a, b, ¢ the currents are 0.50, 0.79, and 0.93 A, re-
spectively. Fig. 12(b) shows a cross section of the parallel conductor
drive strap arrangement.

VIL. FIELD EXTERNAL TO FILM

Combs and Wujek!! have calculated the field external to a thin film
rectangular slab assuming a pole distribution concentrated at the
edges of the slab. We now calculate the field external to a continuous
film subject to various applied field conditions where the details of the
effeetive pole distribution form the essential part of the problem. The
results of previous sections may be adapted to find the field external
to films which have a hard axis variation in thickness or anisotropy

1o I T
< .
A MILS
h ) &_KS_Z
0.8 — — Y MILS |
————
\ (b)
Mix)
M Hk=3.00e T=toum
0.4 a b c ]
I=05 079 093 A
Hkz= 3 15 30 Qe
Hi | Hke !
0 |
0 20 40 60 a0 100 120

L, MILS ALONG WIRE

Fig. 12— (a) Effect of high Hx buffer region surrounding a normal Hx section of
cylindrical film. Curve a shows the magnetization component for a uniform
film with Hx = 3.0. Curves b and ¢ show the result when Hx is increased to 15 and
30 Oe, respectively for distances greater than 10 mils to either side of the drive
strap centerline. (b) Details of drive strap arrangement. The currents required to
just saturate the film at + = 0 are 0.5, 0.79, and 093 A for the cases a, b, and ¢,
respectively.
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but these cases are not considered in detail here. Consider the field at
some distance d from the surface of a flat film and at distance x
along the hard axis. The external field H,, parallel to the film due to
the distribution of poles over the film surface may be found by evalu-
ating the integral

(x)( - X)dXdY T

1
H,(z, d) = fwf [d”+ VP F X = (15)
Substituting for M (z) and performing the integration we find
2 )
Hoe, d) = — ML S pne™ " cos 2ma/N. (16a)

)\ n=1

This is the external field parallel to the plane of the film given as a
function of distance d from the film. For a cylindrical film the result is

H,.(z,d) = —4raTM Z( ) K,(2rnd/\)

n

1,(2mna/N)m, cos 2anz/\, (16b)

where a is the cylinder radius, and d is the distance from cylinder axis
to the location at which the axial component of field is measured,
(d > a). The field inside the eylinder may be similarly derived, the
result is

H,.(z,d) = —4raTM Z( ) Ko(2rna/N1(2rnd/Nm, cos 2mnz/\,

where now d < a. Along the cylinder axis I,(0) = 1. Fig. 13 shows a
plot of the axial component of the demagnetizing field for several values
of distance from film axis. The eylindrical film is assumed to have a
diameter of 5.2 mils, H;y = 3.0 Oe, thickness is 1.0um, and is excited by
a one turn loop of radius 7.5 mils.

The flux coupling a parallel wire loop parallel to a flat film surface
and to the film easy direction with the conductors at =D from the
surface may now be found. The flux F per unit length of the parallel
conductor loop is then

D
F = 4xM@)T — 2 f Ho.(x, 2) dz.
0
Substituting for H,. and rearranging, we find

N
F = 4zMT D m.e >""""" cos 2rna/\. amn

n=0
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Fig. 13 — External axial component of field due to the distribution of mag-
netization along a cylindrieal film, (The field due to the drive strap is not in-
cluded.) The field is plotted along lines parallel to the film axis, at several dis-
tances from the axis. The film has a thickness of lum, Hx = 3.0 Oe, diameter
52 mils, and is subject to the field from a one turn circular loop of diameter 15
mils. Curves a, b, and ¢ refer to distances of 2.6, 5.0, and 10 mils from the axis,
respectively.

If the magnetization distribution is due to the field from a parallel
wire loop with conductors at 4=d from the film surface, then using ex-
pression (8a), we have

F(z) «CIM + 2 CITM > e 2P cos 2mna/N
41I'T N AHK A HK + (2%

It can be noted that F(x)/4x7T is formally equivalent to the magneti-
zation component in the film at the plane of the loop due to a current
I in a loop with conductors at #=(D + d) from the film. The mutual
inductance between two loops (not necessarily enclosing the film) may
then be found directly from the above results.

The flux linkage between the film and drive loop is obtained by set-
ting x = 0 and D = d. A current [ in the loop gives rise to a magneti-
zation component M (0, I, d) at x = 0, and the flux linking the loop is

(18a)
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given by M (0, I, 2d), using (18a). The fractional flux linkage is there-
fore M (0,1,2d)/M(0,1,d).

At x = 0, the expression (18a) may be evaluated in closed form; the
result is,

F(0) 21C

4T~ 4xeMT
Hence the fractional flux linkage (FFL) is

FFL = exp (wd)E,(—2ud)/E.(—ud),
where p = 2Hy/4=MT and E; is the exponential integral. This is a
useful parameter which shows the degree of coupling between loop and
film, and is plotted in Fig. 14 as a function of d, for a flat film of thick-
ness 0.1pm, Hy = 4.0 Oe.
The result for eylindrical films is more complicated. In this case it
can be shown that

F(z) _ 2CIxM

47T A
2mrn\* 2 2 2 Urna
. d(ﬂ") KD(ZW”D )L,( ’Tm)Kl( mld)fn(ﬂg) cos 2TE
A A A A A Y
3 — - . (18b)
T He 4 4rMT (2-.ma) X (Q:ma) I (2ma)
K a A ANV ALANY
1.0
w
Yos8
z
5
i 0.6 --_—-'-—__
1
6 LIMITING VALUE FOR LARGE d | T
Q 0.4
o
w
0.2
o] 4 E 12 16 20

d, MILS

Fig. 14 — Fractional flux linkage between a flat film of thickness 0.1pm, Hx
= 40 Qe, and a pair of parallel wire conductors as a function of distance from
film to the conductors. The parallel wire conductors serve as both drive and
sense windings.
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where the cylinder has radius a, thickness T and is excited by the field
from a circular loop of radius d. F(x) gives the amount of flux picked
up by a loop of radius D at an axial distance x from the drive loop.

VIII. INTERACTION BETWEEN PARALLEL FILMS

Consider two plane parallel films (denoted 1 and 2) of thickness 7'
and 7" and anisotropy fields /7 and H/ , respectively, separated by a
distance w along a normal to the film’s surface. A nonuniform field is
applied along the (parallel) hard directions by a drive strap. Let the hard
direction fields be H(x) and H'(z). The field acting on film 1 due to the
distribution within film 2 we denote by H(x),,, and similarly the field
acting on 2 due to film 1is H(z)., . These fields are taken to act along the
film’s common hard direction, and the films are assumed to be sufficiently
thin that fields normal to the surface have negligible effect.

The torque equation determining the loeal rotation of magnetization
within the two films may be written

Hisin 0(x) = H(x) + H.(z) + Hp.(z), film1 (19)
Hi sin ¢'(x) = H'(x) + HL(x) + Ha(z), film 2. (20)
Let M(z), M’ (x} be the hard direction components of magnetization

in the two films, then from previous sections we have (assuming cosine
distributions)

H(x) = 2. h, cos 2rnx/\
H'(z) Z hi cos 2mrnx/\
H,(x) = —8T ann cos 2mnx/N, H.(x) = —BT" an,’, cos 2rnx/A
Hy,(x) = —BT" Y nm exp (—2rnw/\) cos 2rnx/\
Huu(z) = —BT Y nm,exp (—2xnw/\) cos 2rnx/\,
where 8 = 4=2) /\. Noting that sin 0 (z) = M (x) /M and sin ¢’ (z) =

M’ (x) /M, we substitute the above series into the two torque equations
and equating coefficients, we obtain,

Hgm, = h, — pnTm, — pnT'm} exp (—21rn'w/?\)}_
Him, = h; — gnT'm) — pnTm, exp (—2rnw/\)
Solving for m, and m/ , we have finally

m, = |:; _ BnT"hi exp (—vaws,f)\)]
n i«u I{;. + BnT’

Bn*TT" exp (—47rn'w/?\):|_’ @1)
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m! = [hf _ pgnTh, exp (—21rnw/)\):l
" " Hy + pnT

Bn*TT' exp (—41rnw/?\):|"
Hy + nT ’ (22)

These expressions can be compared with the results when the films are
present singly, i.e., at large separations,

m, = (hn)(HK + -BnT)—l
my, = (R)(Hi + Bn1")7".

Evidently the calculation can be extended to a greater number of layers
and it is immaterial whether the drive fields are applied positively or
negatively provided the fields are appropriately assigned, that is, the
field may be generated by conductors located between or completely
to one side of the films. The equations relating the coefficients m, , m;
may be conecisely expressed in matrix form,

{7 8]~ o % 0] - omeww c2emarn . S} 2] - 1]
(23)

The three matrix terms of the left-hand side represent in turn the effect
of anisotropy, demagnetizing field, and interaction between films. The
extension to three or more films is straightforward. Tig. 15 shows the
effect of flux closure between two films only 2 mils apart subjected to the
field from a drive wire sandwiched between them. The films have equal
thickness of 0.1 pm and anisotropy field Hyx = 4.0 Oe. Since the fields are
applied in opposite directions in the two films the demagnetizing fields
tend to cancel and the magnetization distribution widths are smaller
than for similar films well spread apart. Curve a shows the coupled
distribution, and b shows the distribution with one film removed. The
current required to just saturate the films is 0.127 A, with one film re-
moved the current required rises to 0.170 A. With films of thickness
1000 A, separations of order a few mils are essential for this effect to be
appreciable.

We may use the results (21) and (22) to examine the effect of a keeper
layer. The action of the keeper is to modify the field applied to the film
and to provide some degree of flux closure. Consider the case of a flat
film situated between two drive wires, distance d from the film, with a
keeper layer distance w > d from the film. Let primed quantities refer
to the keeper, and unprimed refer to the film. The keeper typically has a

-[Hfr; + Bnl" —
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Fig. 15 — (a) Effect of flux closure between two identical flat films, separated by
a distance of 2 mils. The field is applied by a single wire placed between the
films as shown in (b). The films have a thickness of 0.1um and Hx = 4.0 Qe.
Curve b shows the result when one of the films is removed. The current required
to just saturate the films at 2 = 0 now rises from the bifilm value 0.127 A to 0.170
A for a single film.

thickness of mils or tens of mils and hence 4x°MT’/\ >> H for reason-
able values of M and \. Equation (21) then reduces to,

My = [hy — kg exp (=2mnw/N)]/[Hx + BnT(1 — exp (—4rnw/N)].  (24)

The field applied to the film in the absence of the keeper is H(x) = > h,
cos 2rnz/\, where for the present case
2C I _ 4CIx

hg = X ’ hn Y

exp (—2rnd/N).
I is the current in the drive wires. The field applied to the keeper is
given by > k! cos 2rnxz/\ where h! = 0,

_ 2CIx
Y

Then, m, = 20Tr/\Hx , and
m, = CI(2x/\)[2 exp (—2rnd/\) — exp (—2xn(2w + d)/\)
+ exp (—2m(2w — d)/N)]/[Hx + BnT(1 — exp (—4mnw/N)].  (25)

ha

{exp (—2mn(w + d)/N\) — exp (—2mn(w — d)/\)}.
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It can be noted that the terms in the numerator are equivalent to the
coefficients of the field due to the drive strap directly, and to images
of the drive straps, with the keeper as mirror. The image property of
the keeper layer is well known and has had considerable application
to the discussion of keepers, see, for example, Refs. 12 and 13. The
effect of the mutual interaction between keeper and film is to modify
the a, factors (a, = BnT for a flat film) by a term 1 — exp (— 4mnw/A).
The influence of this term is two fold, (¢) the spreading of the mag-
netization component is reduced and (i7) the drive field required is
reduced.

Fig. 16 shows the effect of a keeper layer on the distribution in a
flat film of thickness 0.2um, Hy = 4.0 Oe. Field is supplied by a pair
of drive straps of width 10 mils carrying a current of 0.22 A, at a dis-
tance of 5 mils from the film. The keeper layer is taken to be 6 mils
from the film. Curve a shows the hard direction component in the
absence of the keeper, b shows the eftect only of the image fields
due to the presence of the keeper, and ¢ shows the final result when
image fields and partial flux closure are taken into account.

1.0
c pos A EAELLETII i T KEEPER
—— |
b k10 ,A,{T |6 MILS
{1OMILS "
0.8 FILM

[+})

N - " T

0.4

Hk=4.0 Oe T=o0.2um
FOR CURVES a,b, ¢

I=o0.22A
0.2 ‘\
| %_________—
. I \_E
o 10 20 30 40 50 60

T, MILS

Fig. 16— (a) Effect of a keeper layer on the magnetization distribution in a flat
film of thickness 0.2um, Hg = 4.0 Oe. Field is applied by parallel drive straps of width
10 mils at =5 mils from the film. The keeper layer is taken to be 6 mils from the
film as shown in (b). Curve a shows the hard direction component in the absence
of the keeper, Curve b shows the effect of the image fields only when the keeper
is present, and Curve ¢ shows the final result when image fields and flux closure
are taken into account.
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The effects of a flat keeper layer on the response of a eylindrical
film are not amenable to calculation by the present method owing to
the mixed geometry.

The case of a cylindrical film with a concentric eylindrical keeper
is next considered. The discussion closely parallels that for flat films
and leads to a result analogous to (24),

2rna 2mna 2n—nA) !
(=) (i (P
My = | hy — b ~ || Hg + a, |1 — (26)
I ( -n-nA) I (QMA)K (21ma)
1] h R I\. 0 R 1] R

where for cylindrical geometry «, = 4xM(T/a)(2rna/N)*Io(2mna/N)
+Ko(2mna/N). The field is applied by a loop (of radius d) around the
cylindrieal film (of radius a), and %, , A are the Fourier coefficients of
the field at the surface of the film and at the keeper (radius 4), respec-
tively. The axial field from a circular loop of radius d, at distance a from
the axis and 2 from the plane of the loop, is given by'*'*®

2 2 2

& -5 B® |l + 0y + 2T,
where K and E are complete elliptic integrals of the first and second
kinds, respectively, and k* = 4da/[ (a + d)* + 22].

It can be noted that the effect of the keeper is to modify the applied
field and to reduce the demagnetizing field. Fig. 17 shows a practical
approximation to such a keeper geometry. Fig. 18 shows a plot of axial
magnetization component in a Ipm thick permalloy film with H =
3.0 Oe plated on a 5.2 mil diameter wire, subject to the field from a one
turn circular loop of diameter 7.5 mils earrying a current 0.3 amps.

H(z, a) = CI[K(k) -+

_KEEPER
y" LAYER

‘\
~_ DRIVE
STRAP

“~CYLINDRICAL FILM

Fig. 17— A possible practical approximation to a cylindrical keeper geometry.
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Fig. 18 — Effect of a cylindrical keeper layer on the axial magnetization dis-
tribution in a cylindrical film of thickness 1.0um, Hx = 3.0 oe, diameter 5.2 mils.
Field is applied by a one turn loop of radius 7.5 mils. Keeper radius is taken to
be 10 mils. Curve a shows the distribution with no keeper present, curve b shows
the effect of the keeper in modifying the applied field, and curve ¢ shows the final
result when field modification and flux closure are taken into account.

The keeper radius is taken to be 10 mils. Curve a shows the distribu-
tion with no keeper present, b shows the effect of field modification
alone when a keeper cylinder of diameter 20 mils is in place, and ¢
shows the final result when field modification and flux return are taken

into account.

IX. NONUNIFORM HARD DIRECTION FIELD IN PRESENCE OF EASY
DIRECTION BIAS FIELD

In this case the torque equation has to be modified to include the
easy direction field Hy(x), then
9K sin 0(x) cos 6(x) = M(H(x) — H..(x)) cos 0(x) — M Hg(x)sin 6(z). (27)
Providing cos 6 5% 0, we may write,
Hysin 0(z) = H(x) — H,(z) — Hg(z) tan 6(z), (28)

where Hr = 2K/M and it is assumed that Hp is parallel to the easy
direction component of magnetization. It is convenient to represent
Hy(x) tan #(x) by a series
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N

Hy(2) tan 6(x) = . d, cos 2rnx/r.

n=0
Substituting into the torque equation (28), and gathering coefficients,
we have

Hg + au)m, = h, — d, , n=20,12 ---,N.
The coefficients d, are now complicated functions of the m,’s and this
equation cannot be solved directly. Instead we use an iterative proce-
dure as follows: H(x) is given a peak value insufficient to produce

saturation in the case Hp = 0 and then successive approximations are
found for the m, coefficients. In the first approximation we take

I "

H kT a,
tan #(x) may now be found from sin 6{z) = M (z)/M, and the Fourier
coefficients d, of the product Hp(x) tan #(x), may be obtained. In the
next approximation, we take

m,

1.0 ‘ l [
-
120 MILS
AN s.2f § : 3
1
\\ (D) —— L
\ ke--20--»
A\ |
0.6 |
M(x) \ (@) H%‘:a.g Qe
= topm
M \ I= 0.5::54 A
0.4 BIAS FIELD = 1.0 Oe
\ \
b
0.2 \ &
— ]
% 20 20 60 80 100 120

x, MILS

Fig. 19— (a) Axial magnetization component for a cylindrical film with
uniform easy direction bias field of 1.0 oe. The nonuniform hard direction field
is applied by the drive strap arrangement shown in (b). In curve a, the bias field
aids the rotation of magnetization for large z. A reverse domain is assumed to
have been written into a width 20 mils, for # < 10 mils therefore the bias field
opposes the rotation of magnetization. Curve b corresponds to zero bias field.
Curve ¢ corresponds to a reversal of bias field where it is assumed that the re-
versed region has been erased.
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m, = o = .
" Hy + a,

We now find, as before, new coefficients d, ; hence, new coefficients m, ,
until the m, coefficients change by less than, say 5 percent per iteration.
The curves for H(x) and M (z) are then plotted. The whole procedure
may be repeated as necessary. The bias field may be a constant H or be
a step function changing from Hy to — Hp at some location = R. The
step function corresponds to the case of a domain wall being present at
z = R. The use of the step function provides a formal way of treating
the modification to the torque equation, due to H, and the easy com-
ponent of M being parallel for x < R, and antiparallel for x > R.

It is to be noted that the torque balance becomes unstable for certain
combinations of applied fields. The critical fields are related by [H(z) —
H, (@)t + H} = H}, where it is assumed that Hp is antiparallel to the
easy direction component of . This limitation does not apply when
Hp and the easy direction component of M are parallel.

Fig. 19 shows a typical axial magnetization distribution for a cylindri-
cal film, and corresponds to the procedure of “writing” into a region of
film. A current in the plated wire produces a uniform easy direction bias
field of 1.0 oe and an external drive strap produces a nonuniform hard
direction field. The greater spread of the curve a compared with the
zero bias field distribution [shown by curve b] is due to the bias field
lowering the effective anisotropy to Hx — Hp for rotations less than
about 40°. The attempt to “erase” by reversing the bias field, curve
¢, raises the apparent anisotropy to Hx + Hjy over much of the curve,
and hence the film response is generally reduced. In curve c it is as-
sumed that the reversed region has been erased. It will be appreciated
that the present calculation assumes at the outset that a domain
wall has some given location. The resulting distribution must then
be inspected to decide whether the location chosen was appropriate
or even stable under the applied field. In a practical case, wall location
is affected by additional factors such as dispersion and creep, and is not
discussed further here. Experiments on flat films show that the reversed
region is not totally erased by simple reversal of bias field. Fig. 20(a) is a
Kerr effect picture showing a reverse domain of width 20 mils, written
in by a bias field of 1 Oe and a peak drive field of 5.0 Oe (11 mil strap,
10 mils from film). Fig. 20(b), shows the result of reapplying the fields
with reversed bias. Fig. 20(c) shows the result of first demagnetizing
the film into a fine domain structure, the width of the domain established
is now much wider. In this case, the effect of the bias field changing the
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Fig. 20— (a) Kerr effect picture showing reversed domain (light) in a flat
film written in by an 11 mil drive strap situated 10 mils beneath the film. (b)
When bias field is reversed, the domain is not completely erased. (¢) Width of
domain written after first demagnetizing film with a large uniform hard axis
field. (d) Shows the drive strap arrangement to the same seale.

apparent anisotropy is much reduced, but the film now has an appre-
ciable remanent state; hence, significant hard direction local demag-
netizing fields exist in addition to the field introduced by the effect
of the external fields. The relevance of such considerations to domain
wall creep processes, under practical operating conditions, warrants
further study but is not pursued here.

X. CONCLUSION
Demagnetizing fields play an important role in the operation of

many thin magnetic film devices. The requirement of high packing
density as in a memory, leads to strong localization of induced changes



1558 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

in magnetization, and to correspondingly large demagnetizing fields
and drive currents.

In an open flux structure attempts to confine magnetization changes
by using segmented films or high anisotropy buffer regions are suc-
cessful only at the expense of a considerable increase in drive field
requirement. To some extent flux keeper layers may be used to modify
applied fields and to permit partial flux closure, with in consequence,
both a lowering of drive currents and a reduced spread in induced
magnetization component.

The method of ealeulation given here permits a detailed examina-
tion to be made of the effectiveness of such procedures, and has been
applied to a variety of thin film demagnetizing field problems. Kerr
effect probe measurements® are in good agreement with caleulation
although relatively little data is at present available. The results have
particular applicability to cylindrical film problems, where axial varia-
tion of field or properties is of primary concern.
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