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This paper is a treatment on linear and planar phased arrays of current
sources, whose amplitudes are uniform and scan-invariant. By recognition
that the radiation impedance of an array element s an analylic function
of a complex scan variable, a powerful mathematical tool becomes avail-
able for the investigation of some important properties of the impedance
as a function of scan. For example, it is proven that in a finite array the
impedance seen by such a scan-invariant current source cannot be per-
fectly malched over a continuous scanning range using lossless, linear,
passive and time-invariant elements. This result is extended to the infinite-
array case by treating the latler as a pericdic structure, and assuming
that the Green’s function of the wunit cell s analytic with respect to the
scan variable, The theory includes both linear and planar arrays. Among
other resulls it is shown that the element vmpedance in an infinite array
must be of a specific mathematical form. It is hoped that by recognizing
the limitations imposed thereby, useful guidelines will be established for
achicving optimal malch of an array into space.

I. INTRODUCTION

The class of antennas widely known as phased arrays includes es-
sentially two types of radiators: stationary and steerable ones. The
first operates at fixed amplitude and fixed relative phase between the
array elements. Consequently, the antenna characteristies, such as ra-
diation pattern, input impedance, and mutual coupling between ele-
ments, remain unchanged during the entire operational lifetime of the
antenna. The steerable antenna is characterized by time varying ex-

* This work was supported by the U. S. Army under contract DA-30-069-
AMC-333(Y).
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citation. The relative phase between adjacent elements is varied either
mechanically or electronically to bring about a variation in the orien-
tation of the beam. In most instances scanned arrays are large in size
and may contain several thousand elements. Their illumination has a
linear phase taper. As a result the antenna characteristics become scan
dependent. The relationship between scan angle and various param-
eters of interest such as gain, element impedance, and mutual coupling
between elements have been the subject of intense investigation in re-
cent years.::2 One particular direction has been towards improvement
of the impedance mateh over wide seanning ranges.® At present the
merit of a matching technique can be determined only relatively to
other techniques. To the best of the authors’ knowledge an absolute
mathematical criterion, based on physical realizability requirements,
has not been formulated. Some investigators*® claim that a perfect
mateh of an infinite array for all scan angles (at which the active im-
pedance is not infinite, zero or purely reactive) can be achieved by an
infinite set of interconnecting network elements. However, the proof
is based on the assumption that the scan-dependent equivalent load
impedance at the array-space interface remains unchanged after the
sources have been interconnected by coupling elements. Although this
assumption has been successfully applied®® to improve the matehing
capability of an infinite array, it is incorreet to use it in a perfect
matching scheme.

In this paper a new mathematical approach to phased array anal-
ysis is presented. The model for the analysis is a phased array of ideal
current sources (electric or magnetic) of secan-invariant uniform am-
plitude. This model is further discussed in Section II. The analysis
itself is based on the general laws of antenna theory and on those
properties which are common to all phased arrays represented by the
model.

The first part of the theory is devoted to finite arrays and is treated
in Section III. The starting point of the theory is a theorem which
establishes that the radiation impedance of an element in a finite array
is an analytic function of the scan angle. Further, it is shown that an
element in a linear or planar phased array cannot be perfectly matched
over a continuous scanning range by using lossless, linear, passive and
time-invariant elements, Then it is demonstrated that the directions
in space of the beams’ maxima are eigenvalues of a Laplacian differ-
ential operator with periodic boundary conditions which are related to
the phase taper of the array, and several useful properties of those
eigenvalues are derived.
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The second part of the theory appears in Section IV and is devoted
to infinite arrays, which play an important role in the analysis of large
phased arrays. The investigation is based on a transformation between
the scan angle and a complex variable s = a + j8, which can be in-
terpreted on 0 < o = 1, 8 = 0 as the trigonometric sine function of the
angle between the plane of the array and the direction in which a chosen
grating lobe propagates. It is subsequently shown that the element
impedance, as a function of s, is restricted to a specific mathematical
form. Recognition of the limitations imposed thereby may provide new
insight into the behavior of such arrays.

II. PRELIMINARY REMARKS

The model chosen for the following treatment is a linear or planar
phased array excited by a set of ideal current generators of uniform
amplitude and linear phase taper. The description ideal implies that
the sources have no internal impedance and are invariant under any
loading. This means that except for the relative phasing between con-
tiguous generators the currents are scan independent. Frequently in
antenna analysis induced currents are replaced by equivalent sources
by application of the equivalence principle.® Such currents are not part
of the sources. The induced currents are accounted for automatically
by fulfillment of the requirement that the tangential component of
the electric field has to vanish on all conductors. In general, the source-
current amplitude in each element of the array may be a funection of
scan. However, this dependence is generally unknown and is often
neglected in theoretical work. The types of excitations commonly used
are the “free exeitation” and “forced exeitation”.* The first assumes a
generator with a sean-invariant internal impedance which is eapable of
delivering scan-invariant ineident power. In the latter a constant termi-
nal voltage or current is maintained. As pointed out by Oliner and
Malech free excitation is easier to realize in high-frequency technology
than forced excitation. The latter, however, is more tractable here.
The results of this study remain valid for scan-dependent excitation
as well, provided the current density of the source is a smoothly vary-
ing function of scan angle and can be analytically continued into a
complex scan-angle plane.

Under the assumption that the array is excited by a uniform ampli-
tude and a linear phase taper, the current density excitation function

* A. A. Oliner and R. G. Malech, Ref,, 1, pp. 209-211.
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of an M-element linear array (Fig. 1) is given by
Jolx — ma, y, 2™, ma £z < (m+ a,

J@, y,2, ¥) = m=01--,M-1

0 otherwise

and that of an M X N element planar array of rectangular symmetry
(Fig. 2) is given by

Jlmyctngy)

Jolx — ma, y — nb, 2)e

ma <z = (m + Da,

I, .2 e ) = 4 b=y =+ Db, @
m=0,1,2,-..,M__1,
n=20,1,2,--- ,N — 1,

0 otherwise.

The above currents can be either electric or magnetic the latter being
regarded as equivalent to ideal electric voltage sources.

Note that the spherical coordinate systems in Fig. 1 and 2 differ
from those commonly used in phased array analysis. The poles are
located at endfire instead of broadside and the ranges of colatitude and
azimuth are such that the upper hemisphere is spanned by 0 = 6 = ,
0 < ¢ < . This convention is chosen for reasons of mathematical
convenience. The results derived in Section III are valid for linear
as well as planar arrays. The inclusion of both cases in a single
treatment is facilitated by a generalized notation for the current
density excitation function. The steering phases my and my, +
ny, are replaced by an equivalent “steering coefficient” &,,,(¢p,) in
the plane of scan oriented at azimuth angle ¢,, . The steering coefficient

2

oq

. . . . -
"'Joe‘-‘a"' Joe~ ¥ J, Joed¥ JoeJE"‘---

e-ma-—]

Fig. 1 — Linear phased array.
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Fig. 2 — Planar phased array.

is derived by its relationship to the direction of a beam’s maximum,
which is determined for linear arrays by the equation

¢ + 2pr = ka cos 0, p=0 1, £2 -+ £ = (3)
and for planar arrays by
V. + 2pr = ka cos 8,, cos ¢, p=0,=%1, £2, -+ £ o (4a)

¥, + 2gr = kb cos 0, sin ¢,, q=0, %1, £2, .-+ £ e, (4b)

where [ is the wave number in the medium, and 6,, is as shown in Fig.
1 and 2. The steering coefficient is then defined by

Tnn(#pa) = k(ma cos ¢,, + nb sin ¢,,)

p,qg=0,=+1, £2, -+ £+ o, (5)
Equations (1) and (2) can now be written as
r_l'o(.?: — ma, y — nb, 2) exp (jo,.. cos 6,,),

mae =z = (m—+ 1a,

b <y < 1)b,

v, 0 = | MEYS@Em
.m=0 "',]lf—-l,
n=0 sN'_l,

0 otherwise

at ¢,, = const.
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Under the above generalization the excitation function for the
linear array becomes a special case, ¢ = 0, N = 1, ¢,, = 0, and the
period in the y-direction extends from —e to -+ = ; or alternatively
p=0,M=1,¢, = =/2 and the period in the z-direction extending
from — e to -+ . Since the phase constant exp {jo..(¢,) €os 6,.}
is independent of (p, g), any 6,, may be chosen as the independent
variable of scan. The subscript pg will henceforth be omitted whenever
the mathematical expressions are independent of (p, g).

The time dependence e¢’“‘ is assumed throughout the analysis. In
a steerable array the phase taper is time dependent. However, it is
understood that the rate of change of the phase taper is very small
in comparison to the angular frequency, i.e., d¢/dt < w, since only
under that condition do the classical concepts of directivity and radia-
tion impedance remain meaningful. If ¢(¢) is a step function it is as-
sumed that the time interval is long enough to allow all transients
to reach negligible values before a new step is initiated.

The formal solution of the array problem is obtained from Max-
well’s Equations via a vector potential A(z, ¥, z, ) which is a solution
of the inhomogeneous reduced wave equation

va + kQA' = _“J(xl yl zl 9)‘ (7)

where u is the permeability of the medium. The magnetic field is given by
H- VXA (88)

and the electric field (under Lorentz gauge) by
E- —jm(A+kizvv-A)- (8b)

The solution to (7) over infinite space V can be written in closed
form in terms of a dyadic Green’s function’

A(x,y,z, 0) =u fv S, y, z| & O-JE 0, ¢, 0 dednds, (9)

where G(z, y, 2 | £ n, {) is a solution of

G 8¢  9G .- -

Go + 3+ op T HE = —To — 9o — WiE — 0, (10
1 being the unit dyadic a.a, + a,a, + a.a, . The boundary conditions
which G has to satisfy are derivable via the Vector Green’s Theorem*

* P, M. Morse and H. Feshbach, Ref. 7, p. 1767.
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by imposition of the requirement that the tangential component of
the electric field has to vanish on all conductors. This guarantees that
all induced currents are accurately determined.

It can be shown® that the average complex power delivered by the
mnth element in the array is

1
P = =3 f‘ E-J%, do, (11
where

Jmﬂ(xv Y, 2, 8) = J(:r, Y,z 0):
ma =z = (m + Da, nb=y=m+ Db (12)

the asterisk (*) denotes complex conjugate, and V,, is a simply con-
nected volume oceupied by J,.. If S,. is a surface obtained by taking
a cross section through V.., the total current, 7,,, flowing through
the cross section S,,, is

I,,,,,=f J-ds. (13)

Smn

The element radiation impedance, Z,.,, is defined in terms of the com-
plex power by

Po=%|Lwl Z.. . (14)

By (10) and (13) via (8b) and (9), the element radiation impedance
can be defined directly in terms of the array geometry and the excita-
tion:

1 =
Z,,,,,(B) = mE ./;' fv.]':n('rr Wy 2, B)G(‘E, W, 2 | E! m g.)

'J(E; m, rr 6) dr d!), (153)
where dr = dédydg, dv = dudydz, and

= . T 1 = -
Glx,y,z &0, 0 = qu(f + 5z VV)'Q(R‘, ¥,z &9, ). (15b)

Operator ¥ operates on (, y, z). The quantity |I..|* is introduced for
the purpose of normalization, and may depend on the choice of the
cross section S

The definition of the impedance includes both linear and planar ar-
ray elements. Tt is consistent with the commonly known definition of
impedance® if the latter is viewed as a relation between the average
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complex power delivered by the generator and the rms current flowing
into the load. The definition given by (15) is necessary in view of the
fact that in a system excited by distributed currents, a terminal volt-
age in the time domain is not always uniquely defined. In a system
excited by magnetic currents, (15) defines the element admittance if
the permeability p is replaced by the permittivity e and the electric
currents by their magnetic counterparts.

In the following theoretical discussion, it is assumed that the phased
arrays are excited by a uniform amplitude and a linear phase taper.

III. FINITE ARRAYS

Theorem 1: The element radiation impedance in a finite, steerable, linear
or planar phased array of scan-invariant current sources, radiating mto
a linear, lossless, passive and lime-tnvariant system, is an entire function'®
of the scan angle 0 in any given plane of scan, with an essential singularity
at § — =,

Proof: By (15a)

Ll 20 = [ [ Yooy 000,02 160,036 0.8, 0 drdo.

(16)
On expanding (16) in a double sum of integrals over all cells { (m, n) },
m=0,1,---,M —1;n=0,1, --+, N — 1, and using the relationships
of (6) followed by a change of variable in each term of the sum, one
obtains

ES

M-1 N-1

Z.(0) = 20 D Zuurs exp [j(o, — o) cos 6], (17a)

m=0 n=0

where

me'n = fIra f f J’Ok('c Jl Z)
Gz +ra,y + sb,z | £+ ma, n+ nb, O)-Jol¢, 0, §) dr dv. (17b)

In any given plane of scan ¢ is constant, so that

Gn — Gy = k[(m — )a cose + (n — 9bsing] = o, 0 (18)

is independent of 8. Both cos 6 and the exponential function are entire
functions.t Consequently, the exponential function appearing in (17a)

* R. V. Churchill, Ref. 10, Sec. 68, p. 157; Sec. 112, p. 270.
t R. V. Churchill, Ref. 10, Sec. 21, p. 47; Sec. 23, p. 50.
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is an entire function of an entire function, which is likewise entire*
(entire functions are also called integral functions). Z,.(6) is a finite
sum of entire funections and is also entire.

The nature of the essential singularity at # = oo is obtained by first
expanding cos f/ in the complex f-plane

cos (8, + j0,) = cos 6, cosh #; — jsin 6, sinh 6, . (19)

Then, if | ;| — =« in such a way that (s,, — o,.)8; > 0, the mnth
term behaves as exp {| o,. — o, | sin 6, exp [| 6, ||} Q.E.D. Note
that even when J,(x, y, z, 0) is scan dependent, Z,,(#) is analytic pro-
vided Jo(z, y, 2z, 6) is analytic. However, other isolated singularities
may exist.

Corollary la: Re |Z,,} and % Rel{Z.,} are entire functions of 8 each
with an essential singularity at 6 — = . Proof appears in Appendix A.

Theorem 2: The power radiated by an element in a finile, steerable, linear
or planar phased array of scan-invariant current sources, radiating into
a lossless, lincar, passive and time-invariant system cannot be kept con-
stant over a conlthuous scanning range with lossless, linear, passive and
time-tnvariant network elements and scalterers only.

Proof: Let (j'(x, ¥, 2| & m, {) be the dyadic Green’s function of the
entire system including all equalizing elements. The radiation impedance
of the mnth element of the array is given by (15a) for a lossless, linear,
passive, time-invariant system. If the array is radiating constant power
over a continuous scanning range, the real part of the radiation im-
pedance, R,,(60) = Re{Z,,], must remain constant in that range and

d
% [H”(ﬁ)] =0, 6 =6 =26, 6: =0 (20)

where 8 = 6, + j8.. By Corollary 1a, % [R,.(8)] is analytic in the

closed 6-plane and has an essential singularity at 8 — «. However,
if the derivative vanishes along the line 8, < 8, < 6, it must vanish
everywhere in the #-plane*. Hence, it cannot have an essential singu-
larity at infinity. The contradiction implies that E,,(8) cannot be
constant over a continuous scanning range. Q.E.D.

Equations (3) and (4) specify the directions of the beams’ maxima,
however, not all of them correspond to real directions in space. Whereas
¢pq 18 real for all (p, ¢), 6,, can be either real or imaginary, as may be

*P. M. Morse and H. Feshbach, Ref. 7, Vol. T, p. 390.
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seen from the solution of (4):

Ppa = tan™" %%—3??:3% ’ 0=¢, <m (215‘)
6,, = cos Yo 7+ 2pm _ cos ' M ,0= 6, =m (21b)
ka cos ¢, kb sin ¢y,

If 6,, is real it is said that the beam is in real space. By way of mathe-
matical generalization it is said that all those beams having an imaginary
0,, are in “‘imaginary space”. If 6,, = 0, or §,, = m, it is said that the
beam is in a grazing position between real and imaginary space. It
can easily be verified from (21) that for a given phasing (¢., ¥,) every
pair (p, ¢) corresponds to a unique direction (g, , 6,.) in the complex
domain 0 < ¢ < 7 0 < Re{8} =< =. These directions are the char-
acteristic directions of the system. They are directly related, through (4),
to the eigenvalues of

o'F  a°F
W+?f+ IM*Flz,y) =0 (22)

with the following periodic boundary conditions

F(z,y) = F@x + a, y) exp (—jvs), (23a)
%% (x,y) = % ( + a, y) exp (—iv.), (23b)
F(z,y) = F(z,y + b) exp (—j¥), (23¢)
@ = Ly + 0 e (=00, (23d)

The eigenfunctions, which form a complete orthogonal set in the
interval 0 £ 2 £ a,0 = y = bare

Fyo(z, y) = exp [.’f('l’: + 2pm) E] exp [j(sb, + 2¢m) %] ,
p,g=0,=41,£2, --- £ . (24)
By (4) they can also be written as
Foo(z, y) = exp {jk cos 6,,(x cos ¢, + ¥ 8in @)} (25)
The eigenvalues {T',,} are

T,, = k cos 6, p,qg=0,=x1, £2, -+ £ =, (26)
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The results thus derived lead to several interesting conclusions which
are summarized in the following lemmas.

Lemma 1: Every steerable linear or planar phased array with a linear
phase taper has only a finite number of beams in real space. Proof appears
in Appendix B.

Tor every pair of phasing (y., ¢,) there exists an infinite set of
characteristic directions {#0,,, ¢,.}. As the array is scanned by varying
the values of (Y., ¢,) in the intervals —r < ¢, <7, —v < ¢, < =
some characteristic directions will go through a grazing position going
from imaginary to real space or vice versa. We shall call such char-
acteristic directions ‘“‘transitive characteristic directions”.* Since the
condition for a grazing position is | cos 8,, | = 1, it follows from Lemma 1
that the number of transitive characteristic directions is finite.

Lemma 2: The radiation impedance of an element in a linear or planar
phased array can be expanded by an infinite series over all characteristic
directions of the system. Proof appears in Appendix C.

IV. INFINITE ARRAYS

In analyzing large arrays it has been found useful to approximate
the behavior of the center elements by the behavior of identical ele-
ments in an infinite array of the same geometry.** This approximation
is motivated by the fact that the performance of the center elements
is strongly affected through mutual coupling by contiguous elements,
but very weakly by elements far away.!?

The formulation of the infinite array problem may be obtained from
the results derived for finite-size arrays by letting the number of
clements A/ and N approach infinity. The infinite array problem can
also be treated as a periodie structure by application of Floquet’s
theorem. In the following, the latter approach is adopted, but first it
is demonstrated that both methods are consistent.

The electric field of an infinite array as given by (8b) must satisfy
the same periodicity conditions as the source function, i.e.,

E(x + ma,y +nb, 2) = E(r, y, 2) exp [jon(e) cos ].  (27)

* Note the distinction made between “grazing position” and “transitive charac-
teristic direction”. A beam associated with a transitive characteristic direction
may attain a grazing position for a particular phasing, but may also point in other
directions.
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On the other hand, the electric field

Bz, y, 7 ) = —Lé(z, oz &0, O JE & O dr (28)

can be expanded in an infinite sum of integrals using the relationships
of (6):

o0 o0

E(t,y,2 6) = — 2 2. exp (joun cos 6)

[ G uz &+ man b, Lol n, D b, (2)

where Vy, is the volume occupied by Jo . Define a new Green’s function
Go(z, g2 | £ 0, 0)

= 3 S exp (jow cos 08, y,2 | £+ ma,n+nb 8 (30)

and notice that
Golx, v, 2 | &+ Ma, n + Nb, ) = exp (—joux cos 0Go(z,y,2 | &1, 0
(31)
since by (5)
Oms M, n+N = Omn + ouwn . (32)
From (27) and (31) it follows that Golz, v, 2 | & m, £) can be expanded
by the eigenfunctions (25) as

o0 o0

= G2 | OF e, EZE ), (33a)

]

0 =
p=—w0 g=

where
a bo_
io = 2 [ [ GoFue, WG, ) dody dedn. (33)
0 0

Substituting (30) via (33a) into (15a) for the center element, m =
n = 0, one obtains

Zuo = E E Zpg + (34&)

p=—® q=—

where

Zpe = i I:a [2 .I;;n ./;,“ Jﬁ(ﬁ’:‘, Y, z)
“Goal | OF3E MFp(x, 9) - Jol€, n, §) drdv. (34b)
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Equation (34) is an alternate representation to (86) for the radiation
impedance of the infinite array element and it demonstrates that
Lemma 2 is valid for infinite arrays as well.

By substituting the new representation for G,, (30), (33), into (29)
and noting that the electric field satisfies the homogeneous reduced
wave equation in the source-free region, one obtains for the unbounded
space

E@, 9,2 = X 3 &l 1) exp (=1 |2 2] > duwe , (350)

p=—w g=—x
where

Yoo = VTZ, — I* = jksin 6,, (35b)
B = — f Gz | O Tole, 1, OF(E m dr, (35¢)

and dpqx is the projection on the z-axis of the largest distance between
two points on the surface enclosing Vgo. It can be seen that the electric
field in the source-free region, above the central area of a large array
may be approximated by a finite number of homogeneous plane waves
propagating in the real characteristic directions, and an infinite num-
ber of nonhomogeneous plane waves, exhibiting exponential decay in
the direction perpendicular to the plane of the array. The latter are
interpreted as waves propagating in the imaginary characteristic di-
rections.

In an infinite array all elements are embedded in an identical en-
vironment, and therefore the power radiated by each element is the
same. There is no net power flow into a unit cell through the “side
walls”. Consequently, the quantity Re{|lno|?z,,} of (34b) is equal to
the power propagated by the plane wave (p, g) within a unit cell in
the direction perpendicular to the plane of the array. By Lemma 1
there is only a finite number of plane waves with transitive charac-
teristic directions (see footnote p. 1571). Let them be distinguished
from all other plane waves by assignment of the subscript (p, q) =

(7, v).

Er— = STVFTV(:E‘ ?J) exp (_jk l z | Sin erv); I z l > dmaz (36)
Hrr = RnF"(ﬂ:. ?/) exp (_jk rz | Si.'ﬂ 8"" H 'Z | > dm“ ' (37)
where F,,(z, y) is given by (26), and &,, by (35¢). If

9,, = jk[cos 8,, cos ¢,,a, + cos 8., sin ¢,,a, — sin §,,a,] (38)
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then

3, =19, X&, . (39)

wp

The power radiated by a (r, v) plane wave per unit cell into the upper
hemisphere is

P,, = %]{ef f (E,, X H})-a, dx dy. (40)
& 0 0

Substitution of (36) through (39) into (40) gives

P, = o in 0:‘:[[ &a, '+ |8, [P+ oy | &.,-a. ["] (41)

Mo sin 6%
where n, = (g/€)}. From (41) a radiation resistance per wave is defined as
P
R, = T 42
[T T (42)

Since the entire system is passive and lossless, then by conservation
of energy, the power P,, must originate from the element itself. Hence,

R., = Re {z,,}, 6. real, (43)

where z,, is given by (34b).

From (41) it follows that when a wave (r, ») is in real space R.,
is real, and when it is in imaginary space R,, is imaginary (in which
case Re(z,] = 0). Hence, of all the elements comprising the source’s
load, R,, appears either resistive or reactive, depending upon the
scan angle. Such properties of a load, which are unknown in lumped
network theory, are a consequence of the losslessness postulate. When
propagation is possible power is carried away from the source. When
propagation is inhibited there is no net loss of power and the load
must be reactive. By Lemma 1 only Re{z,} has those properties.
All other z,,, (p, ¢) # (r, ») and Imf{z,} always retain their dis-
sipative or reactive characteristics. Further, there is only a finite
number of terms having Re{z,,] > 0. In practical phased arrays the
spacing between the elements and the scanning range are such that
only one such term exists at a time.

The following two definitions summarize the properties described

above:

Definition 1: An O-type network function is a sean-dependent immit-
tance (impedance or admittance) which is seen by the source as resis-
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tive when the beam is in real space and as reactive when the beam is
in imaginary space, and it behaves like an open circuit for impedance
and like a short circuit for admittance in the grazing position.

Definttion 2: An E-type network function is a scan-dependent immit-
tance (impedanece or admittance) which remains either resistive or re-
active when the beam passes through the grazing position.

The motivation behind the nomenclature introduced by the two defi-
nitions will become clear later, in Theorems 4 and 5. The O-type and
E-type immittances are of distinet mathematical form. To arrive at it
consider first the following transformation:*

s = sin 8, (44)

X = COS ¢pnn , (45)
where (m, n) is one particular transitive characteristic direction out
of all (s, v). Given s and x all other characteristic directions are
uniquely determined. By (4)

Yo = kaxV'l — s* — 2mr (46)
¥ = kbV1 — x* V1 —§" — 2nr, (47

where (1 — x*)! = 0 for all possible x and (1 — s> 0if0 = 0,, < 7/2
and (1 — ') < 0if »/2 < 4,, < = Then by substitution of (47)
into (22) all other characteristic directions are found:

~ kab(l —x)'1 = P+ 2(¢ — wma

tan ¢, = kabx(1 — §°)* 4+ 2(p — m)wb (48a)
€08 0,, = fp,(s), (48b)
where
ka — At —
[ = ax(1 — &) + 2(p — m)w_ (48¢)

ka cos ¢,,

This suggests that when characteristic direction (m, n) is scanned in a
plane x = const, each of the components z,, of the total input impedance
as given by (34) can be expressed as a function of the same variable s.
The conformal mapping between the 8,,,-plane and the s-plane is shown
in Fig. 3. In view of the branch cut —1 = « = 1 it will be understood
that s = o denotes s = a« — jOIf0 =6, = 7/2and s = a + jOif
/2 £ 8,, < w Let s = s,, be the value at which characteristic direc-

* Recall that #as and @ma are not in the conventional spherical coordinate sys-
tem (sec p. 1564).
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Fig. 3 — Conformal mapping 8 = sin fmn.

tion (r, v) is in grazing position. At this value

fr(s) = L. (49)

Of all values {s,,} there is at least one which satisfies (49) for s,, = 0.
From (48) it is obvious that f,,(0) = 1, and there may be other transi-
tive characteristic directions (r, ») # (m, n) which attain their grazing
positions at ., = 0.

Theorem 3: In an obstacle-free space, the impedance function z,(s),
associated with the characteristic direction (p, q), s an analytic function
of the complex variable s = a + jB, with branch points at s = s,, and an
essential singularity at |s| = «. If (p, @) = (m, n) then z,..(s) may
have a simple pole at s = 8,,, = 0.

Proof: The general definition of z,, is given by (34b) in which the
0,, dependence is contained in the Green’s function component
Goa(z | O)FX(E, mF,q(x, y). The Green’s function is derived from (10)
via (15b). Green’s function G(z, ¥, # | £ =, ¢) satisfies the same periodic
boundary conditions as Go(z, v, 2| £ n, ¢) and can be expanded in a
series similar to (33a):

§= 3 3 Cule | OFule, OFAGE . 50
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By substitution of (50) into (10) and use of the orthogonality property
of F,.(x, ¥) one obtains a differential equation for C,,(z | )

”" (-’rmr T 6(2 - .’:')
Td I ab
(51)

Yoe = .Il'k sin Bm

- 'ana(rm(z I g-) = -

with the additional requirement that as | z | — o, (,, behaves as an
outgoing or evanescent wave. The solution of (51) for free space is

- 1
y = e ———— v —_ .'-2
(’ml('a l ) {)J(Ibk Sim 9,,,, —ik !z ¢ IS]“ Gml ( )

dna(z | §) is obtained from C,,(z | ¢) through an operator ®,, :

.(-’i'"i'(z [ i—) = jw"‘canq'g'm(z | g-)' (535*)

where

m I + 7.2 9 1’ (-33'))

D,, being given by (38). Substitution of (52) into (53a) followed by
substitution into (34b) gives

Zpy = oE [ T¥(x, v, 2)

2abk | Loy |* sin 6,, Jv,, Iv..

&naljﬂ<£v 7, §-) e'\-p {jk COs Bm[(.‘ﬂ - E) CcOs Ppaq
+ (y — ) sing,,] — jk |z — {]sin 8,,} dr dv. (54)

The integrand is an entire function of 8,, with an essential singularity
at | Im {6,,} | — «. Hence,* if Jo(x, ¥, z) is piecewise continuous,
the integral is also an entire function with the same essential singularity.
By (48)

sin 6,, = [1 = )] (55)
By Lemma 1,
fral®) = 1 (p, ) # (7,4). (56)

From Fig. 3 it is readily seen th‘lt |s| < = when | #6,,| < = which

implies, via (48), (55) that | cos 8,, | < = and | sin 6,,| < « as long

as | s| < . Thus, the singularities introduced by the transformation

(44), (45) are the branch points at s = s,,. Also if (p, ¢) = (m, n)t
*E. J. Copson, Ref. 11, Sec. 5.5, pp. 107-109.

¥ Recall that (m, n) is the charactoristie direction which defines the transforma-
tion from (¥a, ¥,) into (s, x), (44)—(47).
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2,, may have a simple pole at s = 0. (Note, for example, that for hori-
zontal polarization, J, = a,J,, there is a simple zero in the plane of
scan corresponding to ¢,, = 0,at s = 0.) Q.E.D.

The above proof can be applied separately to the real and imaginary
parts of the right-hand side of (54). If z,, = R,(s) + X ,4(s), then B;,(s)
and X,,(s) are analytic functions of s, real on the real axis of s, with
an essential singularity at | s | — o, branch points at s = s,,, and
possibly simple poles at s = 0.

In systems other than obstacle-free space, the normalized complex
power z,,(s) has different forms. Except for isolated values of s, the
radiated power and the stored energy per unit cell are bounded and
continuous functions of s over those portions of the real and imaginary
axes of the s-plane which have physical meaning. Hence, it is reasonable
to postulate that an analytic continuation of z,, as a function of scan
can be made into a region of the complex s-plane which includes por-
tions of both the real and imaginary axes. It may be of interest to
note that the impedance function z,,(s) derived by L. Stark' for the
planar dipole array over a ground plane is analytic. The regularity
of z,,(s) depends directly on the regularity of g,.(z | {; s). The singu-
larities of z,, in the s-plane are determined by the boundary conditions
which g,.(z | ¢; s) satisfies.

Theorem 4: An E-type immittance function V (s) is an even function of s.

Proof: Let the complex variable s be defined with respect to the transi-
tive characteristic direction (m, n). Once (m, n) is chosen, the proper
branch of (1 — s°)* in (48) is uniquely determined. Let (%, ) denote
all other transitive characteristic directions which reach their transitive
position simultaneously with (m, n). Formally, this implies

ﬁv(o) =1 (Tr V) = (?n:n)' (kr l) (57)
As a consequence of Definition 2 and Lemma 1, V(s) is recognizable as
e = {RN@ (@, @) = (m,m), (k, D), 8)

X, all (p, @),

where Ry, (5) + jXpq(s) = 2p4(s), 20 given by (54). Thus, (58) estab-
lishes the connection between the defined E-type function and physical
quantities corresponding to R,,(s) and X, (s). Consider Definition 2

- which states

a 0<a<l, (59a)
JB. (59b)

Vi) — V*(s) =0 s
Vis) — V*(s) =0 3
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Since V(s) is analytic and also real on the real axis of s, (59) may be
rewritten as*

Vis) — V(s*) =0 s =a 0<a<l, (60a)
Vi(s) — V(s*) =0 s = jB. (60b)
On the real axis
Vi) — V(e) = 0. (61a)
On the imaginary axis
V(ig) — V(=3B = 0. (61b)

By analytic continuationt of (61b) from the imaginary axis to a point s
in the complex plane one obtains

Vi) — V(—s) = 0. (62)
Hence, V (s) is an even funection of s. Q.E.D.

Theorem 5: An O-type immittance W (s) is an odd function of s. The
proof is similar to that of Theorem 4 and it appears in Appendix D.

It has been shown in Theorem 2 that a finite phased array cannot
be perfectly matehed over a continuous scanning range. The proof is
limited to finite arrays and cannot be directly extended to infinite ar-
rays since the representation of the element impedance by (17a) does
not guarantee convergence in the complex #-plane if the limits of the
summations are extended to infinity. In treating the infinite array, the
element impedance is derived by symmetry considerations from which
it is eoncluded that the net complex power radiated from each element
is conserved entirely within the unit cell of that element. It has been
shown that the two definitions are consistent. Although the problem of
whether an infinite array can be perfectly matched is of academie in-
terest only, it is worthwhile noting that as for finite arrays, the answer
in this case is also negative, To show this the reader may recall that
the impedance has been defined as normalized power and postulated to
be an analytie funetion of the scan variable s = « + jB. The normaliza-
tion constant is [I40/* given by (13). If the complex power as a func-
tion of scan is represented by

P@s) = | I, |” [R(B) + iX(9)], (63)

*P. M. Morse and H. Feshbacl, Ref. 7, Vol. I, p. 393.
T Morse and Feshbach, Op. Cit., p. 389.
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then by Lemma 1, the term R(s) is a finite sum of analytic functions
of the complex variable s. Consequently, R (s) is an analytic function
of s. In general, it may be represented as

R(s) = E(s) + 0(), (64)

where E(s) is an even function of s and 9(s) is an odd function of s.
Under conditions of perfect match over a continuous range, constant
power, P, , is radiated over that range. Since R(s) is analytic it implies
R(s) = P, | I, | everywhere in the s-plane. Since a constant is even,
9(s) = 0. Further, E(s) must have a branch cut on the real axis of the
s-plane in the interval [—1,1]. But the branch cut does not exist if
E(s) = P, | I | The contradiction implies that P(s) in (63) cannot
equal a constant over a continuous range of s.

Theorem 6: The resistance and reactance functions of an element, or their
derivatives, in an infinite linear or planar phased array of current sources
are discontinuous when a grating lobe is in a grazing position.

Proof: In an infinite array the grating lobes are plane waves propagating
in the characteristic directions. By Theorems 4 and 5 the element
impedance Z(s) in an obstacle-free space can be written as

269 = P + 2. (65)

For real values of s, P(s) is an even complex function of s bounded at
s = 0, and @(s) is an even real function of s nonzero at s = 0. On the
real axis of s

2@ = Pla) + 4. (668)
On the imaginary axis of s
2(i8) = P(6) — Q("") (66b)

A grating lobe is in its transitive position at s = 0. The pole discon-
tinuities are established by showing that

Re {lim Z(e) — hm Z(Ge)} = limQ—c(!a—) = o (67a)
Im {lim Z(a) — hm Z(38)} = limQ@ = o, (67b)

a—0 f—-0 ﬁ
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The pole discontinuity has to be interpreted as an invalid mathe-
matical solution at the transitive position. It is a result of the idealiza-
tion introduced by the concept of an “infinite array.” If R,.(s) has a
simple zero at s = 0, as is the case when a horizontally polarized array
is placed above a ground plane, then the active impedance in the
neighborhood of s = 0 can be written as

Z(s) = R(s) + jX(s), (68a)

where R (s) and X (s) are real functions of s (real for s real).
R = 2 as' (68b)
X = 2 bas™. (68¢)

When the beam whose transitive characteristic direction is in real
space, 8§ = «

R. %2 Rl@) = ) aa' (69a)
i=0
and when it is in imaginary space, s = j
Ry & Re (R(®)} = 2 (—D'a6". (69b)
i=0
The discontinuity in the derivative of the resistance is
. dR, . dRg
I de T ias T ™ 7o)
Similarly, the reactance
Xo &2 X(@ = 2 bua™ (71a)

X, & Im (Z(8)] = 25 (=D'[028" + @ziiB™™] (71b)

lim dXao _ iim@ = —a, . (72)
amn e a0 dB
The proof can be generalized for any order algebraie singularity or
zero at s = 0. For example, if there is a zero of multiplicity N the dis-
continuity will be in the Nth derivatives of the resistance and react-
ance. A noninteger order zero yields a discontinuity after a sufficient
number of differentiations. Q.15.D.
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V. SUMMARY AND CONCLUSIONS

A new mathematical approach to phased arrays has been adopted
to investigate and discover various properties of the radiation imped-
ance of an array element as a function of secan angle. The underlying
idea of the method is the treatment of the impedance as an analytic
function of a complex scan variable, which enables one to prove that
an array element subject to the model chosen cannot be perfectly
matched over a continuous scanning range by using lossless, linear,
passive and time-invariant elements.

The first half of the theory is devoted to finite arrays. It is shown
that the directions (in space) of the beams’ maxima are eigenvalues
of a Laplacian differential operator with periodie boundary conditions,
which are related to the phase taper of the array. It is proven that
there exists only a finite number of real eigenvalues. The known con-
cept of imaginary space is then adopted to accommodate the imagi-
nary eigenvalues, Furthermore, it is demonstrated that all beams except
a finite number are completely confined either to real space or to
imaginary space, and that only a finite number of beams may attain
a grazing position. The unique properties of the latter beams have
been found to play an important role in the investigation of infinite
arrays, to which the second half of the theory is devoted.

The interest in infinite arrays, apart from its academie aspect, stems
from the good approximation it provides for the behavior of the cen-
ter portion of a large finite array. It has been found that the infinite
array element impedance as a function of scan is restricted to a spe-
cific mathematical form. It is the authors’ hope that recognition of the
limitations imposed by that form may provide useful guidelines in
achieving optimal match of an array to space.
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APPENDIX A
Proof of Corollary Ia
Corollary 1a: RelZ,} and :%) Re{Z,,} are entire functions of @ each

with an essential singularity at § — «.
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Proof: Denoting

E"‘Ill!’l = pfﬂl‘li’l + ijnrl (73)
one obtains from (17a)
Re(Z.(0)}] = R,.(6)
M-1 N-1 .
ZO Z {pmrlra COos [anrs(a)} — Xmnrs SI [Bmm'n(e)]}’ (74)
where
B (0) = (0py — a,.) cos 8 (75)
and

M—-1 N-1

S R(0) = = T 5 B (6) {pases 80 1B ()]
+ Xonrs €08 [Brur (O]}, (76)

Since cos # is an entire function of 8, cos[ B, (#) ] and sin[ B (6) ]
are entire functions of an entire function, and are therefore entire. The
existence of the essential singularity can be demonstrated in a similar
fashion to that in Theorem 1. Q.E.D.

APPENDIX B

Proof of Lemma 1

Lemma 1: Every steerable linear or planar phased array with a linear
phase taper has only a finite number of beams in real space.

Proof: A beam (p, q) is in real space if | cos 6,, | = 1. Dividing (4a) by
ka and (4b) by kb, squaring and adding, one obtains

(Yt 2pr)' (Bt 2er) o )

(B +)C) + G+ ) Q) = &

Necessary conditions for the above inequality to be satisfied are

or

"”+p 2<1 (79)
"3 A
2W+q'b51 (80)
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Since
1 _ ¢ _1 11
T3 S5, S5 wd 5 =5 55,

1
Ipl=5+5 (81

b 1

< 24 =,
gl =543 (82)

Hence, both p and ¢ are bounded. Q.E.D.

APPENDIX C

Proof of Lemma 2
Lemma 2: The radiation impedance of an element in a linear or planar
phased array can be expanded by an infinite series over all character-
istic directions of the system.
Proof: The current density excitation function of a finite-size array
given by (1), (2) satisfies the periodic boundary conditions (23) in
the finite domain occupied by the array. Let this domain be denoted
by D. The current density can, therefore, be uniquely expanded in D
in terms of the eigenfunctions (25):
J(;El ¥y z) = U(’L, Y, D) EZ_: ; jpa(z)Fm(m: ?)')v (83)
where
1 a b
@ = L [ [ 3y, AP, ) dady (84
ab Jy Jy
and U(z, y, D) is a two-dimensional unit step function
U,y ) = [ @9 D, (85)
10 otherwise.

Substitution of (31a) into (15a) yields

0 0

Zr"" = Z Z 3”'"1‘"! ’ (869-)

p=—to g=—u

where
. 1 % =
Zmnpa = | I IE'V I Jmﬂ(:rr 'U:z)'G(:U:'UnZ I E! M g—)

Fua( O Fpa(E, MUE, 7, D) dr dv. (86h)
Q.ED.
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APPENDIX D

Proof of Theorem &5

Theorem 5: An O-type immittance W(s) is an odd function of s.

Proof: Let the complex variable s be defined with respect to the tran-
sitive characteristic direction (m, n). Let (k, I) be all other transitive
characteristic directions which reach their transitive position simul-
taneously with (m, n). Then as a consequence of Definition 1 and
Lemma 1

W) = Ryl 0,0 = (m,n), 1D, (87)
where R,,(s) = Re{z,q}, 2pq given by (54). Thus, (87) establishes the
connection between the defined O-type function and a physical quan-
tity eorresponding to Ry, (s). From Definition 1

Wi — WHs) =0 s = a, 0<axl (88)
W) + WHs) =0 s = jB. (89)
Since W (s) is real on the real axis of s, (88), (89) may be rewritten as
Wi(s) — Ws*) =0 $ =« (90)
W(s) + W(s*) =0 s = jB. (91)

On the real axis
W) — W) = 0. (92)

On the imaginary axis

W) + W(—is) = 0. (93)
By analytic continuation of (93) from the imaginary axis to a point
s in the complex plane one obtains

Wi(s) + W(—s) = 0. (94)
Hence, W (s) is an odd funetion of s. Q.E.D.
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