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Error probability is considered for binary signaling through a multipath
channel in which (i) the receiver observes a waveform comprising white
Gaussian notse and the sum of (perhaps several) time-delayed, frequency-
shifted, Rayleigh-faded versions of the transmailted waveform, (i?) the
recetver decides with minimum error probability which of the two possible
transmissions was sent. Results given herein for the exact minimum error
probability necessarily depend upon a number of parameters and are
cumbersome to use. By introducing bounds on the error probability, de-
pending upon bounds on spectra of certain matrices, the number of param-
eters is reduced and the less cumbersome results become applicable to any
one of a set of channels rather than to just one channel. The errar-prob-
ability bounds are presented in terms of values of the distribution function,
derived herein, of the difference of two chi-square random variables. The
bounds are sharp when the spectra are narrow. For the case of widely
orthogonal signals, any version of one possible transmission being orthogonal
to any version of the other transmission, the bounds are given as a set
of universal curves plotted versus signal-to-notse ratio for various values
of the number of paths and of the spectral width of certain matrices. Spectral
bounds can easily be computed when the versions for each transmission
are mearly orthogonal. Returning to the general case, another bound is
derived, by a technique due to Chernoff, which does not explicitly require
spectral bounds which may neither be readily available nor be accurale
approximations of eigenvalues. This bound is not as sharp as the previous
bound for the case of small spectral width, but has promise for the large-
width case.

I. INTRODUCTION

This paper considers error probability for the optimum reception
of binary signals transmitted through a multipath channel having

1601



1602  THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967

P paths.* One of two possible signals is transmitted; the received
waveform is the sum of P Rayleigh-faded, time-delayed, frequency-
shifted versions of the transmitted signal, plus white Gaussian noise.
That is to say, if the complex signal v/2E,, z.,(t) is transmitted, m = 1, 2,
the contribution to the received waveform from the pth path is

Yull; ) = V28, ax.(t — 7,) exp [i@nf,t + ¢,)],
where a,, ¢,, 7, and f, are the Rayleigh-distributed amplitude, the
uniformly-distributed phase, the fixed time delay, and the fixed fre-
quency shift associated with the pth path. The received waveform is

2all) = Z yulls ) + 100,

where n(t) is white Gaussian noise.

The above multipath situation is a special case of a more general
communications situation in which a receiver observes a sample z ()
of a zero-mean complex Gaussian process on the time interval [O, T],
the covariance funetion (z(s)z*(£)), having been selected from a set
of two distinct functions by chanee according to the prior probabil-
ities {an}, m = 1, 2, and the other second-moment function (z(s)z (%) )m
being zero. The receiver is to be designed so that its decision
upon one of the two possible hypotheses is made with mini-
mum average error probability P,, where P, = Za,FP.(m) and
P,(m) is the probability, when covariance indexed m is true, of
deciding otherwise.

The receiver-design problem has been treated in Ref. 1, rigorously
demonstrating that optimum processing involves quadratic filtering.
However, the filter kernels, being the solutions of integral equations,
are difficult to determine in general; moreover, the error probability
is not evaluated. For the multipath channel, the first difficulty is over-
come in Ref. 2 and the evaluation of binary error probability is
considered in the present paper.

Section II presents the theory of a method that can be used to
caleulate error probability exactly. However, it is quickly appreciated
that error probability depends in a cumbersome fashion upon a
large number of parameters including the path strengths and the
scalar products of the versions. To simplify this situation, this paper
introduces bounds on the error probability which depend upon bounds
on the spectra of certain matrices, the eigenvalues of which determine

* Bach path could comprise a multitude of randomly phased subpaths having
essentially the same delay and frequency-shift parameters.
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error probability exactly. Thus, the bounds are applicable to any one
of a set of channels rather than to just one channel.

Section TII presents these error-probability bounds in terms of
values of the distribution function of the difference of two chi-square
random variables and then derives this distribution function. More
specific results are obtained in Section IV for the case of widely
orthogonal signals, any path’s version of one of the two possible trans-
mitted waveforms being orthogonal to any path’s version of the other
waveform. Here, easily computed spectral bounds can be given for
the case in which the versions under each hypothesis are nearly
orthogonal. Section V considers the case of well-resolved paths, making
contact with diversity theory (Ref. 3, Chap. 7), and the case of on-off
keying.

The error-probahility bounds considered above require spectral
bounds which may not always be easily computed and which may not
be accurate approximations of the eigenvalues. A bound that circum-
vents these difficulties is obtained in Seetion VI with a technique due
to Chernoff. Comparison of this bound with previous bounds is car-
ried out analytically only for the case of well-resolved paths, but
qualitative comparison is made for more general cases.

IT. PROCEDURE TO OBTAIN ERROR PROBABILITY IN THE GENERAL CASE

2.1 Notation

The binary situation is a specialization of the case of M-ary
signaling through the multipath channel in which the received process
z(t) ean have one of M possible covarianee functions, (z(s)z*(£))um,
m=1,2,... 1, of the form

,.
oF,. 2 a,b,(s, m)b¥(t, m) + N,é(s — 1),

p=1
a degenerate kernel plus a white-noise kernel (Ref. 2). Here b,(f, m) =
exp (12xf,t)x,.(t — 7,) is a time-doppler-shifted normalized version of
the transmitted signal +/2F, =.(f); the path with index p has an
average cross section of o, units, a delay of r, seconds, and a doppler-
shift of f, Hz. We put

ftH | 2. (D) |° = fdf | b,(t, m) |* =1,

so that the average energy received from the medium is
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%fdt2EmEa,|b,,(t,m) =B, o =B,

since we put ), ¢, = 1.
The above covarianece function can be written
2F.,.b(s, m)ab*(t, m) + N,8(s — 1),

where b(t, m) is a vector with pth component b,(¢, m) and ¢ is the diagonal
matrix with pth entry o, , with tr ¢ = 1.

The optimum receiver decides according to the value of m that
corresponds to the largest of M test statistics computed as follows.
For each value of m, the receiver first generates the column vector
Z(m) = Ny} [ dt 2()b*(t, m) and then evaluates a test statistic com-
prising a Hermitian form in Z(m) plus a bias constant. This test statistic
is

[(No/2E,)*Z(m)] 2E../No)H(m)[(No/2E,) Z(m)] + (No/2E,)8(m),
where the Hermitian combining matrix is
(2E,./N)H(m) = (2E,/Ny)[(2E,/Ny)B(m) + «"'17",
the bias is given by,

_ a,, det [(2E,/Ny)B(1) + ¢ ']
60m) = log " 4ct (2B, /No)B(m) + o 1]’

B(m) is the correlation-function matrix [ d¢ b*(t, m)b(t, m), and the
hypotheses are ordered so that #, = max E,, . The above test statistic
is obtained from that given in Ref. 2 by subtracting log [e, det™ ¢
det™ H~'(1)] and multiplying all resulting terms by N,/2E, .

The above test statistic has a certain intuitive appeal. The components
of the vector Z(m) are the correlations of the received signal against
the noise-free versions of the transmitted signal that would occur
when message m is sent. That is to say, Z(m) provides a measure
of the projection of z(¢) on the P-dimensional subspace spanned by
these versions. Moreover, the test statistic is a measure of the likelihood
that this P-dimensional subspace is in fact the correct subspace. Then
the optimum receiver strategy is decision according to the most likely
of the M possible subspaces. Also, since P dimensions are involved,
it might be anticipated that the results are related to the case of P-fold
diversity, cf. Section 5.1.

Henceforth, only the binary case, M = 2, is considered. In this
case, decision according to the larger of two test statistics is equivalent
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to decision according to the sign of their difference. The decision events
can then be written in terms of one Hermitian form in a composite
Gaussian vector

7 = (N.,/QEIJ*@%)

as follows. Let

2E,
N H(1) Opyp
0
Q = 2E2 )
Opxr _”AT' H(2)
0

where Opyp is the p X p zero matrix. Then the receiver decides upon
m = 2 when Z'QZ is less than (N,/2E,)68(2), and decides upon m = 1
otherwise.

The conditional error probabilities are thus
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where £ = E,, 0 = 6(2), and F,(x) is the distribution function of
Z'QZ conditioned upon the mth hypothesis.

2.2 The Fundamental Malrices

Since Z'QZ is a function of a Gaussian vector, the distribution
function F,(z) is determined by the conditional mean, (Z),, , which is
the zero vector, and by the conditional covariance L(m) = (ZZ%),,,
the other second-moment matrix (ZZ),, being the 2P X 2P zero matrix.

The conditional covariance matrix L(m) is evaluated as follows. Let

L'(m) L”(m)]
L*(m) L*(m)

L(m) = ‘

where L™(m) = (N,/2E){Z(j)Z'(k)). . Then, by the definition of Z(j)
and interchange of operations, we obtain

G2 W) = 3 [[ st 026, 60150, b
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1
-y f [ s av s, 928,56, miob*(t, mict, 1

+ ff ds di b*(s, ) (s — B(L, B)

2E,. ... .
= . BG, meB(m, k) + B(, k),
0
where B(j, m) = [ ds b*(s, j)b(s, m) is a cross-correlation matrix.
Hence,
L*(m) = (E,/E\)B(j, m)eB(m, k) + (No/2E)B(j, k).

Similarly, it is found that (ZZ),, is the 2P X 2P zero matrix.
For future computations, it is convenient to write

o-(% &)
where

Q" = B (DI + (No/2E)[B(1)e] ™"},
Q* = —(E,/E)B™'(2){(E:/E) + (No/2E)[B(2)0]™"}™".
2.3 The Characteristic-Function M ethod

To obtain the distribution, consider the conditional characteristic
function

enll) = (exp (i1Z'QZ))n .
It is well known, e.g., Ref. 4, that

en() = det™ [I — atL(m)Q] = T [1 — itn(m)]™",

where {\.(m)] is the set of eigenvalues of the matrix L(m)Q. The
eigenvalues are real, since L(m)Q is similar to the Hermitian matrix
LYm)QL (m).

The distribution funetion ean now be obtained from the characteristic
function. As a preliminary, it is noted that the characteristic function
(1 — 4t\)™" corresponds to one of two distribution functions, according
to the sign of . When X is positive, the distribution function is

f e Ul) & 2" exp (—x/N) _ {I(y/a\,n -1 (>0,
o= b 0 w <0,
= UyI(y/z\n — 1),
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where U(z) is the unit step function (unity for x > 0, zero for x < 0,
one-half for x = 0) and where

W=y

I(U;n)=$f derae™=1—c¢ 2
L = k!

is the incomplete gamma function. Similarly, when X\ is negative, the
distribution function is

(=) exp e [N [
f_”r].t U= I T
[ (y > 0),
LIy [on=1 @<,

=1—Ul=Iy/\n — 1)

To obtain the distribution function of Z'QZ, the characteristic func-
tion is expanded into its partial fractions. Each term will be propor-
tional to (1 — #A\) ™" for some 7, and corresponds to a term in the expan-

sion of the distribution function. For example, when all eigenvalues
are distinet, the expansion of the characteristic function is

_ oy
enll) = 2T i Gm)

k

where

VS
di(m) = H (1 - Ak("l)) '

12k

The expansion of the distribution function F,(z) is then

> dm)U@Iy/N(m), 0)

[k :AE(m) >01
+ 2 ddm)l — U(=2)I(y/\(m), 0]
[k :Ae(m) <0]
In the case of a degenerate spectrum, an eigenvalue A with multiplicity
r contributes the sum EL[ A,(1 — 4A\)"" to the expansion of the
characteristic function, and the corresponding part of the distribution
funetion involves I(-, n) forn = 0, 1,2, --- ,r — 1.

It should be observed that the general approach of summing distribu-
tion functions corresponding to partial fractions is fully equivalent to
inverting the characteristic function by contour integration, the ap-
proach used by Turin® for a similar problem. (When all poles are simple,
the expansion coefficients {d,(m)} are residues of the poles.)



1608 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1067
III. UPPER AND LOWER BOUNDS ON THE ERROR PROBABILITY

3.1 Error-probability Bounds from Degenerate-spectrum Variables

Exact computation of error probability involves considerable nu-
merical work in computing eigenvalues followed by evaluation of cum-
bersome formulas. Moreover, an often inordinately large number of
independent parameters must be specified. To simplify this situation,
we consider bounds on the spectrum of L(m)Q rather than the spectrum
itself. With a technique suggested in Ref. 6, we can obtain error-
probability bounds. Although we do not obtain the error probability
itself, the error-probability bounds apply to not just one channel but
rather to any channel for which the spectral bounds are met.

Observe that the characteristic function is precisely specified by
the spectrum of L(m)Q. This spectrum is the same as the spectrum
of I diag [\,(m), --- , hap(m)], where I plays the role of a covariance
matrix and the diagonal matrix plays the role of a matrix of a Hermitian
form. Hence, the distribution of Z'QZ is the same as the distribution of

2P
g(m) = 2 N(m) |2 [,
k=1

where {z,] are complex zero-mean Gaussian variates with covariance
matrix (z;2%) = 8,,, (z;z:) being zero.

Suppose bounds on the eigenvalues are available. That is to say,
suppose it is known that the positive eigenvalues satisfy

g = M(m) £ 5, (12)

and that the negative eigenvalues satisfy
—7 = M(m) £ —, (1b)

where the u’s and »'s are positive numbers that depend on m. Then,
a lower bound on g(m) is the degenerate-spectrum random variable
g(m), defined by

2P

P
g =u X lal =3 3 |al.
k=1 k=P+1
Note that we have used the fact that the number of positive eigenvalues
and the number of negative eigenvalues are the same, see Appendix A.
Similarly, an upper bound on ¢(m) is provided by the random variable

2P

g(m) =ﬁ§;[3k f—v X |zl

k=P+1
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Since g(m) = q(m) = g(m), it follows that
Pr {g(m) = y} £ F.(y) = Pr {g(m) £ y} = Pr {glm) = y}.
TFvaluation of these bounds requires the distribution function
@(y; P, ) of the degenerate-spectrum random variable
2p

P
Zlal—a 2 lal,
k=1 E=Pt1

=P+

which is the difference of two chi-square variables each with an even
number of degrees of freedom. The bounds become

Gl(m)"y; P, v(@)™"] = Fuly) < Gl 'y; P, 7w,

where we use y = (N,/2E)6 and reiterate that the u’s and »’s depend
on m.

It is anticipated that these bounds are sharp when the spectrum
is narrow, the spread of the positive spectrum being much less than
any positive eigenvalue and similarly for the negative spectrum. Also,
when @ itself is not precisely known, but bounds § < 6 < f are available,
the distribution function is bounded by

Gl@)"y; P, v(@™'] = Fo(y) £ Glw™g; P, v(w) ], 2)
where y = (N,/2E)8 and 7 = (N,/2E)8.
3.2 Distribution of a Degenerate-Spectrum Variable

It will be demonstrated that G(y; P, «) equals

(o) ST (-1 -4)] oo

when y < 0, and equals

‘i (P - 11» " k)(1 j-a)[(1 ia)P +a fa)p Iy, P—1-— k)] (3b)

when y > 0.

Before doing so, note that when y < 0, the parameter a serves as
a scale size for y in the argument of I(z, n), but that this is not true
when y > 0. Nevertheless, @ does act as a scale size in the following
way. A power-series expansion of I(x, n) yields

k
a

Iy, P — 1 — k)

1+«
(e N\t = (-1 P—Fk
_(l-f-a)(a) us_k);,ZE n P—k+n?
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and when a < 1, the factor (y/a)”™* determines the small-y behavior.
Also, this result exhibits [a/(1 + «)]” as a factor for the case y > 0,
in agreement with the expression for y < 0.
To find G(y; P, &), we consider its characteristic function
1 — i7" + dta)”".
Let the partial-fraction expansion of this characteristic function be
P-1

P
S Ap (1 — i) 4+ 3 B (1 4 ita)” .
n=0

m=0

To evaluate A »_,, , multiply by (1 — )" and let 1 — 4t = r to obtain

P-1 P-1
Ita—an™ =2 Appr™ + 7" L Bl + @ —an)™ .

m=0 n=0

Since the second sum is analytic at 7 = 0, we have exhibited the Taylor
expansion with remainder. But

(I4a—an™ =1+ a)_P(l - f)_P

1 Ve (P—t—k—l)( @ )",,
- (1 - a) 2 k 1+a/ "’
where we have used (7) on page 2 of Ref. 7. Hence,
e = () 0 )
= Tl 4 a m 14+ a "
Similarly, to obtain Bp_, , multiply by (1 + ita)” and let 1 + ita = 7
to obtain

1 r -P P-1 » P-1 1 r =(P=m)
(1 ta —;) = 2Bt E‘*P*m(l +;—;) -

m=0

Reasoning as before, it is seen that
p= () O 7))
=\l +a n 1+ al"

Collecting these results, it is seen that the characteristic function is

}g (P " i - l)(1 —1|— a)kl:(l j_a)P(l + ita)” PP

k

+ i (1 — i)~ ]

This immediately establishes the distribution function G(y; P, «).
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IV. WIDELY ORTHOGONAL SIGNALS

4.1 Matrices for the Two Hypotheses

We consider the special case in which the signals are widely orthogonal,
B(1, 2) = B(2, 1) = Opyxp. That is to say, all time-doppler shifted
versions of one signal are orthogonal to all such versions of the other
signal, a situation that would prevail in frequency-shift keying with
widely separated frequencies. In this case,

L*(m) = 5“[%"1‘ B(j, m)eB(m, k) + %B(j, R):I

The “diagonal” form of the covariance matrix L(m) and of the matrix Q
implies that the spectrum of L(m)@Q comprises the specturm of L''(m)Q""
together with the spectrum of L**(m)Q**. This can be seen by employing
the formulas of Schur (Ref. 8, pp. 45-46) to reduce the determinantal
equation det [L(m)Q — N] = 0 from order 2P to order P. For m = 1,

L"1)Q" = B(1),
LPMQ™ = —(No/2E)(E./E) ((Eo/ENI + (No/2E)[B(2)e] ™'} 7.

TFor m = 2,
L'M2)Q" = (No/2E){I + (N,/2E)[B(1)e]"] ™",
L*(2)Q* = —(E,/E,\)B(2)s.

It should be observed that the spectra of the above matrices are
simply related to the spectra of B(1)o and of B(2)e. When E, = E, = E,
the spectrum of L*(1)Q™ is {—(N./2E)(1 + (N,/2E)&;')™"}, where
{6:} is the spectrum of B(2)s. Similarly, the spectrum of L'(2)Q"
is {(No/2E)(1 + (N,/2E)w;")""}, where {w,] is the spectrum of B(1)s.

Second, it should be observed that when E, = F, = E, the forms
of the matrices for the cases m = 1 and m = 2 are the same, with the
roles of positive and negative matrices interchanged. To compute
error probability for m = 1, we use the distribution function F,(z);
for m = 2, we use the conjugate distribution 1 — F,(z) which can be
expressed as P{—Z'QZ < —x |2}, the distribution function of the
negative of the original variable evaluated at —z. Introduction of this
random variable for the case m = 2 reverses the roles of positive and
negative matrices, the net effect being that for bothm = 1 and m = 2
the positive and negative matrices have the same forms.
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4.2 Bounds on Spectra, 0, and Error Probability

Tt is clear that spectral bounds on L(1)Q can be obtained from spectral
bounds on B(m)s, m = 1, 2, and similarly for L(2)Q. Consider the
bounds on L(1)Q when E, = E, = E. The positive spectrum is bounded
as follows:

p=¢ = minw = N1) S maxw, = o = f,

and the negative spectrum is bounded as follows:
—(No/2E)1 + (No/2E)(8)"]7" = N1)
M1) £ —(No/2E)[1 + (No/2E)(8)']" = —v,

where § < min §; < max §, = 6.

—7

Moreover, bounds on 6 can also be obtained. When E, = E, = E
and o, = a, = 1 (equilikely signals),

det [B(1)o + (No/2E)I]
det [B(2)s + (No/2E)I]

Since a determinant is the product of the eigenvalues of the matrix,
we have

y = (NO/QE)ﬂ = (No/2E) log

(No/2E)6 = (No/2E) log H%{%%% _

k=1

Thus, an upper bound is

&+ (No/2B)
(No/2E)8 = (N,/2E)P log 5+ (No/2E) °
and a lower bound is
w 4+ (N,/2E)

(No/2E)§ = (No/2E)P log 52— jomy

Recall that the distribution function F,[(N,/2E)6] is bounded from
above by G[(w)”'(N,/2E)f; P, »(x)”']. Further, suppose that the
spectra of B(l)e and B(2)e are narrow about the nominal value
(1/P) tr B(m)e = (1/P) tr ¢ = (1;P). We can put

1+8 _s_L1—8
P ? ‘3—.5_ P ’ (4)

where § is the fractional spectral half width. Then, the parameters
required to compute the upper bound on the distribution function are

o =8 =
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1+ 8 + (N.P/2E) (58)
1 — B+ (N,P/2E)’

(N, P/2E)]1- (5b)

(W) (No/28)0 = = (NoP/2EP log

1

pw) = r_—ﬁwop/:)ﬁ)[l T

Similarly, the distribution function F,[(N,/2E)86] is bounded from below
by G[(g)"'(N,/2E)8; P, »(g)~"]. The parameters required for this bound
are

(@) (No/28)0 = 5 (VuP/2B)P log T 5 EC0E2R | 5o

_ 1 ~ 7T
WD = 15 (NUP/"E)[ T3 (NUP/%)] . (5d)

Having considered the case m = 1, the bounds for the case m = 2
are apparent. Considering the random variable —Z'QZ with 6 assumed
known, the positive and negative spectral bounds are precisely the
same as for the case m = 1, and the upper bound is

Gl— (0™ (No/2E)8; P, 5(w)™']

whereas the lower bound is G[—(z) '(No/2E)8; P, »(7)”']. But 0 is
unknown, and the upper bound is given by replacing —# by 8, and the
same result is obtained as previously; similarly, the lower bound is
given by replacing —# by 8. In short, the bounds apply to both cases,
m = 1 and 2.

The numerical values of these bounds are given in Figs. 1 to 3 as
funetions of 2E/N,P (the signal-to-noise ratio per path) for various
fixed values of 8 (the fractional spectral half-width) and P (the number
of paths). The curves are nested with respect to values of the fractional
spectral half-width 8; an increase of 3 always yields an increase of the
upper bound and a decrease of the lower bound. A measure of the sharp-
ness of the bounds (given a nominal value of error probability P.,)
is provided by the difference of the upper-bound and lower-bound
values of 2E/N,P (in dB) for given values of 8 and P. For P, = 107"
and P = 4, the sharpness is 1} dB for 8 = 0.05 and 2% dB for g = 0.1.
This measure of sharpness appears to be relatively insensitive to the
value of P. An alternate measure would be the difference in error
probability for a given value of 2E/N,P, and this measure is indeed
markedly sensitive to P.

In the region of the curves corresponding to high signal-to-noise
ratio, there is an improvement in error probability associated with
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Fig. 1— Error-probability bounds for widely-orthogonal signaling, P = 2.

larger P; the curves become straight lines since P, becomes proportional
to (2E/N,P)"". However, this improvement is in part attributable
to choosing 2E/N,P, the average per-path signal-to-noise ratio, as
the abscissa rather than 2E/N,, the total signal-to-noise ratio. To
obtain plots vs 2E/N,, one moves the P = 2" curves to the right
by 3n dB; then, the improvement with increased P is less dramatic
in this region of high signal-to-noise ratio.

4.3 Computing Spectral Bounds

It has been observed that bounds on the error probability for the
case of widely orthogonal signals can be obtained from bounds on the
spectrum of B(m)s, m = 1, 2. We now give several easily computed
formulas for these bounds.

Recall that B(m) is defined to be [ di b*(t, m)b(t, m), a matrix of
scalar products or a Gram matrix. In general, this is uninformative,
since a matrix is a Gram matrix if and only if the matrix is positive
semidefinite. However, we will shortly use the fact that in our case
the diagonal entries of B(m) are unity because of the normalization.
Next, note that B(m)s is similar to o'B(m)s!, a hermitian matrix
which has real roots (since o is a real diagonal matrix with positive



entries, the matrices ¢ and ¢~ exist; then [B(m)ale™} = ¢!B(m)s?).
When B{(m) is diagonal or nearly so, the roots of B(m)e should be
close to the entries of o; this is justified by the following theorem.’
The characteristic roots of any matrix A lie in the closed region of
the z-plane consisting of all the disks {z: ]|z — A, | £ DX | Ais |,
, P}. In our case, the region must be on the real line,
and we obtain a set of not necessarily nonoverlapping intervals centered
about {o;}, the half-widths being {3 ..; | B:;(m) | ¢;} when we take
A = B(m)ec. The spectral bounds are then the rightmost right-end point

i=1,2 -

ERROR PROBABILITY

m_ﬂx [-‘1“ + Z | A-’:’ Ul

7

and the leftmost left-end point

m‘in [-'l.’n‘ - E 1 Aii I]

i i=i

(when it is positive).

A family of

1072

ERROR PROBABILITY
3
v

1075

1078

Fig. 2 — Error-probability bounds for widely-orthogonal signaling, P = 4.

spectral bounds is obtainable from this theorem by apply-
ing it to B(m)s and to matrices similar to B(m)s, e.g., ol B(m)q!, e B(m),
and more generally ¢“B(m)s' ™, 0 < « < 1. Thus, we have the family
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B=01—-"" __
- f=005--"
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107!
UPPER BOUNDS

_-B=o02
__,/BZOJ

2|
10 _B=0.05

LOWER BOUNDS

ERROR PROBABILITY
5]
1
w
T

B=02-—""
B=o04-——""
B=005-——""
10—4._
-5
10 P=s
1078 1 ] 1 |
-5 0 5 10 15

2E/NgP SIGNAL-TO-NOISE RATIO PER PATH IN DECIBELS

Tig. 3 — Error-probability bounds for widely-orthogonal signaling, P = 8.

of upper spectral bounds
max {o; + 2 of | By(m) |o;7%}, 0 =a=1 (6)

et
The question arises: which is the smallest upper bound? It is not true
in general that a bound is attained for the value of ¢ that maximizes
o, but suppose this is the case when e = 0. That is to say, suppose
7; = max, o and that
a,-[l + 2> | Bi;(m) lﬁ] = max U"l:l + 2 | Bii(m) ]—]
iri oy k i#k Ok

Then it follows that this is the smallest bound in the family, for ¢;/c; = 1
implies that

> | Bi(m) 1%’; = ; | Bi;(m) | (g_:._) _n’

i#i

and hence
[1 + 2 | Bi(m) lj—j] = [1 + 2 | Bu(m) | (%)]
< max {cra-[l + 2 | Bu(m) | (%)14]}
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Similarly, we have the family of lower spectral bounds

min {o; — > of | Bi(m) | i7"}, 0=a=1. (7

i#E

The largest lower bound is obtained when a = 1 provided that ¢; =
min, o) and that

ol — E | Bi;(m) |] = mm o[l — 22 | By(m) 1}

i i=k
To see this, observe that ¢;/¢; = 1 implies

> 1Bu (%) 2 S 1By |,

i=i PR

and hence

all = 2 | Bitm) ] 2 o.[l - Z maon | (2 )}

i=i

mln {tn|:1 - E | Bes(m) | ( )H’]}'

It should be noted that less sharp bounds are easily obtained. For
example, the matrix ¢B(m) yields the upper bound

max {o,[1 + E | Biy(m) 1) = max o max L+ > |Biy(m) ],

FEt

IV

1%

and the right-hand side is easily computed. The corresponding lower
bound is

min {o,[1 — 2| Bamy 1} = [mln a][1 — max Y | B;;(m) |].
i# i i izi
These less sharp bounds are easier to compute than those obtained in
a similar fashion from B(m)es or from ¢*B(m)e'™°.

Also, it should be noted that sharper bounds can be obtained by
employing a sharper theorem of matrix theory:” The characteristic
roots of any matrix A lie in the closed region of the z-plane consisting
ofalltheovals |z — A, | |2 — Ay | S Crms i) Qi A1), 7 5 J.
We do not pursue these bounds, but note that simple formulas are
obtained only when all paths have equal strength, ¢, = 1/P.

It is now clear that when B(m) is essentially diagonal, with
> iei | Bij(m) | < 1 for all 7, the path gains o, are good nominal values
for the characteristic roots of B(m)e. If, moreover, these path gains
are equal, or approximately equal, then the upper and lower spectral
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bounds are close to one another. When this narrow-spectrum condition
prevails, the positive and negative portions of the spectrum of L(m)Q
are also narrow, and the bounds on error probability are sharp.

V. OTHER SPECIAL CASES

5.1 Well-resolved Paths and the Theory of Diversity

We consider the case in which the signals are resolvable, B(1) =
B(2) = I, i.e., the paths are well separated in time and frequency
so that any time-Doppler shifted version of a signal is orthogonal to
any other version of itself. Moreover, we also assume that B(l, 2) =
[ dt b*(t, 1)b(t, 2) becomes a diagonal matrix, B(l, 2) = pI where
p = [ dt a*()x.(t), ie., the paths are sufficiently separated so that
any version of one signal is orthogonal to all but the same-path version
of the other signal.

It is then easily seen that the covariance matrix is comprised of
diagonal submatrices. For m = 1,

L'(1) = ¢ + (No/2E)I L*(1) = plo + (No/2E))I]
L'(1) = p*lo + (No/2ENI] L) = | p [' 0 + (No/2E).
I'or m = 2, assuming E, > 0,
L'2) = (B/E)[] » ' 0 + (No/2E)I]
L(2) = p(BE2/E)le + (No/2E:)]]
L*(2) = p*(Bo/Eple + (No/2E,)]]
L*(2) = (E./E)[e + (No/2E5)I].
Moreover, the matrix @ is diagonal, being related to
(2E,./N)H(m) = (2E./N)[QE./N)I + ¢ '] = olc + (No/2E)I]™".

It then follows that L(m)Q is comprised of diagonal submatrices.
To find the spectrum, the order of the determinantal equation can be
reduced from 2P to P. Then the argument of the determinant is quad-
ratic in \. For the case E, = E. , a method of Turin [(22)-(23) in Ref. 5]
can be used relating the A, to the eigenvalues (elements) of o.

The above example brings the present analysis in contact with the
theory of diversity combining, see e.g., Ref. 3, Sec. 7.4. Turin,” for
example, considered the case in which separate waveforms are available
and the fading is nonindependent in general. In our analysis, only one
waveform is in general available. But in the case of well-separated paths,
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we may assume P separate signal waveforms have been observed.
However, these separate waveforms must fade independently in keeping
with our general discrete-path model, and the on-diagonal component
matrices of L(m), viz., L'(m) = (No/2E\)Z,Z}),, and L*(m) =
(NQ/QEL)(ZQZ;_),,,, are themselves diagonal matrices. It is still entirely
possible that L'*(m), the off-diagonal component matrix of L(m), is
not a diagonal matrix; e.g., when z.(f) is a delayed version of z,(t),
then time overlap may preclude B(1, 2) being diagonal even though
B(1) and B(2) are diagonal. But when we assume that B(1, 2) is also
diagonal, then we obtain the form for L(m) exhibited above. It can be
observed that this is precisely the result Turin obtained for the case
of optimum diversity combining, where his not necessarily diagonal A
becomes our diagaonal «. When B(1, 2} is not diagonal, then our
results do not specialize to the form given by Turin, a reflection of
the fact that the multipath channel is not in general fully equivalent
to a diversity channel.

5.2 On-Off Keying

Another example is the case of on-off keying in which F, = 0. The
test statistic ZTQZ becomes

(No/2E)' Z(1)) (2E,/N)H(D(N,/2E) Z(1)], since Q" = 0.

Thus, the distribution is determined by the spectrum of the matrix
L™ (m)Q", where

LY%(m) = 6,,B(1, m)aB(m, 1) + (N,/2E,)B(1),
Q" = BT'(1){I + (No/2E)[B(1)a]™"}™".

Observe that we no longer have the difference of positive-definite
forms, the test statistic now beinga positive random variable. The
threshold (N,/2E,)0(2) is

Il

.
g

(N./2E,) log det [(921\;1)3(1}0 + 1:|

which is positive since the eigenvalues of (2E,/N)B(1)e + I are
greater than unity.

Assuming that the spectrum of L'(m)(2E,/N,)H(1) lies in the
interval (u, &), where  and g are functions of m, the bounds on the dis-

tribution function are

Gl(g)"(N,/2E)8; P, 0] < F|:(2\L)9:| < G[(w) '(N,/2E)6; P, 0].
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Recall that G(x; P, 0) is related to the incomplete gamma function,
G(x; P,0) = I(x, P — 1).

The spectral bounds must exhibit two forms of (2E,/N o)-dependence.
When m = 1, L'*(1)Q" = B(1)s, and bounds on B(1)e become u and f.

When m = 2, L' (2)Q" = (No/2E){I + (No/2E)[B(1)e]™'} 7", so that
= (No/2E)[1 + (No/2E) ()",

I®

= (ND/QEI)[I + (N0/2E1)(‘L)_11_1:

where the spectrum of B(1)e is confined to (@, @).
Collecting our results, when m = 1,

F\[(No/2E)6) < I{(w)”'(No/2E)P log [2E/Noo + 1]; P — 1]
F\[(No/2E)0) = (@)™ (No/2E)P log [CE/Noe + 1]; P — 1}.
Similarly, when m = 2
F,[(No/2E)6] < I{[1 + (No/2E)(w)"'IP log [RE/No)a + 1]; P — 1}
F.[(No/2E) 8] = T{[1 + (No/2E)@) P log [((2E/No)w + 1]; P — 1}.

These results permit the computation of error-probability-bound curves
that would be universal in the same sense as the curves for widely-
orthogonal signaling, i.e., the curves would apply to any element of
the set of channels for which the spectral bounds are met.

R

VI. CHERNOFF BOUNDS

6.1 General Case

Up to this point, consideration of spectral bounds has lead to error-
probability bounds which are sharp when the spectrum comprises
narrow positive and negative portions. These bounds are easy to employ
when B(1, 2) = 0 and B(1), B(2) are nearly diagonal matrices. But
in more general cases, the estimation of spectral bounds may be difficult
and bounds may be poor approximations of eigenvalues. We turn to
another technique of bounding error probability which does not ex-
plicitly require spectral bounds.

Consider the error probability when hypothesis m = 2 is true,
P,(2) = Pr {Z'QZ > (N,/2E)8 | 2}. Recall that the unit step function
U(z) is unity for > 0, zero for # < 0, and one-half for z = 0. Then
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Il

Pr {U[Z'QZ — (N,/2E)6] = 1|2}
£.{U[Z2'QZ — (No/2E)6]},

where &, denotes expectation under hypothesis m = 2. But since
U(x) = exp (u.x) for any u, > 0, we have

P.(2) £ &fexp w[Z'QZ — (No/2E)6)].

This average can readily be computed, since Z'QZ has the same dis-
tribution as > M(2) |z |?, where {\.(2)} is the spectrum of L(2)Q.
Since &z, = 0, &2,2¢ = §,,, and &z;z, = 0, the Gaussian variables
[Re z;}, {Im z;] are independent with zero mean and variance equal
to 3. Thus, P.(2) is bounded from above by

P.(2)

exp [—u.(No/2E) B]L]:I & exp (uM(2) | Re 2, F):l ,

where the outer square appears because the product involving {Im z,}
has been suppressed. But a standard calculation shows,

& exp (u:M(2) [ Rez, |2) = [1 - Hz\ﬁ-(g)]_}: when  w.\(2) < 1,

and our bound is
2P
exp [—w(No/2E)0) TT 11 — @77
Thus,
P,2) £ exp [—w(No/2E)6] det™ [T — pL(2)Q], (8)

which holds for all g, such that 0 < ps < [max A (2) ]

The above procedure is adopted from the technique due to Cher-
noff (see Ref. 3, Sec. 2.5 and 7.4). Here, we do not have identically
distributed variables; indeed, half are positive and half are negative

random variables.
To find the best value of us, we write the bound as

N, 24 )
exp {—pg Sk f — In A];I 1 — w) ;‘.(2)]}

and differentiate the argument of the exponential. A necessary con-
dition for an extremum is that the derivative be zero, and this yields
2P
Ae(2)
N,/2E)8 = —
(No/2E) ‘Z; 1= N

-3 L = tr [[(LE2)Q)" — wI]}.

-1
fo1 Mt — e
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If the value of po that satisfies this equation lies within the allow-
able interval [0, max);(2)], then this value of py minimizes the
upper bound. A minimum occurs because the second derivative of the
argument of the exponential is positive, being

3t [ N(2) }
= L1 — ﬂzkk(z) )
In a similar fashion, the error probability for m = 1 can be over-
bounded.

Pr {—Z'QZ > —(N,/2E)8 | 1}
< & fexp m[—Z'QZ + (No/2E)6])
P.(1) = exp [u(No/2E)6] det™ [I + wL(1)Q].
The best value of p; satisfies
(No/2E)0 = tr (L(DQU + w L1)QI™'},

provided this value lies in the allowable interval [0, max(—A.(1))].

P.(1)

6.2 Widely-orthogonal Signals

Consider the case in which the signals are widely orthogonal,
B(1,2) = 0, but have equal energy, E; = E» = E, and are equilikely,
a; = as = }. The overbound on P, (1) is obtained from the spectrum
of L(1)Q which comprises the spectrum of L™ (1)Q" together with
the spectrum of L*2(1)Q**. Thus,
P,(1) £ exp [u(No/2E)6]det™ [ + u, L"(1)Q"] det™ [T + w L¥*(1Q™].
But the matrices used here were related in Paragraph 4.1 to B(1)o and
B(2)a, and our bound becomes
exp [ (No/2E) 6] det™ [I 4 u,B(1)0]

-det™ {T — u(No/2E)[I + (N,/2E)(B(2)0)™']7"}.

After some manipulation, this bound becomes

() fom [ G ]}
det [B(Q)a + (%) I]

o o ) o - o+
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where

- 2] = <det [B(pgi@glg)g]}"-f—\'m»
exp [u(No/2E)0] = {d(lt [B(2)e + (No/2E)I] .

The maximum allowable value of u; is determined by the largest
cigenvalue of L**(1)Q* which in turn is determined by the largest
eigenvalue of B(2)e:

-

2K -
0 < < N + max™ (),

where {8;} is the spectrum of B(2).
The best value of p; is found from the relation

N
25 D)
tr (LM OQMT + L (HQ"] )

where we again have exploited the decomposition of the speetrum of
L(1)Q. After some manipulation, we find

(No/2E)8

(No/2E)6 = tr {B(1)a[I + w,B(1)a] ")

— tr {B(?)a[I + (?VI., - NI)B(;)),,]'I}.

An approximate solution can be obtained for the case of high signal-
to-noise ratio. Let u, = 7,(2E/N,); the relation becomes

Wy 8

No/2B)0 = 3 T o N omm, ~ 2 T F CE/NIA = 55,

Suppose #,(2E/Ng)w, > 1 and (1 — g,)(2E/Ny)é, > 1. Then the
right side becomes approximately

P _ P .
(2E/N )i, (2E/N)(1 — 7,)

Equating this to (¥,/2E)8 and solving the resulting quadratic for the
root applicable for the case § = 0 yields

n Tl ) b T
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When /2P is small, this value of g, is approximately

1 0
5[“@]'

and the corresponding value of u, is (£/No)[1 — (6/P)] which is ap-
proximately at the midpoint of the allowable interval.
In a similar fashion, the overbound on P,(2) is

exp [—u(N,o/2E) 0] det™ [I — p L' (2)Q"] det™ [I — wL™(2)@],
which becomes
exp [—ua(N,/2E) 6] det™ {I — w(No/2E)[I + (No/2E)(B(1)e)"]7}

-det™ [I + wB(2)d],
or

(o) o (033 0}
det [3(1)0 + (2%,9) I]
det{?[ _ (’;‘;) wo + (32) }deﬁ [2#2 (5

Yo+ (2)1]
where

7 _ Jdet [B(2)a + (No/2E)I] #a (No/2E)
P [mhlNo/2B0) = {det [B(l)o + (Nu/2E)I]} :

The maximum allowable value of g, is determined by the largest eigen-
value of L'"(2)Q" in turn determined by the largest eigenvalue of
B(1)e:

0 < < N 2} max (@),
0

where [w,] is the spectrum of B(1)o. The best value of u, satisfies
(No/2E)6 = tr {L"(2)Q"[I — p.L"(2)Q"]™}
+ tl‘ [LZZ(Z)QH[I _ “sza(z)szj—l}

(N,/2E)6 = tr {B(l):;[(ij - I—lz)B(l)G' + I]_l}

— tr {B(2)o[I + mB(2)s]™'}.
Let p. = .(2E/N,) and suppose #:(2E/No)8; > 1, (1—f:)(2E/No)w, >> 1.
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Then the right side becomes

P P
(E/No)(1 — @)  (2E/Ny)a,’

and the approximation of the best value of g, is

o 9 g2 \1
B = [(1 “zp)’L (1+4P2):|

which is approximately 1[1 — (8/4P)] when (8/2P) < 1.

The foregoing results can be specialized to the case in which the
paths are resolvable, B(1) = B(2) = I. Then § = 0, and it is easily
seen that the best value of z,, is 1. Both overbounds become

_pdet [¢ + (No/2E)I]
det’ [0 + (No/E)I]

and this agrees with equation 7.134 in Ref. 3.

It should be noted that g, = } is always an allowed value of g, .
For the case of resolvable paths, it is the best value, and whenever
8/P < 1 and 2E/N, is sufficiently large, it is close to the best value.
Using z,, = %, we can obtain an overbound for both error probabilities,
1e., for P,(m), m = 1, 2. This overbound is

det [B(3 — m)a + (N,/2E)I] )
det [B(1)e + (No/E)I] det [B(2)o + (N,/E)I]
(9a)
The factor exp (3 | 6 |) can also be written in terms of determinants.
When det [B(1)e + (N,/2E)I] is larger than det [B(2)s + (N./2E)I],
we have

(E/2N,)

(B/2Ny)™ " exp (3| 0 [)

det [B(1)s + (Nc./2E)I]}" (9b)

exp (3] 0)) = {det (B@)o + (No/2E)]]

and when the reverse inequality holds, exp (} | 8 ]) is the reciprocal
of the above.

For the case in which the spectrum of B(m)e lies in the interval
(1-p/P, 1+8/P) where 8 < 1, the overbound can be further over-
bounded. The factor involving determinants is less than

[efi+8+ (5D)]"

[0
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and | 8 |/2 is less than

P 1+ 8+ (NP/2E)
2

1
1 — 8+ (N,P/2E)
It follows that the Chernoff bound is less than

, 41 + B 4 (N.P/2E)] ’
(NWP/28) {[1 — B+ WPREITL — 8+ 2(NUP/2E)12} 10
Numerical values of this bound are given in Fig. 4, and it has the
same general character as the spectral-related bounds. Rather than
sharpness given a nominal value of error probability P,, we consider
the sensitivity measured by the change in 2E/NoP (in dB) vs 8;
for P, = 10* and P = 4, the sensitivity is 2 dB for g8 = 0.1. The
sensitivity does not markedly increase with an increase in P, in agree-
ment with the behavior of the sharpness of the previous bounds.
Comparison of the Chernoff bound with the previous bounds is
conveniently done for the ecase 8 = 0 (cf. Sec. 7.4 of Ref. 3). The
Chernoff bound does not specify a signal-to-noise ratio (required to
achieve a nominal P,) excessively greater than the previous value;
for P = 4, less than 2.2 dB difference is observed. This excess does
deerease with increasing P. Moreover, it is entirely coneeivable that in
a broad-specetrum case with a large number of paths, an exact value of
the Chernoff bound would be better than the spectral-bound result.
Of course, our inexact (overbounded) Chernoff bound is poor in the

5]
i

2

3
d

3

BOUND OF ERROR PROBABILITY
3

25
2E[/NyP SIGNAL-TO-NOISE RATIO PER PATH IN DECIBELS

Fig. 4 — Overbounded Chernoff bounds for widely-orthogonal signaling.
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hroad-spectrum case, but a Chernoff bound using the proper values
of the determinants should be good for two reasons. (7) Such a bound
reflects the precise values of the eigenvalues of the matrix L(m)Q.
(ii) When P is large, the probability density function is bell shaped
with the probability “mass” being concentrated near the mean and
most of the tail mass being at the leading portion of the tail; then
the tail mass ean be weighted by the exponential function with little
crror. On the other hand, the spectral-bound approach suffers in the
broad-band ease since the speetral bounds are not meaningful approxi-
mations of all the eigenvalues.

VII. DISCUSSION

Having observed that exact computation of error probability is
cumbersome and depends upon an often inordinately large number of
parameters, we considered error-probability bounds (2) that are uni-
versal in the sense that they apply to any one of a set of channels
satisfying spectral bounds (1). Our bounds employ (3), the distribu-
tion function of the difference of chi-square variables. For the special
case of widely orthogonal signals, we obtained bounds employing
parameters (5) in terms of the speetral width g, see (4), of the
matrices B (m)e. Plots of these bounds showed that sharpness meas-
ured in dB change of 2E/N,P with respect to g for a fixed value of
error probability is not sensitive to the value of P. We presented a
teehnique for obtaining spectral bounds for B(m)e when it is nearly
diagonal, representative results being (6) and (7). This technique can
also be applied to L(m)Q for the more general ease in which the
signals are not widely orthogonal.

The case of resolvable signals (B (m) = I) made contact with the
theory of diversity; we found that for the multipath channel to be a
diversity ehannel, B(1, 2) must also be a diagonal matrix. Of course,
the previous results also were in contact with diversity theory. With
B(1,2) = 0 (a diagonal matrix) but B(m) not necessarily diagonal,
our results generalize those of diversity theory in the following sense.
The special case 8 = 0 corresponds to a diversity channel with equal
link gains, but the general case 8 %= 0 can arise in the nondiversity
situation when the matrix B(m) is not diagonal. (If B(m) were
diagonal, B(m) = I and the diversity ease prevails.)

We then turned to the Chernoff bound (8) which does not ex-
plicitly employ spectral bounds. The overbounded form (10) for the
case of widely orthogonal signals was poorer than the previous bound
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when g = 0. Nevertheless, there is promise that in a broad-speetrum
case, the original form (9) would be better than the spectral-related
bounds. A further advantage is that once the determinants are eval-
uated, perhaps on an electronic computer, the error-probability bound
is immediately obtained. In contrast, the spectral-related bounds
require a certain amount of computation involving incomplete gamma
functions even after spectral bounds are obtained.
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APPENDIX A

Here we show that the number of positive eigenvalues of L@
equals the number of negative eigenvalues.* Recall that L is positive
definite and that @ can be written in the partitioned form

Q=[Q 0},
0 QZZ

where Q"' and —Q™ are positive definite. Clearly, the number of positive
eigenvalues of @ equals the number of negative eigenvalues. We can
construct a family of positive definite matrices L, , 0 < ¢ = 1, such
that L, = I, L, = L, and L, is continuous in {. For example, let L, =
(1 — I + tL; L, has positive eigenvalues {(1 — ) 4+ ¢v,}, where
{v:] are the eigenvalues of L. Now the eigenvalues of L,Q are real,
for L,Q is similar to the Hermitian matrix LIQL} = L;}(L,Q)L}, where
L} and L;? exist since L, is positive definite, Moreover, the eigenvalues
of L,Q are continuous in ¢, since I, is continuous in ¢ But L, never
has a zero eigenvalue, for L, is positive definite and (L,Q)™" = Q™ 'L;!
always exists. Since the eigenvalues are real, continuous in ¢, and never
zero, it follows that no positive eigenvalue of Ly@ can become negative
as ¢ varies on [0, 1], and no negative eigenvalue of L,Q can become
positive. The conclusion is established.

APPENDIX B

This appendix presents another derivation of the distribution func-
tion of ZP | 2 |° — @ 2.2, | zi *. This derivation makes contact with

*We are indebted to B. H. Bharucha for the conception of this proof.
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the special functions that have appeared in analyses of diversity chan-
nels; also, this derivation appears to admit generalization to the case
2z = Re z, with (z;2,) = 6,z . (An odd number of variables in the real
case corresponds to half-integer P in the complex case.)

The density function of J_F | z, [* is

I
fe) = 1”’ o Y
0 (x < 0),
and the density function of —a > 25, | 2, |* is
9@ = ( 1?—1 i/a w0
——a:(’g _‘31)! (z < 0).

The density of the sum is the convolution of the densities,

= [y e - o,

where the first argument of max (-, -) arises from the truncated form
of f and the second argument arises from the truncated form of g.
It follows that

N Y o |
M) = e — hup — 11 fmnm.ﬂ dyly = @) eXp[ (a+ l)y]

For the case z > 0, the lower limit is 2. For the case z < 0, the integral
can be cast into the form of the integral for the case x > 0 by a change
of variable. The result differs only in the exponential factor, i.e.,

exp (—x)
(P — DI(P — 1!

f dyly — |2 D" 7'y"" " exp i:—(i + l)y] ,  x<O0.
[E]

The integral can be evaluated with the aid of relation (12) on page 202,
Vol. II of Ref. 10, and the common result for the casesz < 0and 2 > 01is

_ 1 ) I]
P} - d
=]:t:| eXp[(a 1)3 . (1+a|z|)
Vil +a @ -1 TN a2 /7
where K »_;(2) is the modified Bessel function of the third kind.

hx) = —

Mx)
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The above expression for the density is valid for all P, noninteger
as well as integer. But in our application, P is an integer; a relation
on page 80 of Ref. 11 yields

R = S 1
Kpy(@) = \/2—28 kz,,(,]c!(P -1 — k)(2)"

The density is then

o = () e [(52)5 - 15

B e () 12

&P - DEP — 1 — k!
When z < 0, the exponential becomes exp (z/a«), and when z > 0,
it becomes exp (—=z).

Observe that when a = 1, the density is symmetric. When o < 1,
the factor exp [(1 — a/a)x/2] shifts the mass to the right. When & — 0,
it can be shown that h(z) — f(x).

To obtain the distribution function G(y; P, «), consider first the
case y < 0. Since [*_ dz h(z) equals [}, dz h(—=z), the following integral
arises in each term of the sum,

“ dx _z/ﬂ(x)l’—l—-k 3
—e = =P —-1=8BMN —I(y |/e, P — 1 — K)].
vyl @& o

The case y > 0 is treated by considering [, dx h(x) + [ dx h(x).
The integral that arises is just (P — 1 — k)!I(y, P — 1 — k). These
steps establish our final result, quoted above.

Our result could also have been obtained from the Fourier transform
of the characteristic function (1 — @) "(1 + 4ta)"". The Fourier
transform of (a + ) ™**(8 — t)™*" is given by relation (12) on page 119,
Vol. I of Ref. 10 in terms of Whittaker functions that reduce to Bessel
funetions for the case p = » = P/2 in view of relation (14) on page 265,
Ref. 12. The density function can thus be obtained.
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