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In recent years, the use of varactor diodes for harmonic generation has
become increasingly widespread. Varactor harmonic generators come under
the general class of pumped nonlinear systems, which are networks driven
periodicatly by a pump or a local oscillator at a frequency w, and its har-
monics. For such systems, a general method has been presented in this
paper to oblain the scaltering parameters which relate the small-signal
Jluctuations present at various points in the system. In particular, the
scattering paramelers of lossless abrupt-junction varactor harmonic gen-
eralors of order 2", 3°, and 2"3" with minimum number of idlers have
been obtained. It has been shown for these multipliers that there is no
amplitude-to-phase or phase-to-amplitude conversion if fluctuations are
in the vicinilty of the carriers. With minor modifications this theory can
be extended to the study of lossy varactor harmonic generators.

I. INTRODUCTION

The carrier voltages and currents present in a varactor frequency
multiplier are perturbed by small amplitude and phase fluctuations
due to a variety of causes, such as noise, synchronizing signals, ete.
In some applications, these fluctuations may be due to modulations
purposely applied to the carriers. An example of such applications is
that in which a frequency modulated signal is multiplied in frequency
to increase its modulation index. It is the purpose of this paper to
study how these perturbations propagate in the circuit of a multiplier.
In other words, this paper considers the problem of determining the
small-signal behavior—a problem which is of basie importance in un-
derstanding the problem of stability and noise performance in high
efficiency varactor multipliers.t

i See Ref. 1. The problem of stability is also treated in a subsequent paper.?
Part of the results obtained in this paper represent generalizations of some of
the results presented in Refs. 1, 3, and 4.
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In the earlier part of this paper, a general method has been presented
in order to obtain the scattering parameters of pumped nonlinear sys-
tems which are networks driven periodically by a pump or a local
oscillator at a frequencyf wo and its harmonics. Harmonie generators
discussed in this paper come under this class of systems. Some of the
formalisms usually used to describe the fluctuations in these systems
are also briefly reviewed.

In the second part of this paper we discuss varactor multipliers in
which the diode is not overdriven and is of the abrupt-junction type.
The equivalent circuit of this type of multiplier consists of an ordinary
linear, passive, and time-invariant circuit connected to the time-vary-
ing component of the elastance S(t) of the varactor.® In general, it is
shown that a complete solution of the small-signal behavior of such
a cireuit requires that S(t) be known. On the other hand, it is well
known that certain properties of the small-signal behavior of a multi-
plier do not depend at all on the particular form of S(t). For instance,
a general and well-known property of a multiplier of order N is that
slow fluctuations in the phase of the input drive produce N times as
large fluctuations in the phase of the output signal. One of the main
results of this paper is that, under certain general conditions, many
other properties of the multiplier are related in a simple way only
to the order of multiplication N. All the small-signal characteristics of
a multiplier that are of practical interest can, therefore, be readily
determined without having to calculate S(t).

Specifically, we consider a lossless multiplier of order N = 273" =
2, 3, 4 etc., which is tuned at all carrier frequencies§ and has the least
number of idlers. Then, if the various small-signal fluctuations of such
a multiplier are properly normalized with respect to the corresponding
carriers, one finds that the small-signal terminal behavior of the elastance
S(t) is completely determined by N only. It is important to point out
that this is exactly true only for & << w, , where w is the frequency of the
fluctuations and w, is the carrier frequency of the drive. If this in-
equality is not satisfied, then the small-signal behavior will also depend
on . A consequence of these results is that the AM and PM scattering
parameters of the multiplier of order N = 23" considered in this paper
only depend on 7 and s, in the vicinity of the carriers. They are given,
respectively, by the two matrices

In this paper the word frequency has been used exclusively for the angular
frequency of a sinuseidal signal. If f is the frequency of a signal in Hz its angu-
lar frequency « is given by w = 2xf in radians/second.

§ Tuning of idlers, and input, and output circuits usually gives near optimum

efficiency >*™*
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It is important to point out that for the above multiplier it has been
assumed in deriving the results that the bias circuit is properly designed
so that there are no low-frequency fluctuations of the average capaci-
tance of the varactor diode.® This assumption leads to the result that
there is no amplitude-to-phase and phase-to-amplitude conversion if
w/wy K 1.

Several other results are also presented in this paper. For instance,
it is shown that, if the number of idlers is minimum, then an abrupt-
junction varactor multiplier of order N = N; X Na X ...X N, is
equivalent to a cascade of n multipliers of order Ny, No, ..., N,. If
the varactor is not overdriven, this property furnishes the basic equiv-
alent circuit for studying the properties of most of the higher-order
multipliers encountered in practice (N = 4, 6, 8, ete.).

Finally, it is important to point out that techniques presented in
this paper are applicable to the derivation of scattering parameters
of multipliers, of any order, with any arbitrary configuration of idlers,
and using a varactor diode having arbitrary capacitance variation and
drive level. We only assume that the elastance S(t) of the diode used
in the multiplier has a Fourier series.

II. SOME CONSIDERATIONS OF PERIODICALLY DRIVEN NONLINEAR SYSTEMS

As mentioned earlier in this paper, {requency multipliers ecome under
the general class of nonlinear systems driven by a strong periodic car-
rier. It is our interest to study in this paper how small perturbations
on the periodie driving of such systems are propagated, and to this
end we shall give a brief introduction§ of a circuit theory which enables
us to relate the perturbations at different parts of the system. The
perturbations or fluctuations that we would like to analyze could be
caused by desired or undesired modulation, noise, hum, or synchroniz-
ing signals. The origin of these sources of fluctuations is not relevant
to our development of this theory.

Let us consider a nonlinear system. It is our assumption that the

i The conditions under which a periodic time function z(t) has a Fourier series
are well-known; and can be found in any book on Fourier series. See, for ex-

ample, Ref. 9. )
§ See Ref. 10 for a more detailed account of this theory.
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large-signal voltages and currents at various parts within the system
are, by design, periodic with some frequency wo. Thus, the voltage at
some specific point within the network or across one of its terminal
pairs, v (), is of the form

o) = 2 Vi exp (jkand), )
where the V.’s are half-amplitudey Fourier coefficients, with V_, =
V*. However, the actual voltage »(f) may deviate from (1) because of
fluctuations present in the system. Thus,

o(f) = kE V. exp (jkwol) + ov(t), 2)
where 8v(t) is small compared to v(f) in (1). The circuit theory that we
shall use in the rest of this paper is one which describes perturbations
dv(f) and relates them to similar perturbations of voltages and currents
in other parts of the system. The perturbations are assumed to be small
and they are at frequencies close to the carriers.||

The carrier voltage at some particular point in the system is of the
form

Vi exp (jkwot) + Vi exp (—jhwot), ®3)

where V, has some phase angle ¢,, . The actual voltage »:(f) in the
vicinity of this carrier deviates from (3) because of the perturbation

Bux(1);
v(t) = V, exp (jkeot) + Vi exp (—jhwot) + dui(1). 4

Similar expressions can be written for currents and voltages at various
places in the network. The various voltages like v(t) obey Kirchhoff’s
voltage law, and various currents () defined at various points in the
network obey Kirchhoff’s current law. Furthermore, the carrier voltages
and currents at various points in the network obey these Kirchhoff’s
laws, leading us to conclude that the perturbations like &v(t) and éi(t)
also obey them.

Let us now assume that the perturbation &v,(f) contain frequencies
that are located in a band of width 2w, centered about frequency kw,
where 2w, < w,."” We can write'® »,(f) asi

 Note the use of hali-amplitudes, rather than amplitudes or rms values.

l The large signal voltage or current present in the system at frequency ==kwo
will be referred to from hereon as the carrier voltage or current at that frequency.
In frequency multipliers carriers are at different frequencies at different parts of

the system.
1 Tn writing (6), it is assumed that | vpe(¢) |/] Vi | < 1 for all ¢.
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v(t) = 2 Re [| Vi | + va(t) — 7,(D)] exp [j(kwot + ¢.1)] (5)
~ - _ 1'»::@)
~2Re[| V| + vau(D)] exp {J[chot + o A l]} , (6

where v,,(t) and v,,(t) are slowly varying functions of time. The voltage
v,:(t) can be interpreted, since it is small, as a perturbation on the
amplitude | V, | of the carrier. Similarly, voltage v,,(), because of (6),
can be interpreted as a perturbation on the phase kwot + ¢, of the
carrier. We shall refer to v,,(f) as amplitude (AM) fluctuations and
to v,.(f) as phase (PM) fluctuations. Similar AM and PM fluctuations
can be defined at various points in the system.
If these AM and PM fluctuations are sinusoidal, we have§

va(t) = Vi exp (f) + V% exp (—jwt) M
and
vp(f) = Vo exp (jwt) + Vi exp (—jowl). (8)
The actual voltage v,.(¢) is then given by
v() = 2 Re [| Vi | 4+ (Ve — jV,0) exp (jof)
+ (V& — 3V exp (—jwh)] exp [j(kwot + ¢u)]  (9)
2 Re [V, exp (jhawol)
+ Var exp [j(kwo + w)i] + Vg exp [j(—kao + w)i]}, (10)

where V.., Vg, Ve, and V,, are related. The relation is

[ I'uir—l ['ak
‘f 1 = A ’ (1 l)
LT’pL'J !_ I‘ﬂkJ

where the matrix ), is a function of only the carrier phase angle o,, .
The matrix ),, can be represented as

{1 1 j(erqn (—je) 0 } a2
io—ilo exp (jeus)

Equation (10) shows explicitly the three frequencies kuw,, kw, + w,
and —kw, + w. The two sidebands here are both higher in frequency
than kw, , and — ke, , respectively, and therefore, these representations
are referred to as upper sideband (« — f) representations. We will
use them along with the representations of the form (9) in the rest

[

Nk =

§ Since the fluctuations va(£) and v,(¢) are band limited around de, @ must
be less than w, in magnitude, where 2w, < wo.
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of this work. Their mutual relation is given in (11). Because of (10)
we shall refer to w as the fluctuation difference frequency.

Let us now consider a pumped nonlinear system exchanging power
at the carrier frequencies 4wy , #=2w, , - - - , =N, . A nonlinear system
exchanging power at a number of frequencies can be considered as a
multiport multifrequency system as shown in Fig. 1. In Fig. 1 the
system exchanges power at n carrier frequencies and it is assumed,
without loss of generality, that no two ports exchange power at the
same carrier frequency. Let the perturbation voltage and current
at port k be denoted by &v.(f) and 8z.(t), respectively. Since dv's are
small, they must be linearly related.j Hence, there is a relation which

IO
le———0 +
\, BIAS

0 VOLTAGE
—o—
th+

ﬂ.loV1

Fig. 1 — Pumped nonlinear system exchanging power at n carrier frequencies.

relates év, to 67's of the form

sun(l) = Z [ " i, 1) 8 — ) dr, (13)

where h,,(t, 7)’s are functions of time ¢, as well as of time difference .
Since the driving is periodic, if 87's were applied one period later,
80, would be the same, except that it would be delayed by one period.
This argument leads to the conclusion that h,(f, 7)’s are periodic
functions in ¢, with period Ty = 27/w, and can be expressed in a Fourier
series of the form

t This is because only first-order terms in 8v’s and &’s are retained. Higher-
order terms are assumed to be negligible even when first-order terms vanish.
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hii(t, 7) = JZ_: (hii)1(7) exp (jlwol), (14)
where (h;;);(r) is a function of 7. Upon substituting (14) in (13), we
find

n 0

() = 3 3 exp (jlwol) f T () sl — ) dr. (15)

i=1 l=—=

If év,(f) is represented in the @ — B form,
dv.(l) = 2 Re { V. exp [J(kwo + w)t] + Ve exp [j(—kewy + w)t]}, (16)
we findi

{Ifuk:! — [annl Zukﬂl et Zakork Zak.ﬂk e anan Zakﬁn:II (]7)
Vﬂfr Zﬂkal Zﬁ'kﬁ: et Z,mmk Z_ﬂk_ﬂk e Z,srmn Zﬁkﬂn

where§

I=[Ialrl.ﬂlv"'rlak-I.ﬂkv"'rIﬂn-Iﬂn}' (18)

II1I. SMALL-SIGNAL ANALYSIS OF PUMPED NONLINEAR SYSTEMS

For the nonlinear systems that we shall consider in this paper,
we shall assume that the total voltage v(f) across the nonlinear element
is related to the current () through it by the equationy

o(t) = Fli()}, (19)

where F{i(t)} is a single-valued functional of i(t).

Assuming that there are carrier currents flowing in the system at
frequencies £iw, , 0 = 7 = n, the spot frequency terminal behavior of
this system at a difference frequency « is given according to (17) by an
equation of the form||

1 Essentially, we are discussing impedance formalism here which relates volt-
ages to currents through an impedance matrix. Several other kinds of formalisms
like scattering matrix representation or chain matrix representation can also be
used to relate other desired sets of variables.

§ A column matrix a is written in the form {a,, a., ..., a.}, the curly braces
being used to identify it as a column matrix.

f1f there are any physical sources of fluctuations (such as noise sources) in
the pumped nonlinear system, (20) is to be suitably modified. For the discussion
of the case in which noise sources may be present in the pumped nonlinear system,
see Ref. 11.

[ Tt must be pointed out that this equation only relates the small-signal fluctu-
ations present in the system and not the carrier voltages and currents.
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Val.l —Zaﬂun Z::Dcxl Znum e Znnm' Zmﬂﬂi e Zuﬂun Zac.au_ Inn
V’al Zuluﬂ Zalal Zalﬂl e Zula" anﬂi e ananznlﬂn Inl
V,ﬂl Zﬁ'lnﬂ Z,aun Zmﬂ: e Z.am.' Z,al,s.' i Zﬂlan Zm,an I.rn

I?.ﬂl- = Zaiul'l Zax‘al Zaiﬁl et Znu'a:' Zal'ﬁi Lt ch'an Zo-iﬁu Ic:‘ ' (20)
Vﬁ.' Z,smu Zﬁ'ial Z_Bl'.ﬂl v Zﬁ;u; Zm‘.se et Zﬁ:’un Zﬁiﬁu Iﬁi

1"rmn Zanal} Zanal Zum?i e anml' Zavxﬁi e Zuznan Zun.ﬂﬂ Iun
p-[fﬂn_ _Zﬂnuﬂ Zﬂnal Zﬁn.ﬁl e Zﬂ'ncu' Zﬂnﬂt‘ =t Z,ﬂnnn Zﬂnﬂn—‘pfﬂn—

where V., and V,; are the terminal voltages at frequencies jw, +
and —jw, + w, respectively; and I,; and I,; are the corresponding
terminal currents. We would like to note here that V., = Vg is the
small-signal terminal voltage at the frequency . We shall, for brevity,
write (20) as

(Va-t)n = (Za-alla-g)n - (21)

Let us now specifically consider a varactor diode which is pumped
at a frequency w, and its harmonics. The varactor model that we shall
use is shown in Fig. 2. It is a variable capacitance in series with a

S(t) Rs

Tig. 2 — Varactor model.

constant resistance R, .} The instantaneous varactor voltage v(f) can
be written as some function f of the charge, plus the drop across the
series resistance R, :

() = fla()] + R.i(1), (22)

where
qt) = f_ (f) dt. (23)

Tor such a varactor, we can make use of the small-signal equations
given in Ref. 5 in order to obtain the impedance matrix Z._ in (21).
If the elastance S(¢) of the varactor diode can be written in a Fourier
series of the form
80 = 20 Si exp (jhet), (24)
k=—co

+ Mainly we shall be concerned with varactor diodes which are lossless in the
succeeding sections of this paper. For a lossless varactor diode R, = 0
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Equation (25) shows that the impedance matrix (Z.-s), always exists
for a pumped varactor diode as long as the elastance S(t) is expressible
in the form (24).

Let us now assume that the input carrier frequency is lw, , 1 = I = n;
and that the output carrier frequency is sw,, 1 = s < n (see Fig. 3).
Let us also assume that the terminal constraints at other carrier fre-
quencies are such that

V= —Z,d, (26)

where V' is an & — B terminal voltage column matrix given by

Vﬂﬂ
Vs
Va

Va(l—l)
V.ﬁ(l—l)
Vu(l-{—l)

V.P

Vﬁ'(H—l) : (27)

Va(-—l)
Vﬂ(a—l)
Va(a+|)

1rﬂ(n+l)

I’ is the corresponding terminal current column matrix. Z7_, is the
impedance matrix determined by the terminal constraints imposed by
the external circuits on the system. These terminal constraints at all
carrier frequencies excluding lw, and sw, are assumed to be known.
Even though the currents flowing in the varactor are not limited by
the diode in the range of available frequencies, it is assumed that the
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external circuits are such as to offer an infinite impedance at any fre-
quency very far from the carrier frequencies present in the multiplier.
This enables us to consider the multiplier as a finite port multifrequency
system.

It may now be seen that by using (25) and (26) we can obtain a
relation between V.., Vi, Tary Tory Vaey, Voes Taw, and I, . In

+c IaL ItlS o+
Val Vas
iy — I .
L (Z a—ﬁ) 1-s I
AL Bs
4 —— [—0 1
VgL Ves
Y SEE——— —_——

Fig. 3 — Small-signal terminal behavior of pumped nonlinear twoport.

particular we can write}

Vi Zdiar Ze Zliae Z00p, || I
Vi - Zstar Zitgr Zpias Ziigs || Tni (28)
I"u. aal Ia’a,ﬁl 2 s fo’.ﬂ, I.,
Ve, Zgiar Ziipr Lhas Zhige L L
or
(Vn—ﬂ)t—a = (Zn—ﬂ)!—a(lu—ﬂ)i'—u . (29)

Equation (29) relates the small-signal fluctuations existing at input
and output terminals of a pumped varactor diode. In case one is in-
terested in relating the AM and PM fluctuations at the input and output
terminals of a pumped varactor diode, we make use of (11). If ¢,,,
©eay @1, and ¢;, are the phase angles of carrier voltages and currents
at the input and output of a pumped varactor diode we get the fol-
lowing equation which relates the different fluctuations:

I In certain cases it is possible that the matrix (Z,_g)i_, does not exist. Even
though (Z,-g) 1-» may not exist, in most cases of practical interest, we can always find
a relation between the terminal voltages and currents at the sideband frequencies
in the vicinity of input and output carriers. This will be shown to be true in the case
of a tripler which is discussed elsewhere in this paper. However, the matrix (Z,_g)a
always exists for a pumped varactor diode.



1710 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1967

Vu! Im‘.
Vol = (Zuo) Ll (30)
Vﬂl IEI.!
_Tfpu I]’l.n
where
(Zu—p)l—a = (Lu)l—a(Za—lﬂ}lfa{(b:‘)l—a}il1 (31)
0 ! T
Qi = | 21 0, (32)
L0 1)
and
_ | _
()_\-')e—, = _Bir,:k(_]_ . (33)
L0 1 A

The matrices A’s are given as in (12).

Once we have obtained the impedance matrix representation for the
pumped varactor diode other kinds of representations like scattering
matrix representation or chain matrix representation could be derived
for any specific application or convenience. Mutual relations between
these representations are given in Refs. 11 and 12, and we shall not
discuss them in this paper. Scattering matrix representation of loss-
less abrupt-junction varactor multipliers is extensively treated in
later sections of this paper.

1V. SCATTERING PARAMETERS FOR PUMPED NONLINEAR SYSTEMS

The total voltage v(£) in the vicinity of a carrier at frequency =kwq
can be represented as in (5) or (B). v..(f) can be interpreted as a small
perturbation on the amplitude | V; | of the carrier, and v,,(t) as a per-
turbation on the phase kwot + ¢.. of the carrier. Since the device acts
as a time-variant linear device to the fluctuations and since super-
position holds, v..() and v,.(f) can be represented as in (7) and (8).

The voltage AM and PM modulation indexes at the carrier frequency
kwo, may, therefore, be defined as

(34)

My = | V
and

(35)
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The AM and PM indexes at the input and output of a pumped non-
linear system are, according to (30), related by an equation of the form

m,; m;;

g, 6;
= G (36)
‘ My, m;,
L H” Bis
where
1 I"J | 0
V =1
(Zo-)in = 7 Zure.
0 v
| V. [
l Il | 0
1. |

: (37)
L 0 | 1|
1. |

It is assumed that carrier voltages at frequencies lw, and sw, are nonzero.

Until now we have exclusively used the impedance formalism to
deseribe the properties of the pumped nonlinear system at the side-
band frequencies. The choice of an appropriate formalism is particularly
important in theoretical studies where important properties of the
system may be obscured by complicated equations. The scattering
parameters of a system are a set of quantities which can describe the
performance of the system under any specified terminating conditions,
just as the impedance (or admittance) quantities can, but while the
scattering coefficients may not be particularly convenient for short or
open-circuit computations, they may be applied in a relatively simple
fashion when the network is terminated in a preseribed load impedance.
Since we will be mainly interested in studying proper terminations for
the system in order to realize certain desirable characteristics, scattering
matrix formulation to deseribe AM and PM fluctuations in pumped
nonlinear systems seems to be the most desirable.!***'* Equation (36)
relates the AM and PM indexes or normalized voltages and currents
at the input and output of a pumped nonlinear system.} The incident

t Most of these eoncepts can be extended in a straightforward fashion if the
pumped nonlinear system has more than two accessible ports.
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and reflected AM and PM indexes (see Fig. 4) can, therefore, be written"®
as

(m); = 3(m,; + m;), j=1s, (38)

(m,); = (m,; — m,;), i=1s, (39)

(6.); = 3(6.; + 6., j=1s, (40)
and

(6,); = %(6.; — 6.)), i=1s. (41)

Using (37) through (41), we can now obtain the following scattering
matrix representation for a pumped nonlinear system:

1_(”m,); S.. 5 S, !_(m,-),j

(m,), ___{‘“_ (m. | (42)
(9r)‘ 511“ i §PP (af)'

(8. l (8).]

The relation between scattering matrix in (42) and impedance matrix
in (37) is easily derived.” In our case, this is given by

(*3)1-. = 14 - 2{14 + (_Z:n—a)t—-}_lr (43)

where 1, is the unit matrix of order 4, and where Z; _, is related to
Zm-o in (37) by

1 000 100 0!
001 0|, 001 0]
(Z,’..—n)r—s = (ém—")[—n ’ (44)
01 0 0 010
0 0 0 1 0 0 0 1
+ Miy Mis o
My1 Mys
—© PUMPED -
" NONLINEAR o
+ iL SYSTEM LS +
gv1 fys
o L

Fig. 4 — Representation of AM and PM fluctuations in a pumped nonlincar
system.
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The scattering matrix which relates the small-signal fluctuations of a
pumped nonlinear system is, therefore, given by (43). We assume that
the matrix 1, + (Z/,_,):-, is nonsingular.

We would like to point out here that the matrices S.u, Sup, Sps,
and §,, are all square matrices of second order. For reasons which are
evident from (42), the matrix S,, will be referred to as AM scattering
matrix, §,, as the AM-PM scattering matrix, S,, as the PM-AM
scattering matrix, and S,, as the PM scattering matrix.

V. SCATTERING MATRICES OF NOMINALLY DRIVEN LOSSLESS ABRUPT-
JUNCTION VARACTOR FREQUENCY MULTIPLIERSI

The theory developed in the preceding sections will be utilized from
hereon in order to obtain the scattering parameters of nominally
driven lossless abrupt-junction varactor frequency multipliers. The
elastance S(t) of the varactor diode as it is pumped is assumed to be
given by$§

o0

S = 3 S, exp (kwol). (45)

k=—o
k=0

In this section we shall first obtain the scattering matrix of a varactor
doubler whose input and output circuits are tuned. In the later part
of this section the scattering parameters of a tripler, whose input, output,
and idler circuits are tuned, are also derived. The discussion of the
scattering parameters of multipliers of higher order is postponed to
later sections of this paper. For all the multipliers considered in this
paper it is assumed that the bias ecircuit is properly designed so that
there are no currents flowing at the sideband frequencies +w.® Even
though the currents flowing in the varactor are themselves not limited
by the diode in the range of available frequencies we assume that the
external circuits connected to the diode are such that they allow currents
to flow in the varactor if and only if the frequency spectrum of these
currents is in the vicinity of input, output, and idler carrier frequencies.
This enables us to consider the multiplier as a finite port multifrequency
system.

I See also Refs. 3 and 4 for alternate derivation of some of these results.

§ The average elastance S, of the varactor diode ean always be included with
the external circuit. The assumption that S, — 0 made in this section does not,
therefore, involve any loss of generality.
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5.1 Scattering Parameters of a Doubler.

In a doubler, the only nonzero elastance coefficients are S.,, and
8.2 . The impedance matrix (Z,4). in (25) is represented as (see Fig. 5)

-

Ve O ata Gwtw
| limss O N T
Vol |mis O ‘ ’

i | ™ 1 0 J—(‘_—ji_l__w_) 0 0 F

S, S¥

Ig,

- (46)

We shall now assume that input and output circuits are tuned which
usually gives near optimum efficiency for a doubler.”””"* We also assume
that

L &1.
Wo

(47)

With these two assumptions, we can write the following matrix equa-
tion for a doubler:

- - — s s —- =
Va 0 IS [ IS ] I,
Wy 20.)0
S, S,
Va _ o 0 0 o Iy
Vaz _LS 0 0 0 I..
]
Vﬂ2 0 '_J-.S_l—]' 0 O Igg
L . L Wy )
+ Im Iaz o+
Vi wgt+w 2w+ Vaz
e — e -
VARACTOR
Ig DICDE Igz
4 le——————0+
A/ -Wo+w 2wyt w Vg2
o— I

Fig. 5 — Small-signal behavior of a varactor doubler.

(48)
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The phase anglest of carrier voltages and currents are given by®

1715

e = 0, (49)
en =0, (50)
Py2 = T, (51)
and
Pra = T (52)
From (31) the impedance matrix (Z,-,). is, therefore, written as§
JSQ 0 _ Sl 0
Wy 2w,
0 _ S, 0 _ .;SI
(Zoe)e = o e (53)
S, 0 0 0
wWo
0o 1S 0 0
L Wo .

Equation (53) clearly shows that in a doubler which is properly tuned
and whose bias circuit is properly designed, there is no amplitude-to-
phase and phase-to-amplitude conversion.’

It is shown in Appendix A that

L] _ 18] (54)

1| wy
§Vz|_ 'Sliz
[T.] ~ 4|8 [ (35)
LVl _ 8] 5
IIzl_ 2&)() H (06)

1 Without loss of generality the phase angle of input carrier voltage at frequency
wy i8 assumed to be zero. ¢ is the phase angle of the current through the load con-
nected to the doubler.

§ The matrix (Z)_, will be written as (Z). in case this does not lead to any
ambiguity.



1716 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1967

and

Vel _ 181, o

|Tll - 2w,

According to (37) and (53), the matrix (Z,.-4). is represented as

=
|

—t

o
|

—

(Zm—ﬂ)? = : (58)

(O]
=]
=]
[

0 2 0 0

The scattering matrix of a doubler, whose input and output circuits
are tuned is, therefore, according to (43)

E 0
. =|1__ _0_1 _____ ; (59)
o 0 1
21
(8.): = [ ‘ﬂ . (60)
1 0
(Snp) = Qs (61)
(S,.) =0, (62)
and
(Sp) = (0 _l}- (63)
21

5.2 Scattering Paramelers of a Tripler.

In a tripler, carrier currents flow at the frequencies wp , #=2w, , and
43w, . The impedance matrix (Z.-z)s is given as
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(79)

- (v + g )t (o + o)t
0 0 IS 0 = 0
(@ + o)t (v + o)
O o O ~m< O mm‘
(o o)t (@ + ) (o 4 S
S 0 0 0 S S
(@ + ") (o + =) (o 4 o)
0 S 0 0 S g
) N R o A ek S T,
iy N S is
0 @ 4 "me)l (@A %g—=) (@4 ‘og)f (4 o)l 0
i £ i g

mu\_,
ré.\»

“A
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If we now assume that

Lkl (65)

Wo

and also that input, output, and idler circuits are tuned and that®

e = 0, (66)

en =0, (67)

ev2 = 0, (68)

era = 0, (69)

Pvs =, (70)
and

1z =, (71)

we can show that the impedance matrix (Z,—,)s does not exist for a
tripler.} It is also shown in Appendix A that

| S: | =18 |/2. (72)
Equations (64)-(72) show that§

it @

i T )
and

e 76)

Equations (73) through (76) show that even though the amplitude-phase
impedance matrix may not exist for a pumped nonlinear system (such as

1+ The termination at the idler port just tunes out the average elastance of the
varactor diode at the carrier frequency 2wo.

§ We note that a tripler behaves like an ideal transformer of ratio 3/2 to the
amplitude components of the fluctuations. Higher order terms in w/w, are as-
sumed to be megligible, even when first-order terms vanish. The frequency-
dependence usually introduced by the external idler termination, therefore, does
not appear in the scattering matrix of the tripler.
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a tripler) we are able to find a relation between the different terminal
variables. These relations are sufficient to obtain the scattering param-
eters of the network.'”” We immediately note from (73) through (76),
that there is no amplitude-to-phase or phase-to-amplitude conversion in
a tripler. Accordingly,

(‘_ga» 3 = Q (77)
and
(ﬁnq)s = Q (78)
It is shown in Appendix A that
vl _3
Vil 2 (79)
and
L] _ 2,
DARE (80)
" From (34), (35), (73) through (76), (79), and (80), we can show that
0 1
(‘.SM)R = } (81)
11 0
and
(Spp)s = 03 } (82)
13 0

Equation (81) could have been written down by noting that a tripler
behaves like an ideal transformer of ratio § to the amplitude components
of its fluctuations.

The scattering parameters of a tripler, whose input, output, and
idler circuits are tuned, are therefore, given by

(8)s = { ————— 5 ————— : (83)

In order to obtain scattering parameters of multipliers of higher
order with the least number of idlers we shall show that a multiplier
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of order 2" is equivalent to a cascade of n doublers, a multiplier of order
3" is equivalent to a cascade of s triplers, and that a multiplier of order
273" is equivalent to a cascade of n doublers and s triplers.

VI. EQUIVALENCE OF A MULTIPLIER OF ORDER N = N, X N, To A
CASCADE OF TWO MULTIPLIERS OF ORDER N, AND N,I

In this section it is shown that, if the idler configuration of a multiplier
of order N = N, X N, satisfies certain conditions, then the multiplier
can be represented as a cascade connection of two multipliers of order
N, and N, . In this and in the following two sections, no restriction is
placed on the type of input, output, and idler circuits. Therefore the
following discussion also applies to the case of a multiplier which is
lossy and not tuned.

Consider an abrupt-junction varactor multiplier of order N =
N, X N,. Let B denote the set of all positive and negative integers
which are equal in magnitude to the orders of the various harmonics
present in the varactor current. Furthermore, let B, indicate the subset
of B which consists of the elements of magnitude equal to or less than
N, , and let B, denote the subset of B which consists of the elements of
magnitude equal to or greater than N, . In this section it will be shown
that, if B satisfies the following condition:

B is such that, if (r, s, h) is a subset of Band if r +~ s+ h = 0,
then either (r, s, k) C B, or (r, s, h) C B,, (84)

then the multiplier is equivalent to a cascade connection of two multi-
pliers of order N, and N, . Notice that an abrupt-junction multiplier
of order N = N, X N, which satisfies (84) must have an idler at the
harmonic N,w, . In fact, for such a multiplier this idler is necessary in
order to produce harmonics of order higher than N e’

Consider then a multiplier of order N, X N, which satisfies (84)
and let it be represented by the very general equivalent circuit shown
in Fig. 6. The generator v,(¢) is sinusoidal and is of frequency w, . Z(w),
the impedance of the external multiplier circuit as seen from the non-
linear part of the eapacitance of the varactor, is assumed to be finite
only in the vicinity of the input, output, and idler frequencies. Since
Z(w) includes the average elastance and the series resistance of the
varactor, the nonlinear eapacitor of Fig. 6 has a g-v characteristic of
the type: v = Aq®, in which A is a constant multiplier. Consider now

t The results of Sections VI, VII, and VIII represent extensions of an earlicr
result, the equivalence demonstrated in Ref. 1 for the case N = 2",
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L vty =Ag?®)

Fig. 6 — Varactor harmonic generator.

the circuit shown in Fig. 7. It will be shown that this cireuit provides
an alternative and complete representation of the multiplier of order
N, X N,. The two nonlinear capacitors of Fig. 7 and that of Fig. 6
are assumed to have the same ¢-v characteristics. The three networks
Iy, Fy, Fy are ideal filters which have zero impedances at the carrier
frequencies which satisfy respectively the relations o < N,wy, @ = Nyw,,
w > N,w, and also at their sidebands. Furthermore, at frequencies
different from these, they have infinite impedance.

Before beginning the demonstration of the equivalence of the two
circuits of Figs. 6, and 7, it may be profitable to examine briefly the
behavior of the ecircuit of Iig. 7. The circuit of Fig. 7 represents the
cascade connection of two multipliers of order N, and N,. More pre-
cisely, consider the network connected on the left side of the first ca-
pacitor. IFor w < N,w,, it is equivalent to the network connected to
the capacitor of Fig. 6. Therefore, it pumps at = w, the first capacitor
of I'ig. 7 and, in addition, it provides the proper idler terminations for
the generation of the harmonic N,w,. A current component at this
harmonic is therefore generated by the first capacitor and it flows in
the second loop shown in Fig. 7. The second capacitor is thus pumped
at @ = N,w, by this current. Note that the network connected to its
right provides the proper idler terminations for the generation of the

. _dg»z . _das
T R
-— Z(w) —
Fa F 1 Fs }
1Fa t 1T 1Fa |
2 — . 3
—FV:VFA(QN’QE)E @ Vz‘A(qz+q3)27‘é+ []Zfﬂi)
Fig. 7— Equivalence of a multiplier of order N\N. to a caseade of multipliers

of orders Ny and N..
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output harmonic N,N;w,. Therefore, the second capacitor delivers
power at this harmonic to the network on its right.

Proof: Tirst, consider the circuit of Fig. 6. The nonlinear capacitor has
a g-v characteristic of the type:» = Aq". Thus, V_,, the complex ampli-

tude of v(t) at the frequency w = —hw, , is related to the various com-

plex amplitudes of g(¢) through the relation
V—k = A Z QrQa . (8'3)

5,-;-':-:-:50
By introducing the constraint given by the linear circuit at w = —hw,,
one obtains

V,._;. + thﬂoZ(w)Q—A = A Z QrQn ’ he Br (86)

(r.s)cB

r+a+h=0

where V, _, is the complex amplitude of »,(t), and is zero for [A | # L.

Relations (86) give the equilibrium equations of the circuit of Fig. 6
and they determine the various charge amplitudes @, , @., etc. Notice
that in the summation of the righthand side of (86) one has r4s+h=0
and (r, s, k) C B. Therefore, from (84) one obtains the following three
cases:if | k| < N, , then (r, s, k) C B, ;if | k| = N, , then, depending on
the values of r, s, either (r, s, k) C Byor (r, s, h) C By ;if [h]| > Ny,
then (r, s, h) C B, . Accordingly, (86) can be written as

Voon + ihwZ2Q = A 2, QQ,, if |h| <Ni. (87)

{r,8)c B,
ris+h=0
jhwuZth = A[ Z QrQl + Z QrQn}l if ' h | = Nl (88)
AR M
jhwZQ_, = A ( 23 Q.Q,, if |h|>N,. (89)
r+l:+:=t]-

Let now the circuit of Fig. 7 be examined. Consider the charges ¢,(),
¢2(1) and ga(f) flowing through the three filters F, , F, , and F, . Notice
that ¢,(t) + ¢.(f) is the total charge of the first capacitor, and that
¢:(t) + ¢5(t) is the total charge of the second capacitor. Because of the
characteristics of the three filters F,, Fy, F3, ¢.(t) + ¢.(f) contains
(all and) only the frequencies rw, for which r ¢ B, . Similarly, g,(f) +a.(t)
contains only the frequencies for which » ¢ B, . Now consider the total
charge

') = a(t) + ¢.(8) + s(f) (90)

and let the symbol ( )’ distinguish the complex amplitudes of ¢'(f)
from those of ¢(f). It will be shown that ¢(f) = ¢(f); more precisely,
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it will be shown that the two circuits of Figs. 6 and 7 have the same
equilibrium equations at the carriers.

First notice that, for w = —hw, , the complex amplitude of the voltage
of the first varactor of Fig. 7 is
42 Qo (91)
(r.s)c B,
r+s+h=0

and that of the second varactor is

A QQ.. (92)

(r,s)c B,
r+s+h=0

Next, notice that the equilibrium equations of the circuit of F ig. 7
for |w| < N,w, are obtained by applying Kirchhoff’s law to the first
loop of Fig. 7. Similarly, for |w| = N,w,, one considers the second
loop and, for |w| > N,w,, one considers the third loop. Therefore,
by taking into account (91) and (92), one obtains that the equilibrium
equations of the circuit of Fig. 7 are given by (87), (88), and (89), with
Q. , @, replaced by @/, Q! . Therefore, ¢'(t) = q(t).

The preceding demonstration has shown that the two circuits of
Figs. 6 and 7 are equivalent at the carrier frequencies. At the various
sideband frequencies, the equivalence is demonstrated in very much
the same way. Since the elastance coefficients of the two circuits are
equal, one finds that the sets of small-signal equations of the two circuits
are equal.

VII. DISCUSSION OF THE TWO PARTICULAR CASES N = N, X 2 AND
AI = JVI >< 3

In this section the two particular cases N, = 2 and N, = 3 will be
examined. More precisely, it will be shown that in these two cases
condition (84) becomes:

If N; = 2, the two highest harmonics present in the varactor
current are N,w, and 2N, w, . (93)

If N, = 3, the three highest harmonics are N,w, , 2N 0o , 3N wo . (94)

The demonstrations are very much the same in the two cases and there-
fore, only the case N, = 2 will be considered.
Proof: Consider the case N, = 2 and suppose that (93) is satisfied.
Then, consider the three sets B, B, , B, defined in the preceding section.
I'rom (93) one has B, = (—2N,, —N,, N,, 2N)).

Now, consider a subset (r, s, ) of B and suppose thatr + s + h = 0.
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First, notice that (r, s, h) cannot belong to both B, and B, because this
would give |7| = |s| = |k| = N,, which violates the hypothesis
r + s + h = 0. It is therefore, sufficient to prove that if (r, s, h) does
not belong to B, , then it must belong to B, .

Suppose therefore, that (r, s, &) does not belong to B, . Then one
of the three elements r, s, h has magnitude equal to 2N, and, since
r + s + h = 0, the remaining two elements have magnitude equal to
N, . Therefore, (r, s, h) C B. .

The conclusion is that, if (r, s, k) C B and r + s + h = 0, then either
(r, s, k) C B, or (r, s, h) C B,. This concludes the demonstration.

VIII. EQUIVALENCE OF A MULTIPLIER OF ORDER 2"3" To A CHAIN OF
DOUBLERS AND TRIPLERS

Consider an abrupt-junction varactor multiplier of order N = 2"3'
which has the least number of idlers. In this section it will be shown
that this multiplier is equivalent to a chain of doublers and triplers.
The order in which the various doublers and triplers are connected
depends on the particular idler configuration. This will be clarified by
the following demonstration which shows how to derive the equivalent
chain of multipliers.

Proof: Since the multiplier has the least number of idlers, there are two
cases:® either the highest idler frequency is Nwo/2, or the two highest
idler frequencies are Nw,/3, 2Nw,/3. In both cases, the results of the
preceding sections are applicable and therefore, the multiplier can be
represented by means of a cascade of two multipliers of order N, and
N, . Note that N, is 2 in the first case and 3 in the second case. Note,
furthermore, that if n 4 s = 2, then either N, = 2 or Ny = 3, and
therefore the demonstration would end at this point.

If n + s > 2, on the other hand, then N, > 3 and the decomposition
of the multiplier of order 2°3° into two multipliers of lower order can
evidently be continued by the decomposition of the first of the two
multipliers, the multiplier of order N, . If this process is carried as far
as possible, the final structure will be a chain of doublers and triplers.

It is important to point out that the results of this and the preceding
section can be generalized in the following way:

An abrupt-junction varactor multiplier of order N = N, X

N, X --- X N, which has the least number of idlers can be (95)
represented by a cascade of n multipliers of order N, , N.,

ete., each with minimum number of idlers.
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In fact, if n = 2, then (95) follows directly from the equivalence dem-
onstrated in Section VI because it can be shown that a multiplier
which has the least number of idlers satisfies (S4).

If n > 2, then the multiplier can be decomposed into multipliers of
lower order as it has been done for the particular case N = 2"3°.

IX. SCATTERING RELATIONS FOR HIGHER-ORDER LOSSLESS ABRUPT-
JUNCTION VARACTOR FREQUENCY MULTIPLIERS

The scattering matrices of lossless abrupt-junction varactor fre-
quency doubler and tripler are derived in Section V. Multipliers of
order 2", 3°, and 2"3" with least number of idlers] are treated in this
section.

9.1 Multipliers of Order 2" with Least Number of Idlers

A lossless abrupt-junction varactor frequency multiplier of order 2"
with least number of idlers has been shown to be completely equivalent
to a chain of n doublers. We shall assume in this section that the input,
output, and all idler circuits are tuned, and that these idler terminations
are lossless. The idlers are at frequencies 2'w, , 1 < r £ (n — 1). The
equivalence of a multiplier of order 2" to a chain of doublers can be
utilized in getting the scattering relations for multipliers of order 2"
when n > 1. The scattering relations when n = 1 are given in (59).

We can show that a multiplier of order 2" with least number of idlers
has the following scattering matrix:

[ , \n m
{1, — L_-;]')" 2_“} (=127
b b ()

(8= | S - (96)

9.2 Multipliers of Order 3" with Least Number of Idlers

8

Multiplier of order 3" with least number of idlers has the idler cur-
rents flowing at frequencies 2w, , 3wy, 6wy, Ywe, --- , 3" 'wy, 37 —
3" ', 3wy, o0, 3" — 3" 'w, . We have shown that such a multiplier
is completely equivalent to a chain of s triplers.

1Tt is assumed that all these idler circuits are tuned and that the idler termina-
tions are lossless. It is also assumed that input and output eircuits are tuned.
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The scattering parameters of a tripler are shown to be

01‘0_:
i

I
(8 =|"---- P | 97)
0 1 0 3—1J
|
'3 0
If s such triplers are cascaded, we obtain a multiplier of order 3'

with minimum number of idlers. The scattering parameters of a cascade
of s triplers can be shown to be given by}

0 1

(98)

9.3 Multipliers of Order 2°3" with Least Number of Idlers

It has been shown that a lossless abrupt-junction harmonic generator
of order 2"3", n and s integers, with least number of idlers is completely
equivalent to a cascade of » doublers and s triplers connected in proper
order depending upon the idler configuration.

The AM and PM transfer scattering matrices'® of a doubler and
a tripler can be shown to be

(T =| 2 } . (99)
0 1

). =| ! 01. (100)
-3 3]
Mo

(Tuds = | 1 OJ , (101)
10 1

and
(Tvp)E = 3-1 0 }' (102)
0 3

" £ We have assumed that input, output, and all idler eircuits are tuned, and loss-
ess.
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Since AM and PM transfer scattering matrices of a tripler are scalar
matrices," values of (I'..)zm and (T,,)zn5+ are independent of positions
of the triplers in the cascaded multiplier.{ This shows that

(Tnn)2"3‘ = (Tan)z-

; (103)
[ g 1 (=D,
— ( 1)2 3 3 2
L 0 1
and
(Tor)ense = 37(T)er (104)
(=D" 0
_ 37",
(=1" 1,0 o5
3 32 2

Since we also know that there is no AM to PM and PM to AM con-
version in both a doubler and in a tripler it follows that

(Sap)znar = (Spa)anas = 0. (105)

Using (103) through (105), we conclude that the scattering param-
eters of a multiplier of order 2"3" with minimum number of idlers are
given by

1 (=p2 o | 7
3~ 3 (=172 : 0
S = | 1 L . (100)
L0 (=13~
0 |
Vomge 1 (=12
L 1237 3 3
or
(=", v |
(Sdese = |37 3 2 (ZDF (107)
1 !
L 1 0o
and
Mo (-1)"3~"
(Spp)anar = (108)

e 1 (=D |
2"3 3 3 2

} Matrix product 4 B is not, in general, commutative.!
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Equations (106) and (107) show that the scattering parameters
of a multiplier of order 2"3° are independent of the idler configuration
of the multiplier. For example, 1-2-3-6-12 and 1-2-4-6-12 multipliers
have the same scattering matrix. This result arises because of the scalar
character of AM and PM transfer seattering matrices of a tripler and
is not true in general.

X. RESULTS AND CONCLUSIONS

A general method to obtain the scattering parameters of a pumped
nonlinear system when the system is subjected to small band limited
fluctuations has been presented.

For a lossless abrupt-junction varactor frequency multiplier of order
9" which has minimum number of idlers and whose input, output, and
idler circuits are tuned, it is shown that the scattering matrix § is
given by

(96)

=
SO
|
L~
|
—
—
~

Such a multiplier has also been shown to be completely equivalent

to a eascade of n doublers.

For a lossless abrupt-junction varactor harmonic generator of order 3°
with minimum number of idlers and whose input, output, and idler
circuits are all tuned it is shown that the scattering matrix S can be
represented as

_____ (98)
L 1300
A multiplier of order 3° has been shown to be equivalent to a cascade

of s triplers.
However, for a lossless abrupt-junction varactor multiplier of order
9"3* with minimum number of idlers it has been shown that this multi-

f The transfer scattering matrix (I')y,w, is not, in general, equal to (T)w,x,.



SCATTERING RELATIONS 1729

plier is equivalent to a cascade of n doublers and s triplers, and that the
scattering matrix S can be written as

1 (=D e e -

3 5 2 (= 0
1

('—\')L'“"" = ____1 ______ _ ,{)ﬁii\l ____________ . (106)
L0 (—1)'3~
0 ! )

L grge 1 _ (=1,

L 1230 3 3 -

For lossless abrupt-junction varactor multipliers of order 2%, 3°, and
2"3%, n and s integers, with minimum number of idlers, one of the general
results is also that if w/w, << 1, there is no amplitude to phase or phase
to amplitude conversion or equivalently

‘S-m = Sm = 0. (109)

The seattering matrices, of lossless abrupt-junction varactor multi-
pliers of order different from those treated in this paper can be ob-
tained by straightforward application of the methods presented in this
paper. We, however, feel that most of the lossless abrupt-junction
varactor multipliers commonly encountered in practice are ecovered in
this paper. If the junction characteristic of the varactor diode is far
from being abrupt or if the junction is overdriven, the same general
methods can be applied in order to get the general scattering matrix
which relates the fluctuations at different parts of the system. If the
bias cireuit is poorly designed so that there are currents flowing in the
system at frequencies =4=w, the techniques developed in this paper are
still applicable.

At present very little is known about the stability of driven systems
like harmonie generators. The results derived in this paper ean be
made use of in studying the stability of such systems and, in particular,
in obtaining the restrictions imposed by the condition of stability on
the available circuit configurations. This theory also enables us to de-
rive an expression for the output signal of a pumped nonlinear system
having noise sources at several locations in the eircuit. A complete anal-
ysis of the noise performance of the systems like harmonic generators
can be carried out once we know the general scattering parameters of
the system. All these and other related results are reserved for a future
publication.
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APPENDIX A

Large-Signal Analysis of Abrupt-Junction Varactor Doubler and
Tripler

The large-signal equations of a varactor harmonic generator are
given in Ref. 5. The varactor considered in this paper is a lossless var-
actor whose average elastance S, is considered to be a part of the ex-
ternal circuit for the sake of convenience. Let S(t) be the elastance of
the varactor as pumped. For an abrupt-junction varactor diode we
also note® that

hwoSy _ jk — DewoSioy _ | _ 200Ss _ JwaS,
Ik Ik-]. IE Il !
k an integer, (110)
The large-signal equations for a doubler can be written as
* *
y, = SIt + il (111)
Ja
and
_ S
Vy = B (112)

It can be shown® that the time origin can be chosen so that I, and I,
are both real. From (110) through (112), we can now write

Vil _ 18]

Il - wp ’ (113)
2

Vol _ 1S [ (114)

Iz =4|82]°-'o’

L =_|_SJ’ (115)

1, 2w,
and
Vol _ 181
|~ 2w (116)
The large-signal equations for a tripler can be written as
v, = S,I¥ + S.It + SI, + 831, , 117
Jwo

* *

V2 = SHII + SIII + SIIG , (118)

72wy



SCATTERING RELATIONS 1731

and

_ S+ S,
Vi = e (119)
It can again be shown® that if we choose I; to be real and positive
I, and I3 are real. Let us assume that the idler termination is tuned

and is lossless. From (118) we can write

[ Sy =18 ]/2. (120)
According to (110), (117), (119), and (120), we also have
I, 2
=z 21
AR (12D)
and
Vil _ 3.
’ Vil — 2 (122)
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