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In this paper, several results are presented concerning the effects of
roundoff in the floating-point realization of a general discrete filter governed
ideally by a stable difference equation of the form

A N
Wy = Z bkxn—k - Z O Wh— n -% N (‘l)
k=0 k=1

in which {w,} and {x,} are output and input sequences, respectively.

In particular, for a large class of filters it is proved that there is a func-
tion f(K) with {(K) — 0 as K — « and a constant ¢, both dependent
on the by, the a, , the order in which the products on the right side of (1)
are summed in the machine, and (, the number of bits allotted to the mantissa,
such that

()x = cly)x + [(K)

for all K = N, tn which, with {y,} the computed output sequence of the
realized filter,

(E)R:(A_l_lZlﬂn— Yn )l.

Bounds on f(K) and c are given that are not difficult to evaluate, and which,
in many realistic cases, are informative. For example, for the second-order
bandpass filler:

W = (I\ F1 4 Z"Uﬂ

and

w, = T, — QWyoy — AaWy_y , n=2 €5)
with a, and a, chosen so that ils poles are at approximately + 45° and
at distance approximately (but not less than) 0.001 from the unit cirele,
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we find that ¢, an upper bound on the “‘asymptotic output error-to-signal
ratio”, is mot greater than 0.58 X 107*, assuming that t = 27, that the
terms on the right side of (2) are summed in the machine in the order in-
dicated (from right to left), and that the x, in (2) are machine numbers.
If the x, are not machine numbers, and hence must be quantized before
processing, then ¢ < 0.76 X 107"

In addition to error bounds, an inequality is derived which, if satisfied,
rules out certain types of generally undesirable behavior such as self-
sustained output limit cycles due o roundoff effects. This inequality
is satisfied for the example described above.

I. INTRODUCTION

The difference equation
M N
w, = Z bt — E AWy n
k=0 k=1

with M = N defines the behavior of a general time-invariant discrete

v

N (1)

filter which acts on an input sequence 2, *,, T, -+ to produce an
output sequence wy, Wysy, Wyss, --- that depends on the starting
values w, , Wy, "+, Wyy -

There is a vast literature concerned with techniques for designing
diserete filters [i.e., for determining the a; and the b, in (1)] to meet
specifications of various types (see, for example, Refs. 1, 2, and 3), and
a good deal of material is available on the subject of roundoff effects
in fixed-point realizations of discrete filters (see, for instance, Refs. 4
and 5). In this paper, we derive some bounds on a meaningful measure
of the overall effect of roundoff errors for disecrete filters realized as
digital filters on a machine employing floating-point arithmetic oper-
ations. This type of realization, as opposed to the fixed-point kind, is
of particular importance in connection with, for example, digital com-
puter simulations of systems, as a result of the large dynamic range
afforded by the floating-point mode.

There are basice differences concerning fixed-point and floating-point
error estimation problems which stem from the fact that the modulus
of every individual arithmetic error in the fixed-point mode is hounded
by a constant determined by the machine, whereas the maximum
modulus of the error in forming, for example, the floating-point sum
of two floating-point numbers is proportional to the magnitude of the
true sum. For this reason, the approach® presented here, as well as the

*The approach can be extended in several different directions. For example,

it can be used to obtain statistical error estimates based on the assumption that
each roundoff error is an independent random variahle.
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character of the results, are quite different from those of earlier
writers coneerned with fixed-point realizations.

In addition to error bounds, an inequality is derived which, if
satisfied, rules out certain types of generally undesirable behavior
such as self-sustained output limit eycles due to roundoff effects.

II. ASSUMPTIONS AND RESULTS

2.1 Assumplions
It is assumed that:

(i) each machine number ¢ is equal to sgn (¢) a 2" in which
the exponent b is an integer, and a, the mantissa, is a {-bit number
contained in [, 1] or [4, 1] W [0};

(77) the range of values of b is adequate to ensure that all computed
numbers lie within the permissible range;

(4i7) the machine operations of addition and multiplication are per-
formed in accordance with standard rounding conventions* (described,
for example, by Wilkinson®); and

(iv) the coefficients a; and b, in (1) are machine numbers.}

9.2 Results: v, Machine Numbers

It is assumed throughout Section 2.2 that the x, of (1) are floating-
point machine numbers.
If the discrete filter (1) is realized on a floating-point machine, then

Ar N
Yn = ﬂ(z bitus — 2 akynfﬁ-) , n=N (@)
k=0 k=1

in which the #, are approximations to the infinite precision numbers
w,, and fI(X — X) denotes the machine number corresponding to
(2 — %) with the understanding that the floating-point numbers cor-
responding to the products byr,_, and awy._. are to be machine-added
in some specified order.

Let

DiE 21+ )fj az ", (3)

k=1

# That ig, conventions for which the first two equations of Section IIT are
satisfied,

+ Tt is certninly true that preliminary design considerations may lead to coeffi-
cients that are not machine numbers, and one may then be interested also in
the overall effect of approximating the coeflicients by machine numbers. That
problem also can be treated with the approach used here.
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let

et (g T ar)

for every sequence {g;} and all K = 0, and let ¢, denote the nth error
(y, — w,) forn = 0.

Qur first result (all proofs are given in Section III) is as follows.
If D(z) # 0 for | z| = 1 [i.e., if the discrete filter (1) is stable], then

(e = Jmax | D)™ | (K T - ): | 7 | )

(3 10 16) max [ | (2, 1)

e
+27( 2 ) max [ D | e @
for all K = N, in which, with y, = w, = 0 forn < 0,
T = kE:ak(yn—k_wn-—k) n=0/12 - ,N-1

and the o, and B, are easily evaluated nonnegative numbers which
depend on the order in which the products in (2) are summed.

Since the first term on the right side of (4), which arises as a result
of the possibility of differences in the starting values, approaches zero
as K — o, we see that, after a reasonable number of evaluations of
the successive ¥, , {¢)x is bounded essentially by a constant times the
root-mean-squared value of the input sequence, plus another constant
times the root-mean-squared value of the output sequence.

In order to determine the «; and B, we draw a signal-flow graph
that indicates the ordering of the operations that would be used to
compute

ﬂ(:z; by — LZNI aky,._;.) (5)

if x, and y, were unity for all n. This graph is to contain an input
node with input b} for each b, # 0, an input node with input aj for
each @, # 0, no other input nodes, and a single output node 6 which
is associated with
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All other nodes represent an addition or subtraction of two signals
to produce a third signal. Exactly one branch is connected to each
of the input nodes and to the output node. We assign the value p to
all of the branch transmissions with the exception of those branches,
if any, which terminate on an input b or af for which b, or a; , respec-
tively, is equal to unity. These branches are assigned unity transmission.
Then, by inspection, we evaluate the signal at 8, which must clearly
be of the form

M N
br_ eslk) + (I’, ¢ alk) 6
kZD o ; ip (6)

in which ¢s(k) and ¢.(k) are positive-integer valued functions. In
terms of these functions*

B = (1.06)¢s(k)
a, = (LO6)ga(k).

Tor example, if the right side of (2) is computed as the floating-point
difference of the machine sums

H(bu-'l'n + bhror + -0 + b)l{-Tn—M)
and
ﬂ(alyn—l + @l + - + G'Nyn—N)n

each obtained by performing machine summations in the order indicated
(from left to right), if all of the b, and a, are nonzero and not unity,
and if M = 1 and N = 2, then the relevant flow graph is shown in
Tig. 1, from which it follows that

Bo = (1.06)(M + 2)
By = (1.06)(M + 2)
B = (1.06)(3 + M — Fk); k
a = (1.06)(N + 1)
a, = (LOB)(N + 1)
a, = (1.06)(3 + N — k); k=34, ---,N.

The bound (4), although revealing, requires a knowledge of both
(x)x and (y)x and is, therefore, not as explicit as we would like.

It

2,3, M

*We are assuming here only that max |gs(k)[27" < 0.1 and max |pa(l)|27*
k

< 0.1. Also if ga(k) = 1, then we can take fx = 1, and similarly for ga(k).
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TFig. 1 — Flow graph for the example.

For the important case in which by 5 0 and N(z) £ 2, biz™" # 0
for |z| = 1 (ie., for the minimum-phase filter case) we prove that
if the filter (1) is stable and if

min | NE™) | > 27 E | b | Bi, (7

Nsws2r

then there exists a constant ¢, independent of K, and a function f(K)
with the property that f(K) — 0 as K — o such that

(e = ey + f(K) (8)

for all K = N. Morcover, it is proved that

Osws2r

J N M
¢ 227" max | D)7 | ]E | @ | ar + ‘Zn | be | Bs
=1 =

max | D(e'*)/N("™) | + nm\ | Ne™)~ Z | @ !a*l
' Ar (9)
1 -2 Z | by | B max | N(e*)™" | J/

and

i )
f(K) < max | D)™ | (( Z | % | 2) + max | D)7 |27
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4 o 1 N—1 . 3
e max | N(e™“)™" | ( g 2 | |")
i 1 .=
(Z [ b, I B ar Lt - (]0)
=n 1 =23 | b | B max | NEe“)" |

for all K = N, in which, with a, = 1 and x, = 3, = 0 for n <0,
N hig
G = 2 @luer — 2 bty
k=0 k=0

forn=20,1,2 -+ (N —1).

Since (y)x is the root-mean-squared value of the computed output,
and since [(K) — 0 fairly rapidly as K — e, we may interpret the
smallest value of ¢ for which (8) is satisfied (for all input sequences)
as an “output error-to-signal ratio” of the realized digital filter. Note
that the bound (9) on ¢ is not difficult to evaluate.

2.2.1. Stabilily in the Presence of Roundoff

If roundoff effects are ignored, it is well known that the discrete
filter is stable in several different senses of the word if D(z) # 0 for
| 2| = 1. In Section III it is proved that, with roundoff effects taken
into account, the digital filter is stable in the sense that there is a
constant ¢, and a function f,(K), with f,(K) independent of the values
of x, forn = N and f,(K) — 0 as K — =, such that

ke = efv)e + [1(K) (11)
for all K = N, provided that D(z) # 0for |z | = 1, and
N
min | DE™) | > 27 2 || ax . (12)
w k=1

Roughly speaking, inequality (12) is satisfied if the damping of the
infinite precision counterpart of the digital filter is sufficiently large
relative to the number of bits allotted to the mantissa. Stability in
the sense of (11) rules out, for example, the possibility, due to roundoff
effects, of a limit-cycle response to a zero input sequence or to an
input sequence {x,} that approaches zero as n — «.*

* There are simple examples which illustrate that instability may result with
D(z) = 0for | z| = 1if (12)is not satisfied. For instance, suppose that each machine
number is represented in the form (—m2® + m27t + me27? + -+ 4+ m27)2"
with the m; zeros or ones, and ¢ > 1. Let

we = (1 — 279wy + (1 — 2792t o for n = 2, with we = wy = — L.
Then fI[(1 — 2°9w] = —(1 — 279, fl[(1 — 2792 4w] = —(1 — 27927, and
fI[—(1 —2-t) — (1 — 27927 = —1, which shows that the computed approximation
yn to wy satisfies y, = —1 for all n = 0. This example is a slight modification of one
suggested by 8. Darlington.
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2.3 A Result Concerning the Querall Effect of Input Quanitization Errors

In many applications the sequence {z,} of (1) is obtained by quantiz-
ing an input sequence {Z,} [i.e., by replacing each Z, with the machine
number (or one of the possibly two machine numbers) of closest value].
The infinite precision response Wy, Wy.1, --+ to the sequence {Zy}
satisfies

M ~
w, = Z biFuer — Z Qg , n=N (13)
k=0 k=1

with @, , W, , - -+, Wy_, some set of starting values. Let wy , Wysy, -
be defined by (1) with w, = %, forn =0,1,2, --- , (N — 1). It is
clear that (y — )k, the root-mean-squared value of the difference
of the computed output and the infinite precision response to {z,},
satisfies

(y — w)x = (y — wx + (w — W)k . (14)

Bounds on the first term on the right side of (14) are given in Sec-
tion 2.2. In Section III it is proved that if both N(z) and D(z) have
no zeros on or outside the unit circle, b, = 0, and

M
min | NE™“) | > 27" > | b | Bi

k=0

then* there is a constant ¢, and a function f,(K) such that {,(K) — 0
as K — o, and

. ('w - 'u_’)K = o(yx + LK) (15)
for all K = N. It is proved also that

M
e, =27 3 | by | max | D) |
k=0 w

max | D(')/N(e’*) | + max | N(')™" | 27 LAZ; | @i | ap

. (10
1 -2 kz | b | B max | N(')™" |
=0 w

2.4 A Realistic Example
For the ideally stable second-order bandpass filter
Wy, = Ty — QyWp—y — Q2Wy—>2 , n g 2

* It is assumed here that the range of values assigned to the mantissa includes
the number zero.
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with poles in the z-plane at angles &~ =+45° and at distance ~ 0.001
(but not less than 0.001) from the unit circle, we have a, ~ —1.41,
a: =~ 1, and min, | D)™ | & (0.00141)"'. We assume that the
operations are performed as indicated in Fig. 2, so that 8, = 1, a; =
3(1.06), and a, = 3(1.06). Assuming that ¢ = 27, we find that ¢ our
bound on the ‘‘asymptotic output error-to-signal ratio,” ignoring
input quantization effects, is approximately 0.584 X 107*. For this
problem, our bound on ¢, is approximately 0.18 X 107*. Thus, even
taking into account input quantization effects, the error-to-signal
ratio is not more than 0.764 X 107*. Finally, a simple calculation
shows that this filter is stable in the presence of roundoff, in the sense
of inequality (11).

III. PROOFS

3.1 Derivation of I'nequality (4)

If a and b are floating-point machine numbers, then the floating-
point product and sum fl(ab) and fl(a + b), respectively, satisfy”

fl(ab) = ab(l + ¢
flla+ b) = (a + b)(1 + 8)

with [ e| < 27" and | 6 | £ 27°. Thus,
M N
ﬁ(z bty — Z ﬂk?jn—k)
k=0 k=1

is equal to the value of the output signal 6 of the flow graph described
in Section IT with

(’L) b}: = bj'-.'l',-,_k

Il

a; Ayl

Tig. 2—Tlow graph for the second-order band-pass filter.
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and

(i7) each of the branch transmissions of the form: (1 + € with
| €| = 27 (recall that in certain special cases e is taken to be

&

zero), or — (1 + ¢) with | e | = 27", Therefore,

A N
ﬂ(Z biur — 2. a-,-..y,l_k)
k=0 k=1
is equal to

M N
E b rqe — Z QY n-1Tk
k=0 k=1

in which

(1 —277% < g =< (1427977 (17)
and
(1—27® <p =1 +279". (18)
Inequalities (17) and (18) imply®
1 — (1.06)0s(M)27" < g0 < 1 + (1.06)@s(k)27"

1 — (1.06)¢. (k)27 < 1o = 1 4 (1.06)ga(R)2™"

provided that 27* max, ¢s(k) < 0.1 and 27 max, ¢.(k) < 0.1.
Thus, forn = N

his N
o = 13 bts = 2 )
k=0 k=1

M N
= Z by, — Z Yt + M
k=0 k-1

(19)

with
Ar N
[7.| =27 Z | by || Tums | B + 27 ; la || Yoor | (20)
and
Be = (L06)ga(k),  ar = (1.0G)ga (k.

Using (1) and (19),

N
Dl =M, N

k=0

1\
=
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in which, with y, = w, = 0 forn <0,

N

7. = }: (Y — Wami)

forn =0,1, ---, (N — 1). By Propositions 1 and 2 (see Sections 3.5
and 3.6)
(e)g = max | D)™ | (mx , K = 0. 21)

Dsws=2r
By Proposition 3 (Section 3.7), inequality (20), and Minkowski’s
inequality

(e = (1\ 1 Z e )

M K

SRR ‘3‘(1 F PR ) 2 Dol (2

for all K = N. This proves inequality (4).

3.2 Inequality (8)

ITere we assume that both D(z) and N(z) are zero free for [z | = 1,
that by # 0, and that

A

min | NE“) | > 27 2| b |8 . (23)
N=ws2r k=0
From (19), we have, with a, = 1,
Z QY = E b, + qu, n = 0, (24)

k=0
where

T = M nzN
N M
= Z At — E b, n=20,12---,(N— 1)
k=0 k=0

with 2, = 3. = 0 for n < 0. Therefore, by Propositions 1 and 2,
(x)x = max | DE™)/N('™) | ()« + max | Ne)™" [{g)x, K 2 0.
(25)

Using Proposition 3, Minkowski’s inequality, and (20),

1 N-1 M B ar
e = (g 00 F) 427 2 10l 8dade

v

+2 Y |ac |aly), K=N. (26

k=1
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Therefore,

N
max | DE™“)/N(E™) | + max | M) |27 2. | a | e
(@) = — m = =t s
1—27" 2| b |Bemax | Ne“)™" |
=ri

max | N(e™)™" | ( E [ gu | )
+ [2) " K + 1 n=10 (27)
1 —27" 3| b | Be max | N(e™)™" |

for all K = N, which together with (21) and (22) yields

Ofws=2w

(e)x £ 27" max | DE'“)™" | {'Z | ap | ex + E | be | Be

max | D('*)/N(™) | + max | N(™“)™" | 27" é | ay |ak1

ar W)k
1—-2> | b | B max | N(e™)™" | J

+ max | D)™ | (K T A Z [ 7 | 2)§ + max | DE™)™" | 27

g N lei%ier),

M
k=0 1 —27" 37| b | Bmax | NE™)™" |
k=0 @

(28)

This proves that there exists a constant ¢ and a function f(XK) with
the property that f(K) — 0 as K — @ such that (8) is satisfied for all
K = N, and of course it also proves that ¢ and f(X) are bounded as
stated in Section 2.2.

3.3 Proof of (11) Under the Conditions Stated
From (24) and Propositions 1 and 2,

(W < max | N@)/DE”) | (@) + max | DE)™ [ (),

and using (26)
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max | N(e'*)/ D) | + max | D@'*)™" [ 2 E | be | B
e =-° 5 T — {2k
1 =27 > |a|a,max | D)™ |
k=1 w

. 3
max | D(e™)™" (K g Z | q. | )
+ - ~ ’

1 —27¢ Z | 1 |ak max I D(em)_l I
i1 @

which completes the proof.

3.4 Derivation of Inequalities (15) and (16)
We have, from (1) and (13),

N

Z ay (i, — W_y) = &, n=0 (29)

k=10

. . &
in which a, = 1,

1%
=

M
£ = Z b»(-l'..—k — Taoi), n
k=0
and
L =0, n=20, 2, - (N —1).
Since &, = sgn (&,)h2" for some integer b and some £ €[4, 1] (assuming
that #, # 0), the magnitude of the error in approximating Z, by the

. Sy ab —teh -t -
closest machine number x, = sgn (&,)a2" is at most 272" = 127'q""
)] < 27" | @, |. Therefore, forn =2 N

PEEMTAREN]
and by Propositions 1, 2, and 3
(w — @)y = max | D)™ |27
w ) %
Sl X iwr). k2N @
I'rom (30) and (27)

(w— W) = 27° Z | by | max | D)™ |

k=0
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max | D(e*)/N('®) | + max | N('“)™' | 27 Z | @ |ak

- (N«
1 -2 Z | be | B max | N(e™)™" |

N1 )
27t E | By | max | D)™ | max | N(e™)™" | (K K+ > a. | )
+ k=10 n=10 /

1 -2 ;0 | b | Be max | N@e™)™ |

for all K = N, provided that N(z) # 0 for | 2| = 1, b, # 0, and
nlin | NE™) | >2°° ; [ be | Be .

This completes the derivation.

3.5 Proposition 1:
If

L L'
Z CiTy—1 = Z dtsu—l + fn ¥ n g O
=0 1=0

with: 7, = s, = Oforn < 0,¢, # 0, and D L ez # 0for 2] = 1,
then

n n
= Eun—ksk + Z vn—kfk ] n g 0
k=0 k=0
in which
o - -]
Dl <o, 2lu] <o,
n=>0 =0

o0

L’ L
Zuﬂe-inm — Z d[ﬁ_““/zﬂhﬂ_“w,
=0 =0

n=0

and

m
—|nw _ /che—ulu

for0 £ w < 27
)J'D(If'*
*The proof of this result, although rather trivial, is included because the

writer knows of no reference where it is proved without the assumption that the
sequences {sa} and {f.} are z-transformable.
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Let M > 0, and let

§, =8, for n =M
=0 for n>M
fo=1, for n =M
=0 for n> M.

Then r, = #, for n = M, with

L L’
E ef = Z dzén-l + jn ' nz0
=0 =0

and with {#,{, {8,1, and (]| z-transformable. Therefore, we have

RE) = (; 3 e )(i f)— 36) + (thz-‘)_lﬁ(z)

=0

in which

1?(2) = Z Pzt

n=0

. M
Siz) = Z{ 8,z "

P = X 1

n=>0

Thus,
= Z U, 8y + Z l',.—a.fk f n=z0
k=0 k=0
and hence
= Z UyrSi T+ Z Vuifi (31)

k=0 k=0

forn = 0, 1, ---, /. However, since M is arbitrary, (31) is satisfied
for all n = 0. This proves Proposition 1.

3.6 Proposition 2:

If

n
fu = ch-rgz , n=z0
I=0
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with 22, ¢, | < o, then

Z ce” " | (@«
=0

(Nxk = max

0= w

for all K = 0.
Proof:
K ) 1 2x K ) n l2
2 =5 e X eng de
n=0 ™ Jao n=0 L=0 1
1 2 K . n 2
- = f 3 eorfe | do
<m Jo n=0 1 =0
in which
gf - 9'1 ] l = 01 I: 3 I(
=0, > K
Thus,
K 1 2% o0 n l2
2 —inw
n -_<- a_ e Cp— ( dw
g |Jf | 27r o ; — n lﬁf
1 2w o0 2
—ilw —inw
= - . e .| dw
= 2r Jy 1=0 ! ,.zsu ﬁ
] . 2 1 2w ] A
é max E cle—ulw _f Z e—lnmgn
w =0 27r 0 —0
o0 . |2 K
< max | Jee ™| 2ol
w 1=0 n=0

which proves Proposition 2.

3.7 Proposition 3:
If

L
1= Zlol bl nzN

with L < N, then

n=N n=N-—

forall K = N.
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(Sinr) = (S 1o 2, inar)




FLOATING-POINT REALIZATIONS 1791

Proof:
K K L 2
Y= Z’Elg,l !h.,,J|
n=N n=N | 1=0
K L
=2 Xl gl

in which

}‘i‘n=hu 7120,1,2,"'.](

=0 n> K.
Therefore, by the Schwarz inequality,
K Y L L
Elﬁ.lgégglgxlglyz[ | B [*
L L K
PN (PAD TS
=0 =0 n=N
L L K-1
=10l S0l S ir)
=0 =0 m=N-=1
L 2 K
<(Stal) 3 nr
1=0 m=N—-L

This completes the proof.
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