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A model of an automaton, called a balloon automaton is proposed, It
consists of a finile control, which may be deterministic or nondeterministic,
an input tape which may be one way or two way, and an abstract, infinite
memory, called the balloon, which can enter any of a countable number
of stales. There is assumed to be a recursive function which manipulaies
the state of the balloon, and another which passes a finile amount of in-
formation from the balloon lo the finite control.

A subset of the balloon automata is considered a closed class if it obeys
two very simple closure properties. Certain closed classes recognize exactly
the languages recognized by such familiar automata as the pushdown
avlomaton or stack aulomaton. Unfortunalely, no closed class recognizes
the sets accepted by linear bounded automata or the time and tape com-
plexity classes of Turing machines.

It is shown that many of the usual closure properties of languages
accepted by the pushdown automaton, stack automaton, etc., hold for an
arbitrary closed class of balloon automata. For example, the languages
accepled by a closed class of one-way, nondelerministic balloon aulomata
are closed under concatenation. Of special inlerest is the fact that a closed
class of two-way deterministic balloon automata s closed under inverse
g.s.m. mappings. This fact is not obvious, and was not known for all
of the types of automata which form closed classes of balloon automata.

It should be emphasized that the purpose of this paper is not to propose
another ‘“model of a computer.” Rather, we are proposing a methed of
proving the standard theorems about existing and future models. Hope-
fully, when a model is proposed in the future, one will simply show it
equivalent to a closed class of balloon aulomala, and have many of the
closure properties automatically proven.

* Currently at Cornell University, Tthaea, N. Y.
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I. INTRODUCTION

In the past, and especially recently, people have been examining
various species of automata, perhaps as models of the compiling and
translating processes, or for the insights they lend to computation. A
partial list includes the Turing machine,' pushdown automaton,®**
deterministic pushdown automaton?® counter machine,® " stack auto-
mation, in all its forms, two-way® one-way,” > ** nonerasing,* de-
terministic and nondeterministic, the nested stack automaton,*® and
the time'* 1 and tape'® %15 hounded Turing machines. This list is
not meant to be a complete survey of past writings, and more can
be expected in the future.

Many of the properties of each of the automaton classes mentioned
are the same. For example, one would expect the set of languages
accepted by each class to be closed under intersection with a regular
set. Our plan is to propose a model of an automaton abstracting the
common features of most of the models mentioned. We will define a
class of automata to be a subset of the set of all such automata if
it satisfies certain simple and physically meaningful closure properties.
Then, from these closure properties, we will derive many of the
common closure theorems which have been proven for the specific
types of automata mentioned, and which, presumably, would be
proven for future types.

The basic model is shown in Fig. 1. It consists of a two-way input
tape, with end markers, a finite confrol, and an infinite storage of
unspecified structure, called the balloon.

We assume that the states of the balloon are represented by the
positive integers. A move of the automaton is a three-stage process.
First, a recursive function is used to get a finite amount of informa-
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Fig. 1 — Balloon automaton.
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tion from the balloon. Typically, this information is analogous to the
symbol scanned by the storage head of an automaton with a tape
memory. Second, based on the information from the balloon, the state
of the finite control, and the symbol scanned by the input head, a new
state of finife control and a direction of input head motion is de-
termined. Third, based on the new state of finite control, and the
current state of the balloon, a recursive function determines the next
state of the balloon. Certain states of the finite control are final
states. If the input causes the automaton to enter a final state, the
input is accepted.

A subset of the set of balloon automata is ecalled a closed class, or
simply a class, if:

() It contains the finite automata.

(22) If two automata are in the class, a third in the eclass can be
found by associating in any way, the recursive functions getting
information from the balloon and determining the next state of the
balloon.

The latter condition is vague, but will be made formal.

Most, but not all, of the types of automata mentioned can be
interpreted as classes under our definition. It seems that a type of
automaton is a class if its definition involves only the ways in which
the infinite storage may be locally manipulated. Sets such as the time
and tape complexity classes of Turing machines do not form classes.
With special emphasis, the linear-bounded automata unfortuately do
not form a class in our formulation. Note that single changes in the
next state of finite control function for a Turing machine may cause
it to use much more time or tape than did the original machine, so
condition (72) would not be satisfied. Some of the automata, all two-
way deterministie, which do form classes are:

()  Pushdown automaton.

(1) Stack automaten.

(tzt) Nonerasing stack automaton.
{(1v) Nested Stack automaton.
(v) Single counter machine.

(v2) Finite automaton.

(ver) Turing machine.

Our model shall be modified to treat nondeterministic and one-way
input devices later in the paper. We have chosen two-way determinis-
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tic devices to treat first because, with one exception, the theorems
involved are quite straightforward.

II. THE TWO-WAY DETERMINISTIC BALLOON AUTOMATON

A balloon automaton consists of:

(7) A finite, nonempty set of siates, S.

(43) A finite set of input symbols, I, which includes ¢ and §, the left
and right end-markers of the input, respectively.

(#i1) A set of balloon states, which is always the positive integers,
denoted by Z.

(iv) A finite, nonempty set of integers, 1/, known as the balloon
information.

(v) A total recursive function, h, from Z to 1/, known as the balloon
information funclion.

(v7) A function g, with finite domain, S X I X M and finite range
S X {—1,0, +1}. We will also allow ¢, the null set, in the range of g.
We call g the finite control function.

(vi7) A partial recursive function, f, from S X Z to Z, known as
the balloon control function.

(vii7) A subset, F, of S, called the final states.

(iz) A state g, in S, the start state. To simplify matters later, we will
here assume that the start state is not a final state. The balloon automaton
is denoted (S, I, M, f, g, h, qo, F).

We denote a configuration of the automaton A = (S, I, M, f, g, h, go, F)
by (g, w, j, 7), where:

(i) qis a state of the finite control, in S.

(#2) w is in I*. More specifically, w = ¢a,a. +++ a,$, n = 0, where
forl <k <mn a.isin I — [¢, $}. Thus, ¢ marks the left end and $
the right end. We call n the length of w. Endmarkers do not contribute
to the length.

(#47) j is an integer between 0 and n + 1, denoting the position of
the input head of A.

() i is a positive integer, the state of the balloon.

As previously mentioned, a move of A is a three-stage process. Let
(¢:, w, 7, 1,) be a configuration of 4, and the j,th symbol of w be a.
Let w, exclusive of endmarkers, consist of n symbols. We call ¢ the
Oth symbol, $ the n + 1st, and number the non-endmarker symbols
from 1 to n from the left. Suppose h(i,) = m. Then, find g(g., a, m).
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If it is ¢, no move is possible. Suppose g(q,, a, m) = (g., d), where
g2 isin S and d = —1, 0, or +1. Then, compute, if possible, (g., 7.).
Let it be 7, . If j, = j, 4 d lies in the range 0 to n 4+ 1, we say that a
move is possible, and the next configuration is (g2 , w, ja , 72).

Note that f(g., 7,) does not necessarily have a value. In that case,
there is no move possible. _

Intuitively, to make a move of A, we get what information we can
from the balloon by ecalculating k(7). Then, using g, we find the new
state of finite control and direction of motion of the input head. Finally,
using f, with the new state of finite control, we find the new balloon
state.

If, from configuration (q, , w, j,, ?,), the next configuration of A4 is
(g2, W, §a, 12), we say: (qu, w, f1, 1) |7 (g2, w, Ja, 72). If A can go from
configuration (g, , w, j, , 7,) to configuration (g., w, j», 7a) I,zy some
number of moves, including zero moves, we say: (¢, , w, j, , ¢1) |7 (g2 ; w0,
jo 12).

Notation: We will, for a balloon control function f and state ¢
in S, often use {,(¢) for f(g, 7). Also define «'” to be the function from
Z to Z such that «'”’(i) = 7 for all 7. Let «'”, for infeger j = 1, be
the function that takes 7 to j for all 7 in Z.

IftA = (S, I, M, {, g h, @, F) is a balloon automaton, let the tapes
accepted by A, denoted T'(A), be the set of w such that

*
(qll 1 u’r Or 1) |I (Q, T-vi jr 1’)

for some ¢ in F, input head position, j, and balloon state, 7. That is,
starting in the start state with the input head at the left endmarker
and the balloon in state 1, w must cause 4 to enter an accepting state.

Note that if g determines, in some configuration, that 4 enters
state p, and p is an accepting state, but for the state of the balloon,
1, f,(7) is not defined, then A has no next move, hence does not accept.

Let C be a subset of the set of all balloon automata. We say C is
a closed class, hereafter shortened to class, if it satisfies the following
two conditions:

L (S I, M,{ g h g, F)isin C for any finite sets, S, I, F © S, ¢,in S,
and arbitrary mapping g from S X I X M to (S X | —1,0, +1}) U {el.
We restrict h to be a'” for some j = 1 and M = {j]. Also, for each
gin S, f,is «*’ for some &k = 0.

I Let (S, , I, , My, fi,0 iy, F)and (Se, I, , My, fo, goy ho
G2, F2) bein €. Then (S; , I3, My, {3,693, hay gz, I3) isin C' if;
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(z) S, and I, are arbitrary finite sets.
(1) M, is the range of h; .

(#77) q; is in S; .

(v) Fy & 8;.

(v) g, is an arbitrary mapping from

lS’gXI;{Xﬂ[;; tO (ng {_1,0,+1])U{(P}.

(vi) Tor each g in Sy, (fs), is (f,), or (f), for some p in S, or S:,
respectively.t
() hy is a total recursive function such that if hs(7,) # hs(i.) then
either h,(¢,) # h,(1,) or ha(z,) # ha(7s).

Intuitively, assumption (i) causes each of the regular sets to be
accepted by some automaton in the class. Note that the function &
is such that no information can be obtained from the balloon.

Assumption II insures that balloon control functions can be used
interchangeably. The function associated with some state may be
associated with none, one, or many states of a new automaton.

The information obtainable from ks is no more than the information
obtainable from the combination of &, and %, .

If C is a class of automata, then the set of languages which can be
recognized by some automaton in €' is called a closed class of languages,
or simply a class of languages.

It should be clear thatto every class, C, there corresponds a set
of allowable balloon information functions, H. . That is, a function, &,
is in H¢ if and only if it is the balloon information function for some
automaton, A, in €. Likewise, there is a set of functions, Fe¢ , which
is the set of allowable balloon control functions restricted to a single
state. That is, f is in F, if and only if for some automaton A, in C,
with balloon control function f,, f(i) = f.(g, %) for some fixed state
qof A.

Note that a” is in He for all ¢ = 1, and «'” for ¢ = 0is in Fe,

or any class €. We can use the following obvious result:

Lemma 1:LethbeinHoandf,,fs, -+, f.beinFe. LetS={qi,qz,* ", Q!
I be an arbitrary set of inputs including ¢ and $, M the range of h, g
an arbitrary map from S X I X M to (S X {—1,0, +1}) Y {¢], and
F C 8. Then (S, I, M, {, g, h, @i, F) isin C for any q. in S, and | defined
by f(g;, ©) = f;(2) for all 4.

Proof: Let B, = (8o, Io, M, dy, go, by Do, Fo) be an automaton in ¢

# Recall (fy)q is by definition the function such that (f2)4()) = fa(g,i) for all 4.
Likewise (f), and (f2),.
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with balloon information function i, and 4, = (S, ,I,, M, ,d,, g, h,,
P: , F';) be automata in € such that for each 7, 1 £ 7 < s, there is a state,
r.,in S;, such that d,(r, , 5) = f:(j) for all j.

For 1 = i £ s, define B, from B;_, and A, according to rule II.
Let B, = (8,1, M,e, ,g,h,q. ,F), where (e;),, = f;if j < 1, and (e.),, =
{.if 3 > 4. Surely, e, = |, so B, is our desired balloon automaton.

Lemma 2: Let A = (S, 1, M, {, g, h, qu, F) be an automaton in Class C.
Let Ay = (S., I, , M, {,, g1,k q., F,) be such that for every pin S, , (),
is either o' for some i = 0 or f, for some q in S. Then A, is in class C.

Proof: All f,, for g in S are in F, and h is in H, . Also, a'” is in F
for all # = 0 by rule (I). A, is in class €' by Lemma 1.

We should comment that it is quite natural to force «'® to be in
Fo for any class, C. Intuitively, the consequence is that an automaton
may do computation in its finite control without affecting the infinite
portion of storage. We also force ', for 7 = 1 to be in F. These
mappings enable us to reset the infinite memory to any given state.
Their use will be apparent, but their justification is not so clear. We
only observe that for any of the seven types of automata mentioned,
suitable modifications, which do not change the power of the devices,
can be made, so that a device can reset itself to a given state.

For example, a Turing machine can surely erase its tape and print
any given tape string thereon. Of course, it takes more than one
move to do so, but this fact should not concern us. Even a nonerasing
stack automaton can print a dummy “end of stack” marker at the
top of stack to simulate an erasure of the stack.

Example: Let us indicate how to interpret a two way deterministie
pushdown automaton as a class of balloon automata. We will not
give a formal definition here. Most readers should be familiar with
the concept of an automaton with pushdown storage, usually taken
to be nondeterministie, with a one-way input. The two-way, de-
terministic variety is defined formally in Ref. 4.

Informally, the infinite storage is a pushdown tape, of which the
automaton can at any time read only the top symbol. The pushdown
tape can be altered by erasing the top symbol, or by adding a symbol
to the top of the list.f The pushdown automaton has a finite control,
input tape and input head, similar to these portions of a balloon
automaton.

7 The modal of Ref. 4 allows one to add any finite number of symbols, but this
mode is equivalent to adding one at a time.
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We shall not formally prove that there is a closed class of balloon
automata accepting exactly the sets accepted by two-way, determin-
istic pushdown automata. We shall merely give the sets He and F¢
of balloon information and balloon control functions, and indicate
how they reflect the pushdown structure of storage. We shall also
indicate how any balloon automaton in the class can be simulated by
a two-way, deterministic pushdown automaton.

To begin, we shall assign the usual Gédel numbering to pushdown
tapes. That is, let the allowable pushdown symbols be Z, , Z2, -+, Z,, .
Represent the pushdown list Z,,Z,, ++- Z,, by 27375" -+ [r(k)]".
Here =(7) stands for the 7th prime. (x(1) = 2, #(2) = 3, x(3) = 5, etec.).
Define u(z), for 7 # 1, to be the number of the largest prime dividing .
and define «(7) to be the number of times 7 (u(z)) divides 7. Let u(1) = 0:
k(1) also is 0. For example, u(75) = 3, because the third prime, 5,
is the largest prime dividing 75. x(75) = 2, since 5 divides 75 twice.

Define F to be a set of recursive functions given by:

(1) ', foralli = O0isin F.

(4i) For any integer, d, the function f, defined by f(7) = #[=(u(i) + 1)]"
i = 1, is in F. Note that f(¢) finds the prime above the largest prime
dividing 7, and multiplies 7 by that prime, raised to the power d.

(#77) The function §, given by f(1) is undefined, (i) = #/[m(u(i))]""",
i > 1, is in F. This function divides 7 by the largest prime dividing 7,
as many times as it divides 7.

The set H includes «'” for 7 = 1. H also includes any total recursive
funetion A if there is an integer d such that k(z) # h(j) only if «(z) #= «(7),
and at least one of «(7) and «(j) is equal to or less than d.

Let a given pushdown automaton, P, have m pushdown symbols,
Z,,Zy, , Z,. We will find a balloon automaton, 4, whose balloon
information function is in H, and whose balloon control function for
any given state is found in F. The balloon information function, h,
will have k() # h(j) if k(2) # «(j) for x(z) and «(j) each =m. According
to the Géodel numbering of pushdown tapes we mentioned, h(z) will
always indicate the top pushdown symbol of the tape numbered 7,
provided tape 7 involves symbols Z, , Z,, - -+, Z,, only.

Based on the top pushdown symbol, the state of P’s finite control
(which is carried in the finite control of A), and the symbol scanned
by A’s input head, A can move its input head, and change state accord-
ing to what P would do. A may then have to adjust its balloon state
to simulate a change in P’s pushdown store. If P does nothing to the
pushdown store, the function &'’ serves. If P erases the top symbol,
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the function f, in F by rule (i4¢) must be used. If P prints Z, on top
of the pushdown list, the function f, in F by rule (#7), with d = j suffices.

There is a subset, C, of balloon automata defined by placing an
automaton in C exactly if its balloon information function is in H
and its balloon control function, restricted to any particular state,
isin F. We claim that C'is a closed class. Surely every balloon automaton
defined by rule I of the definition is in C.

In rule II, we have two automata, 4, and 4., in €, and must show
that a third automaton, A, , constructed from A, and 4, is also in C.
Certainly, the balloon control functions of A; are in F. Let &, and
h: be the balloon information functions of A4, and A, , respectively.
Assume &, and h, are in H. Let h; be the information function of A, .
Suppose h3(7) # hy(j). Then either h,(z) # h,(j) or h,(i) # h.(j), by
rule II. In either case, x(7) # «(j). Also, since h, and h, are in H, we
can find an integer, d, such that one of «(z) and «(j) is < d. Thus, hyisin H.

Now we must show that any balloon automaton in €' ecan be simulated
by a two-way pushdown automaton. The details of simulating the
finite control and input head of the balloon automaton can be left
to the reader. We shall only discuss how the balloon can be simulated.

Let A = (8,1, M, {, g, h, g, F) be in class C. Some f,, for ¢ in S,
may multiply the ballon state, 7, by a prime raised to some power, d.
Note that this prime cannot divide 7. Let d, be the maximum such d.
Some f, may be a'” for j = 1. Now, let d be the maximum number
of times a prime divides j, and let d. be the maximum such d. Finally,
let ds be max (d, , d.).

The pushdown automaton, P, simulating A, will have d; + 2 push-

down symbols, X, Z,, Z,, -+- , Z,, . X will mark the bottom of the
pushdown list. For some k, each integer, 7, can be expressed in prime
factors as [#(1)]"[x(2)]"* - -+ [#(k)]", where each 7;,, 1 < j = F, lies

between 0 and d;, , but 7, # 0. Then 7 will be represented by pushdown
tape XZ,; Z;, --- Z,,. It should be clear that if 2()  h(j), then the
tapes representing ¢ and j have different top (rightmost) symbols.

Suppose A uses a balloon control function that is in F according to
rule (z27). Then P erases the top pushdown symbol. P must also erase
from the top, any occurrences of Z, . Suppose 4 uses a balloon control
function that is in F' by rule (¢1), with some particular value of d.
Surely 1 = d £ dy. P must print Z, on the top of its pushdown list.
Finally, if 4 uses balloon control function «’, ¢ = 1, P erases its
tape down to X, then prints Z,; Z;, --- Z,, on its stack, where { =
[w(D]"[x(2)]* -+ [x(k)]"*. Note that by definition of d,, we must
have 7; = d; for all j.
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From the way F is defined, it is easy to show that for any automaton
with balloon control functions chosen from F, there is some d; , chosen
as above, such that if the balloon can enter a state 4, then no prime
divides ¢ more than ds times. Thus P, as above, with d; + 2 pushdown
symbols, can simulate the balloon of A.

I1I. SOME THEOREMS ABOUT TWO-WAY DETERMINISTIC BALLOON AUTOMATA

We have spent time defining closed classes of automata. Our goal
is not so much to talk about the classes themselves, but rather about
the properties of the closed classes of languages that they define. Let
us begin with a not unexpected result.

Theorem 1: Let A = (S, I, M, {, g, h, g0, I") be a balloon automaion.
Then L = T(A) is a recursively enumerable set.

Proof: We shall describe, informally, a Turing machine recognizing L.
First, we have assumed f to be partial recursive and & total recursive.
Hence, there is a Turing machine, 7, which, given a block of 7 1's
on its single tape will halt with 2(7) 1’s on its tape. Likewise, let S =
{¢v, @2, ==+, qu}. Then there are Turing machines Ty, T>, ---, T.
such that given 7 1’s on its tape, T; will eventually halt with f,,(z) 1's
on its tape if f,,(?) is defined, and not halt otherwise, for each j, 1 = j=s.

We will now construct a Turing machine, T, recognizing L, by simulat-
ing A. T is shown in Fig. 2. It has a read only input tape with end-
markers, and two storage tapes. The first is used to store the state
of the balloon of A.

The second is used for the computation of A and f. The finite control
of T will store the state of A’s finite control.

Initially, the input head of 7' is at the left endmarker. Its finite
control records that A’s finite control is in state g,. Storage tape 1

¢ INPUT $|

FINITE
CONTROL
«es STORAGE “ee
sss TAPES see

Fig. 2 — Turing machine 7.
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has a single 1 on it, corresponding to the initial state of A’s balloon,
and tape 2 is blank.

Suppose 7' has simulated some number of A’s moves with given
input. That is, 7”s input head is at the same position as A’s would
be after that number of moves, The finite control of 7' holds the state
of A’s finite control, and tape 1 holds the state of A’s balloon. We will
show how T simulates the next move of A, if 4 has a next move.

(z) Copy tape 1 onto tape 2.

(77) Simulate T, on tape 2. When 7', halts, suppose there are m 1’s
on tape 2 at that time.

(#72) Suppose 7' has recorded that ¢ is the state of A’s finite control.
The symbol scanned by 7”s input head is a. Then 7" moves according
to g(q, a, m). If g(g, a, m) = ¢, T never completes simulation of the
move of A. If g(q, @, m) = (p, d), T records p as the state of 4’s finite
control replacing ¢. 7" moves its input head in the direction indicated
by d. If to do so would cause the input head to leave the input, 7" makes
no move, but halts without accepting.

(@) If 7" has simulated the first two stages of A’s move, it again
copies tape 1 onto tape 2. Let p be ¢; for some j, 1 < j < s. Then 7T
simulates 7; on tape 2. If f,, is defined for the number of 1’s on tape 2,
T; will eventually print on tape 2 a number of 1’s equal to the new
state. If not, 7" will not halt, hence no move of A is simulated.

(v) Finally, T copies tape 2 onto tape 1 and prepares to simulate
another move of A. However, if the three phases of the move of A
have each been successfully simulated, and p is in F, then 7 simulates
no further moves of A4, but rather, halts and accepts.

It is straightforward to see that 7' will simulate all moves of A,
and will aceept exactly when A reaches an accepting configuration.

We shall now consider three properties of closed classes of languages.
These properties are that closed classes of languages are closed under
reversal, intersection and inverse g.s.m. mappings. The third property
is perhaps the only one in the paper that is difficult to prove.

Theorem 2: Let C be a class of aulomata. Let L = T(A) for some A =
(S, 1, M, |, g, h, ., F) in C. For any w = ¢a,a, -+ a,$ in I*, define
w = ¢a,a.., - a §. Define I = {w | w™ is in L}, Then there is an
aulomaton, A, , in C such that L = T(A4)).

Proof: Let S = {q,, q2, --+ q,}. Define S, = {q,, q2, -+ q.s1], and
Ay = (S, I, M, {,,g.,h g\, F). We define f, and g, as follows:
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(1) (fi)e = [, for ¢in S.

(“’) (fl)ﬂ'|+1 = a(ﬂ).

(1i7) Suppose g(g, a, m) = (p, d) for some ¢ in S, m in M, and a
in I — {¢, $}. Then g.(¢, a, m) = (p, d) whered = +1,0o0r —1 as
d = —1, 0 or +1, respectively.

(iv) Suppose g(q, ¢, m) = (p, d), for ¢ in S and m in M. Then
0:(q, $, m) = (p, &) If g(g, §, m) = (p, d), then 7:(g, ¢1 m) = (p, d).

) g1(quar , @ M) = (@oss, +1) formin M and ain I — {$].

(v2) 9:(qasr, $, m) = (p, &) for m in M, where 9(q:, ¢) m) = (p, d).

(vii) g, is ¢ if not defined by (777)—(v1).

A, is in class €' by Lemma 2. We must show that T(A,) = L. Let
the input to A, Pe w, of length n. By rules () and (v) it is seen that
(Gasr, w, 0, 1) [%, (@1, w, n + 1, 1). From that configuration, A4,
never returns to state g,., , but simulates A with the direction of input
head reversed.

That is, by rules (i) and (v2), (041, w, n + 1, 1) [3, (p, w, 4, 7) if
and only if (g., w", 0, 1) |7 (p, w', n + 1 — j, 7). Also, by rules (7),
(i33) and (@), for any ¢ and p in S, integers @, , %2, j1, Jz2, with 7, and
j» between 0 and n + 1, (g, w, i1, %) |7, (B, w, J2, 22) if and only if
(g w,n+1—4j,1) |z w,n+ 1—j:. i) Thus, by induction
on the number of moves made by 4, starting with one move,

(@ s 0,0, 1[5 (0, w, . )

if and only if (g, , w", 0, 1) J% (p, w, n + 1 — j, 7). We conclude that
A, accepts its input, w, if and only if A accepts w". That is, T(4,) = L".
Note that A could not accept without making a move, since ¢, is not
an accepting state.
Notation: Let h, and &, be balloon information functions, with ranges
M, and M, , respectively. Let M, have maximum element £. Define
h,-h, to be the function [h,-ho](i) = h(2) + (b + 1)h.(i). Define
M,.M, to be the range of h,-h, . We will also need the functions which
are partial inverses of the - operator. So, we define o,(k, ) = § modulo
k + 1, and oo(k, 5) = [j/(k + 1)].1 If k is as above, and § = [hy-ha](7),
then o,(k, j) = h,(2) and o2(k, ) = ha(2).

Note that according to the definition of closed class, if 2, and h, are
in He , then h,-h, is in H¢ for any closed class, C.
Theorem 3: If Ay = (S,, I, My, fi, g0, hay @i, Fi) and Ay = (S, 1.,
My, s, g2, ha,qa, I's) are automata in class C, then there is an aulomalon
A, in C accepting L = T(A,) N T(A,).

t [z] is the integer part of z.
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Proof: By a simple application of Lemma 2, we can find automata
accepting 7'(4,) and 7'(A,), each of whose set of input symbols is
1,\J I, .80, we will assume that /, = I, = /. Likewise, from Lemma 2,
we can assume S, and S, are disjoint. We construct a third automaton,
Ay = (S5, I, My, {3, g5, hs, q, ). Here, 83 = S, U S, U {qal,
where ¢; is not in S, or S.. Also, My = M, M, and hy = hy-h,. We
define f; and g, as follows:

(#) If gisin S, , then (f3), = (1), . If ¢isin S., then (fi), = (f2), -

(1) (fa)a = .

(427) Let &k be the largest element in M, , and let m be in M, , with
m, = o,(k, m) and m, = o,(k, m). Let @ be in I. Suppose ¢ is in S,
but not in F,, and g,(g, @, m;) = (p, d). Then gs(q, a, m) = (p, d).
If gisin Iy, g;(q, @, m) = (qa, 0).

Suppose g is in S, , instead, and ¢.(q, a, m,) = (p, d). Then gi(q, a, m) =
(p, d).

(i) gs(gs , @, m) = (g5, —1), for all @in I — {¢} and m in M, .

) gs(gs , ¢, m) = (p, d) il g(q. , ¢, m,) = (p, d), where m, is as in (¢77).

Irom rules (¢) and (i77) it is clear that until A, enters an accepting
state, A; enters a configuration (g, w, j, 7), ¢ in S,, if and only if 4,
would enter that configuration. If (¢,, w, 0, 1) |3, (p, w, j, 7), where
p is in #,, and no acceptmg state ]n’s been plekusly entered, then
by rules () and (v2%), (¢, , w, 0, 1) ]l (p, w, j, (g, w g, 1) If w
is not accepted by 4, , then 13 will never enter ‘St"tte s -

By rules (77) and (iv) ((]3, w, 1, 1) ih (g5, w, 0, 1). By rules () and
@), (ga, w, 0, 1) [7, (g, w, j, ) if and only if (g., w, 0, 1) |7, (g, w, 4, ©).
TFrom this point, Ay simulutcs A, in a straightforward manner, entering
an accepting state with w as input if and only if A, does. Thus, in order
for A, to aceept w, both A, and A, must accept it, and whenever these
accept w, A, will likewise accept w. In other words, T'(4;) = T(4,) M
T(A,).

By part IT of the definition, and Lemma 2, A, is in class C.

We are now going to prove a theorem on inverse g.s.m. mappings.
A generalized sequential machine (g.s.m.) is a finite state transducer."
It is usually defined as a 6-tuple, ¢ = (K, Z, A, §, A, po). K, Z and A
are the finite sets of stafes, inpul symbols and output symbals, respec-
tively. 6 is a mapping from K X = to K, and \ is a mapping from
K X Z to A* Lastly, p, is in K and is called the start state. We extend
6 and X to domain K X Z* as follows: (g, €) = ¢ and \(q, €) = ¢
for all ¢ in K. For w in =* and a in =, é(q, wa) = &(é(q, w), a) and
Mg, wa) = Nq, w)N(8(q, w), a). Define G(w) = A(p,, w).
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We can define a function v for the g.s.m. G, as above. ¥ maps K X Z*

to the subsets of K. If ¢ is in K and w is in =%, then

v(g, w) = [p |8, v) = q].
TFor win £*and a in =, given (g, w), we can find v(q, aw) by: v(g, aw) =
{p | for some p, in v(g, w), &(p, a) = p.}.

We intend to prove that if A is a balloon automaton of class C,
and @ is a g.s.m., then there is an automaton, 4,, in C, such that
T(A,) = [¢w$|if Gw) = w,, then ¢w,$ is in T(4)}. We need an
auxiliary definition and a lemma.

A two-way finite automaton™ is a device with a two way, read only
input tape and a finite control. Formally, the device is denoted 4 =
(K, =, 8, po, F). K and = are finite sets of states and input symbals,
respectively. = always includes ¢ and §, the left and right endmarkers
of the input, respectively. I’ C K is the set of final states, and p,,
in K, is the start state. 8§ maps K X X to K X {—1, +1}. Intuitively,
if 8(g, @) = (p, d), then A, scanning a on its input, in state ¢, goes
to state p, and moves its input head left or right, depending on whether
d = —1or +1.

We denote a configuration of A, with input w, by (g, w, ¥). We assume
w can be written as ¢w,$, where w, is in (£ — {¢, $})* Let w, consist
of n symbols. The position of the input head is indicated by 4. That is,

= 0 if the input head is scanning ¢, if 7 = n -+ 1, the head scans §,
and if 1 = 7 < n, the head scans the 7th symbol of w,, counting
from the left. Thus, ¢ is the zeroth symbol of w, and § the n + 1st.
Of course, g is the current state of A.

Say that (g, , w, 7)) |7 (g2, w, %2) if ais the ¢;th symbol of w, 8(q,,a) =
(g2, d) and 4, = 7, + ;I Howevc:, we must have 0 < 7, = n + L
We define the relation | by (q, w, 1) {1 (g, w, 7), for any configuration,
(g, w, 1), of A, and (q,, w, 7)) JA (Gm , w, 2,,) if there are configurations
(q, W, %2), (@5, W, T3), =+, {qu-r, W, Tw_y) such that for 1 = 7 < m,
(q;, w, ;) |7 (qis1, W, i,-H). Although we are not concerned with
acceptance by two-way finite automata, (they accept the regular sets,
as is well known) we will define the tapes nccepted by 4, denoted
T(A), to be {w | win ¢(Z — {¢, $1)*$, (po, w, 0) L; (p, w, z) for some
p in F and integer, 7}.

Lemma 3: Let @ = (K, =, A, 8, \, p,) be a g.s.m., with ¢ and $ not in Z.
Then, we can construct a two-way finite automaton,

4=(K,Z V) [ér $;,51, Go , F)
with the following properties:
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(7) K, 1s expressed as K, X K. Elements of K, are denoted [q, p] where
gisin Ky, pin K.
(i7) ¢, and q, are particular elements of K, .

(%i7) Let w = a,ay -+ a, be in ¥ each a, in =, 1 = k = n. Suppose
6(po, @@z ++- a;_y) = p, 1 = 2. Then
Lk .
([91 ) p]; ¢u)$l 1‘) |I ([gE b) Q]; ¢u’$: 1= 1):
where 8(py, a,a, +++ a;_,) = q. Never is q, or q. the first component

of state of A, except for the first and last configurations.
(iv) qo and F are irrelevant, since the lemma concerns, not the recognizing
power, but the structure of two-way finite automata.

Proof: This lemma was essentially proven in Ref. 11, with direction
of input head reversed. We shall, therefore, not give a formal proof,
but just sketch the argument. The result in Ref. 11 did not involve
the function § of a g.s.m., but another function which had the properties
needed, properties which § has. These properties are:

(7) 6(q, w) is unique for ¢ in K, w in Z*

(72) If v is defined as in the definition of the g.s.m., and p, and p,
are in K, p, # p,, then for any win Z* w # ¢, y(p, , w) and v(p., w)
are disjoint. (For if p were in both, then §(p, w) = p, = p, , violating (7).)

(2¢7) If pyisiny(p, , w) and p, iny(ps , w), and w = w,w, with w, # ¢,
then 8(p; , w,) # 6(p,, w,). (For if not, let 8(p; , w,) = 6(ps, w\) = p.
Then v(p, , w.) and y(p. , w,) each contain p, and w, # ¢, violating (7).)

(@) If p, and p, are in ¥(p, w), then (p,, w) = é(p., w) = p, by
definition of .

We will now sketch the design of A. Let ¢w$ be its input, w =

a,a, + - a,, as in the statement of the lemma. Suppose the input head
of A is scanning a, , and A4 is in state [¢, , p]. Presumably,

§(po, may -+ a;_y) = p.

A moves its input head left, and computes v(p, a._,). If v(p, a;_,)
contains a single element, p,, then p, must be é(py, @@, -+ ai_s).
A can easily enter configuration ([¢. , p)], w, © — 1).

It is not possible that v(p, a;_,) is empty. Suppose v(p, a._,) con-

tains r elements, r > 1. Let these be p,, p., ---, »,. A4 moves left.
Forj=1— 27— 3,7 — 4, --- it successively computes

Y(Pi, @055y - - @ilo)
from y(pe, @;41@j52 +-- a;-») for 1 = &k = r. Unless the process ter-

minates, in one of two ways we will describe, 4 then drops v(py , €;:1@;+2



1808 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1967

-+ @;_,) from memory. Given G, we can find an upper bound on 7,
so the amount of information stored in A’s finite control is bounded.

(i) Suppose that for some largest j, for only one value of k, say k = m,
is y(px , @;@;4, - -+ @;_») nonempty. Then surely p,, is 6(po , a2 - - - i_a).
A must find its way back to position ¢ — 1. Presumably, one can find
k, and k, such that y(ps. , @74 1852 - - - @ic2) and ¥(Pi, , Qi1@ian *** Cia)
are not empty. Choose s, and s, from these sets, respectively. A then

moves right, computing 6(s, , @;+1;42 - -+ @) and 8(sz, @;418542 *** @)
forl =j+1,j+ 2, --- . By comments (i) and (i) above, we will
not have 8(s,, @;.1@;:2 =+ @) = 8(8z, @ju@540 -+ @) untill = 7 — 1.

A is thus positioned properly, and can enter configuration
([92: pm]x w, 1= 1)

(4%) Suppose that no j satisfies condition (z). Then A will eventually
reach the left endmarker. It must be that for some m, p, is in ¥(p,.,
a\@s +++ @ip). Thus, p, is 8(po, @@z -+ G:_2). A must find its way
back to position ¢ — 1. So, A chooses s, and s, in y(ps, , @@z =+ @i 2)
and y(ps, , @10y - - - @;_) for some k; # k, . A moves right, successively
computing 8(s,, @,a -+ @;) and 8(s., @a, -+ @) forl =1,2, -~ .
When é(s, , @@, -+ @) = 6(s2, @,@s -+ - @), we must havel = 7 — 1.
A easily enters configuration [g. , p.], w, ¢ — 1).

Theorem 4:Let A, = (S, 1,,M,f,, ¢, r, ) be aballoon automaton
inclass C. Let G = (K, =, A, 8, )\, po) be a g.s.m., where A = I, — {¢, $].
Then there is an automaton, A, in class C, such that

T(A,) = {¢w$ | ¢G(w)$ s in T(A,).}.
T(4.,) is commonly called an inverse g.s.m. mapping of T'(A,).

Proof: Let A = (K,, 2 \J {¢, 8}, 8,, qo, F) be the two-way finite
automaton constructed from @ in Lemma 3. Let 4, = (8., [, M,
f2s gz, h: L) ] F2); Where I2 =3I U [¢s $}° L(‘)t SZ = {[QJ pru 'l: ‘r“] | q
inK,,pin K, rin S,, u a string in (I, — {¢, $})* of length at most
max (| A(s, @) | for s in K, a in Z), I an integer between 0 and | u |,
and k an integer between 1 and 8}.f K, is defined as in Lemma
3, as are its particular elements, ¢, and g.. 72 = [g2, Po, 71, € 0, 1].
F, is the set of all states in S; whose last component is 8.

We shall call the last component of states in S, the pointer. It in-
dicates, among other things, if 4, is simulating 4, A, or G. The first
component is part of a state of 4. It is needed because A, may move its

t |z| denotes the length of string z.
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head left to simulate A,. In that case, the routine A is needed to
determine the state of ¢ at the new position of A,’s input head. The
second component of A,’s state indicates what state G would be in if
it had processed whatever is to the left of 4,’s input head. The third
component is the state of A, . The fourth component is the output
when the input to G is the symbol currently scanned by A.’s input
head. The fifth component indicates where, among the symbols of the
fourth component, 4,’s input head would be. In Fig. 3, the construction
of 4, is symbolically indicated.
We define f, by:

(1') (f2)[a.p.r.u.l.kl = a(DJ for k = 31 5: 61 7: 8.

@) (Diaprwrn = (fi)rfork = 1,2 4. Formin M, pin K, g in
K,,rin S, but not in F, and a in I, — {¢, $}, we define g, by:

(122) 92([q2 yPo, T, & 0: 1]: ¢: m) = ([QZ yPo, S, € 0) l]s 0) if gl(rr ¢; m) =
(s, 0). (A, simulates A, , scanning and remaining at ¢ on its input.)

(“}) gz([@z y Do, Ty € 0; 1]: ¢: m) = ([q2 1y Do, 8 € 01 2]; +1) ifgl(?’, ¢1 m)=
(s, +1). (A, simulates 4, moving right from ¢. The pointer is set to 2,
so A, will next compute the output of G for the symbol it will next
scan on its input.)

(U) 92([?2, P 01 1]! $J m) = ([';h) D, 8 ¢ Or 1]: 0) If GI(rr $1 m) =
(s, 0). (4, simulates 4, scanning and remaining at $.)

) g2[g2, 2,7, 6 0,11, §,m) = (g1, p, s, ¢ 0, 4], 0) if g.(r, §, m) =

SIMULATED INPUT

FINITE FINITE
CONTROL

OF A,

T_——_
|

I

|

§

L

/
BALLOON
OF A,

A .

Fig. 3 — Automaton A..
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(s, —1). (4, simulates A, moving left from §, and prepares to simulate
A. The pointer is set to 4, and the first component to g,.)

(vi7) g2([g, p, 7, € 0, 4, a,m) = g:([g, », 7, ¢ 0, 5], a, m) = (2
0, 5], d) if &(g, pl, @ = (¢, p'l, d), for ¢ # ¢., and a in I,.
(A, simulates A in A,’s first two components of state. The pointer
is held at 5.)f

(UHT') g‘.’([Q2 ) p; T} €, 0: 5]: a; m) = ([‘1: P2 T It, I} 6]) 0) lf u = )\(pr G)
and u # e Here, | u | = . (4, computes the output of G and prepares
to simulate A, . The pointer is set to 6.)

(iz) If instead, \(p, @) = ¢ g2([g2, P, 7, & 0, 5], &, m) = ([, », 7,
¢, 0, 5], 0). (4, must simulate A again to find an input symbol that
gives an output # e.)

() g?-([Ql! Do, 7y &0, 4]: ¢: m) = gx(lq1, Po, 7, & 0, 5], ¢) m) and is
equal to ¢2([g2, Po, 7, & 0, 1], ¢, m) as defined by rules (777) and (7v).
(A. was prepared to begin simulating 4, but found itself at the left
endmarker. Note that in this case, the state of ¢ must be p,. 4, im-
mediately simulates 4, .)

(1) 92([q2) p,Toe 0, 2], a, m) = gﬂ([qi’ y Dy T, & 0, 7], a, m) = ([qe’
p, 1, u, 1, 6], 0) if M(p, @) = v and u # e (A, has simulated a move
right of A,’s input head. It computes the output of G and prepares
to simulate 4, . The pointer is set to 6, as in rule (vii7).)

(1) If instead, N(p, a) = € g:([g2, P, 7y & 0, 2], @, m) = ga([g2, P,
r 60,7, am = (g, t, 7, ¢ 0, 7], +1) if 8(p, @) = t. (4, must search
right, in order to find an input symbol that does not give e output
when given to G.)

(x177) g2([q2, 2, 7, & 0, 2], §, m) = 9:([e2, p, 7, € 0, 7], §, m) and is
equal to g:([g2, P, 7, & 0, 1], $, m) as defined by rules (v) and (v7). (4.
was simulating a move by 4,, but encountered the right endmarker.
A, immediately simulates another move of 4, .)

(ziv) Suppose u # eand 1 < I < | u |. Also, suppose g,(r, b, m) =
(s, d), where b is the lth symbol of u, and 1 = I + d < [u |. Then,
g:(lg2, p, 7y w, 1, 1], @, m) = g:([g2, 2, 7, w, 1, 6], a, m) = (g2, », s,
u, I + d, 1], 0). (4, simulatesa move of A,, where A, is assumed
scanning the Ith symbol of «.)

(xv) Under the assumptions of (ziv), if I + d = 0, ¢:([gz, p, 7, %,
L, 1]7 a, m) = gz([Qz Y SR I, 6], a, m) = ([ql y Py S 0, 4]) 0) (A2
simulates A, , but finds that 4, moves left from u. A, prepares to sim-
ulate 4.)

(zvi) Under the assumptions of (z%), if I + d > |[u |, g2(lgz, P, 7,

1 Recall 8, is the next state mapping of A.
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u, l} 1]) a, ?n) = QQ({Q2 y 2y T, U, Ir 6]? a, m) = ([fh 3 t: 8, & 0) 2]! +1)!
where ¢ = é(p, a). (4, simulates A,, but finds that A, moves right
from u. A, simulates the state transition of G.)

For rin F, and any k:

(wvir) g2(lg, p, 7, u, L, k], @, m) = (g, p, v, u, I, 8], 0). (4, has been
simulated entering an accepting state. 4, sets the pointer to 8 and
aceepts.)

By rule (xv27) above, we see that exactly when A4, gets to a state
with third component in #, will it accept. It is sufficient to show that
A, can simulate any single move of A, which does not start from an
accepting state.

Formally, let us focus our attention on a particular input, ¢w$,
to A, , where wisin (I, — {¢, $])* Let G(w) = v and | v | be n. For
this particular w, and configuration (r, ¢v$, 4, 7) of 4,, we define the
inverse image of (r, ¢v$, j, 1), denoted II(r, ¢$, j, ) as follows:

(@) If j = 0, then ([g, po, r, & 0, k], ¢w$, 0, ©) is in II(r, ¢v$, 0, 7)
if either £ = land g = quork = 4andg=¢q,,ork =5andqg = ¢q,.

@) If j = n + 1, then ([q., p, 1, ¢ 0, k], ¢w$, n, + 1, 1) is in II(r,
¢v$, n + 1,4) if p = 6(p,, w) and k = 1, 20r 7. Here n, = | w |.

@) 11 =j =mn, (g, pr, w1, k], ¢w$, ji, 9) is in II(r, §08, §, 7)
if one can write v = vyuv, and w = w,aw,, ain I, — {¢, $}, such that
the following is true:

(@) b6(po,w) =p
() Apo, w) = v,
() ANp,a) = u #= e
(d) 4. = , w, l + 1
(e) i=1|uwl|+1
(fy kE=1or6.

Intuitively, A.’s input head is scanning the symbol giving rise,
when fed to @, to the symbol scanned by the input head of 4, .

We must show that if (r, ¢8, 7., 7,) |7, (s, 8, j., 7.), and 7 is not
in Fy, then if ([¢, pi, r, uy, I, k], ¢w$, ja, 7,) is a configuration
in II(, , €03, 4., 7,), then there is some configuration ([¢" , p., s, Us ,
la, ko), $wS$, s, ,) in II(s, év$, j, , 7.) such that:

. - * 7 - .
([Q» P, 1‘, U,y ] ll 3 kl]r ¢w$r Ja, ]I) !T, ([q ? Pz, S, Uz, IE ] k?]; ¢w$: Ja ] 12)'

Case 1: j, = j, = 0. The result follows trivially from rules (¢7), (#7%)
and (z).
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Case 2:j, = j, = n + 1. Trivial from rules (¢), (v) and (z711).

Case 3: j, = 0, j» = 1. By rules (i7), (¥v) and (2), (g, Po, 7, & 0, kI,
¢W$, Os 1'1) II. ([qz y Po,y S, & O) 2]) ¢'|‘.U$, 1;*7:2)- B.V I'UIBS (7‘): (ﬂf’t) and (.‘,E‘H,),
ifo # 2 ([Qz, Do, S & 01 2]r ¢’LD$, 1: 1'-2) IIZ, ([Q'-' y Dy 8 U,y 1’ 6]: ¢w$: J.: i2)r
where if w = a,as - - @, , then 8(p,, @02 -+ @;_y) = P, NPo, Qa2

- a;_;) = eand \p, a,l = u. If v = ¢ by rules () and (zi?) ([g-,
Po, 8 & 0, 2], ¢w$: 1, %) |I. (g2, 2, 8, ¢ 0, k], ¢w$; n, + 1, 73), where
p = 8(py,w)and &y, = 2o0r7.

Case 4:§, = n + 1, j» = n. By rules (it), (i) and (21%9), (Igz, P:,
T', €, Or k]) ¢w:$ ny + 1) 7’1) {I. ([9'1 ] pl ,S, € 0) 4]r ¢w$r My + 1) 7’2) If v 7£ €,
by Lemma 3, and rules (i), (i), (vit7) and (i), ((¢:, P1, S, & 0, 4],
¢w$, ny , 12) E. (lgz, P2, 8 u, 1, 6], ¢w$ j, 7.), whereif w = a,a; -+ - @, ,
§(poasttz -+ @;-y) = P2, AMpo, aar -+ aj_y) = Uy, ViU =0, and
Mp2, a;) = u. If v = ¢ by Lagmma 3 and rules (7), (viz) and (iz),
([ql yP1, 8, € O: 4]’ ¢W$, ny, 7'2) II. ([ql yPo, S & 0: k}) ¢w$: 0: i2)tWhere
k= 4orb

Case 5: j, is not 0 or n + 1. Also, I + j, — ji lies between 1 and |,
where [ and u are defined in part (44) of the definition of inverse image.
The result is immediate from rules (z7) and (zv).

Case 6:7,isnot O orn + 1, but I = |« | and j, = j; + 1. By rules (i7)
and (SUU?:), ([‘12 y Py T, U, l; k]x ¢’LU$, j! ) T'l) J;. ([Q2J Pz, 8, € O, 2]1 ¢T.U$,
is + 1, i2), where ([qz2, Py, 7, 1w, [, k], ¢w$, js , 7,) is either of the inverse
images of (r, ¢v$, 7, , 7,). The rest of the argument for this case is similar
to that of case 3, and will be left to the reader.

Case 7:j,isnot Oorn + 1,butl = land j» = j, — 1. By rules (i2)
and (:w): ([fh ] :D; T, U, l} A]l ¢'LU$, j3 ! 7:1} I;, ([‘12 ’ P: S, & 0) 4]1 ¢’LU$, ja ,2.2),
where the former configuration is again either of the inverse images
of (r, ¢v$, j,, 7,). The argument proceeds as in case 4. .

We claim, from the above, that ([g2, Po, 71, & 0, 1], ¢w$, 0, 1) [3,
([q: Py Ty U l: k]l ¢w$: jl ] 7:) |I. ([Q: ’PJ ry u,*l, S]r ¢'|‘.U$, jl H i)a fOI' some r
in F,, k # 8, if and only if (r,, ¢0$, 0, 1) |3, (r, ¢v$, 4, 1) by a sequence
of moves for which A, never previously enters an accepting state.
Here u, I, j and j, are related as in part (i77) of the definition of inverse
image. Thus, T(4,) = {¢w$ | for some v with ¢v$ in T'(4,), G(w) = v}.
We must add that by Lemma 2, 4, is in class C. The theorem is thus
proven.
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IV. OTHER TYPES OF BALLOON AUTOMATA

We have considered the two-way deterministic balloon automaton.
To complete the story we should consider three other models—non-
deterministic two-way balloon automata, and one-way balloon auto-
mata of the deterministic and non-deterministic varieties.

A nondeterministic device typically has the choice of a finite
number of possibilities for each move. We choose to make the finite
control funection nondeterministic. This added capability enables us to
represent the nondeterministic versions of the seven types of automata
which we could represent by a deterministic balloon automaton.

A one-way balloon automaton 1is, quite naturally, a two-way
balloon automaton, restricted so that the input head can only move
right or not move at all.

We shall not repeat the definitions for each of the three new types
of balloon automata, but, as a model, shall make use of the definition
of two-way deterministic balloon automata.

A two-way, mondeterministic balloon automaton is denoted A =
(S, I, M, f, g, h, qo, F) where all components are defined exactly as
for the deterministic case, except that g is a mapping from S X I X M
to the subsets of § X {—1,0 + 1}.

A one-way, deterministic balloon automaton is denoted as are the two-
way types, but g is a mapping from S X I X M to (S X {0, +1}) U {e}.

A one-way nondeterministic balloon automaton is denoted as are the
two-way types, but g is a mapping from S X I X M to the subsets
of 8§ X {0, +1}.

The closed classes of one way nondeterministic balloon automata are
similar to the abstract families of acceptors in Ref. 21.

We shall use the abbreviations 2DBA, 2NBA, 1DBA, and 1NBA
for, respectively, two-way deterministic, two-way nondeterministic,
one-way deterministic and one-way nondeterministic balloon automata.

A configuration of any of the four types is denoted as for the 2DBA,
(7, w, j, 1), where, ¢ is the state of finite control, w the input, j the
input head position, and ¢ the state of the balloon.

The possible moves of the 2NBA are determined as one would
expect. One uses the balloon information funetion. Based on the value
of that function, the input symbol at the position of the input head,
and the state of finite control, one chooses a pair of next state of finite
control and direction of input head, according to g. Then, based on
the new state, the balloon control function is used.

Formally, if A = (S, I, M, f, g, h, qo, ') isa 2NBA, and (q, , w, j, , 7,)
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and (g2, w, j», 1) are configurations of A, with n the length of w,
then we say (g, , W, . , 7,) goes to (g2 , w, jz, 7=) by a single move, denoted
(g:, w, 71, ) |7 (@2, w, ja, 12) exactly when for some m in M, ain
I,d = —1, 0 or +1, we have h(z,) = m, the jith position of w is a,
g(q. , a, m) contains (g., d) and f,,(i,) = .. Also, j, + d is between 0
and n + 1 and j, = §, + d. If (¢., w, ji, %) can go to configuration
(g2, w, Ja, %2) *by some number of moves, including 0, then we say
(QI y W, jl ’ I"l) ’Z (Q'2 » W, j2 ’ z2) *

The notion of move, and the relations |~ and |~ are defined for the
IDBA and INBA exactly as for the 2DBA and 2NBA, respectively.

A 2NBA accepts an input, w if for some choice of moves it enters
an accepting state. Formally, define T(4), for a ONBA, A = (8, I,
]l-{: f: g, hr QO)F) tObe {w I (Qo, w, 01 1) IX (QJ w’ js 7’) forsomeqinF].

For the one-way types, we require that the input head reach the right
endmarker when it accepts. That is, if A = (S, I, M, {, g, h, @, F) isa
INBA or 1DBA, then T(4) = {w | (g0, w, 0, 1) [x (g, w, n + 1, )
for some g in F, where n is the length of w}.

The notions of closed class of balloon automata for the 2NBA, 1DBA
and 1NBA are defined exactly as for the 2DBA.

Note that, for example, a 1DBA is not a 1INBA, although there are
obvious relationships. Also, strictly speaking, a closed class of 1IDBA
is not a closed class of INBA. Both parts I and II of the definition for
INBA would require nondeterministic finite control functions in any
class of INBA. Analogous statements hold between 2DBA and 2NBA,
1DBA and 2DBA, 1NBA and 2NBA.

It is trivial to see that Lemmas 1 and 2 hold for the 2NBA, 1DBA
and 1INBA.

A set of languages is said to be a closed class (or simply class) for the
ONBA, 2DBA, INBA, or 1DBA if they are exactly the languages
accepted by a closed class of automata of that type.

V. TWO-WAY NONDETERMINISTIC BALLOON AUTOMATA

Theorems 2, 3 and 4, proven for the 2DBA also hold for the 2NBA.
In each case, the simulation by an automaton in some class, C, of one
or two other automata in € was involved. In the 2NBA case, the simula-
tion can be nondeterministic if the simulated automata are. We will
therefore omit the proofs of the three theorems for the nondeterministic
case.

Likewise, Theorem 1 holds for the 2NBA. We can simulate a 2NBA
by a nondeterministic Turing machine just as we simulated the 2DBA
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by a deterministic Turing machine. A nondeterministic Turing machine,
as is well known, can be simulated by a deterministic Turing machine.

There is one additional, simple theorem we can prove for the 2NBA
but not the 2DBA.

Theorem 5: If L, and L, are languages accepted by automata A, and
As , respectively, in class C of 2NBA, then there is an automaton, A, ,
in C accepting L, \J L, .

Proof: Let A, = (S,,I,, M\, {i,q., ", q., F,) and 4, = (8,, I,,
My, fa, g2, hs, q2, F2). As was mentioned, by Lemma 2 we can assume
that S; NS, = ¢ and I, = I, = I. Consider a new automaton, 4, =
(Ss, I, M3, fs,9s, ha, qa, Fz). Ss = 8§, U 8; U {gs}, where ¢; is not
mS,JVS,.Fa=F,JF,. My = M,-M, and h; = h,-h, .t Define
faby (fa)e, = &, (fa)e = (fu)eif gisin 8, , and (fs), = (f2).if ¢isin S, .

Let the largest element of A/, be k. We define g; as follows. For a
in I and m in M, , let m, = o,(k, m) and m, = o,(k, m). If ¢isin S, ,
then ga(g, a, m) = ¢.(g, @, m\). If g isin S, gs(gq, @, m) = g:(q, a, m,).
Finally, gi(gs , @, m) = g:(q:, @, m)) \Y ga(gz, a, m,).

It is straightforward to see that A; is in class C.

It should be clear that for any input, w, (g, w, 0, 1) |7, (g, w, j, ?)
exactly when either ¢ is in S, and (¢,, w, 0, 1) |7, (g, w, 7, ©) or g is
in 8; and (g., w, 0, 1) |7, (g, w, j, 7). Also, once in a state of S,, A,
remains in a state of S; and simulates A,. Likewise, in a state of S,, Aa
simulates A,. Thus, by induction on the ngmber of moves made,
starting with one move, we have (g5, w, 0, 1) |7, (g, w, 4, 7) if and only
if (q,, w, 0, 1) 3, (g, w, j, ) or (g2, w, 0, 1) [T, (g, w, j, ). Thus, since
Fy = F,\UF,, and neither ¢, or g may be in F; , it follows that 7'(4;) =
T(A,)\J T(4,).

VI. ONE-WAY DETERMINISTIC BALLOON AUTOMATA

The 1DBA is the poorest of the four types in terms of the operations
on languages which preserve membership in a closed class of languages
for given types. Of the operations preserving membership in class for
the two-way devices, only inverse g.s.m. mappings preserve member-
ship in class for the 1DBA. The proof is along the lines of that of
Theorem 4, but is simpler because the input head never has to move
left. We will omit the proof.

There is one new operation which does preserve classes for the
1DBA, and, incidently, the 1INBA. This operation is intersection with

w,

T Reeall the definition of the operation , o1 and e in Section ITI.
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a regular set. Classes for the 2NBA and 2DBA were closed under
intersection of languages in the class. A simple use of part I of the
definition of closed class shows that every regular set is in every closed
class, so intersection with a regular set surely preserves membership
in class for the 2NBA and 2DBA.

We shall give the usual formal definition of a finite automaton.
See Ref. 20, for example. A finite automaton is a 5-tuple, A = (K, Z,
8, qo, F). K is the finite set of states, = the finite set of tnput symbols.
F is a subset of K, the final states, and g, , in K is the start slale. § is
amap from K X Z to K. We extend & to domain K X Z* by (g, ) = ¢
for all ¢ in K, and (g, wa), for ¢in K, win £* and e in = is §(8(g, w), a).
Define 7(4) = {w | 8(qo, w) is in F}. The finite automata accept
exactly the regular sets.

Theorem 6: Let C be a class of one-way, deterministic balloon automata.
Let L be accepted by some automaton, A in C, and let R be a regular set.
Then L M R is accepted by some automaton in class C.

Proof: et A = (S, I, M, {, g, h, qo, F) be a 1IDBA, Let B, = B M
¢TI — {¢, $D*$, and let R, = {w | w$ is in R,]. If R is regular, then
R, and R, are both regular. It is sufficient to show that there is an
automaton in € accepting L M E,. To that end, let 4, = (K, I, 3§,
Do, 1) be a finite automaton with 7(4,) = R.. Define A, = (8., I,
M, fs, g2, Ry g, FF3) to be a 1DBA, with S: = § X K, ¢, = [go, Pd
and F, = F X F,. Define f, and g¢. as follows, for all g and ¢, in 8, p
and p, in K, ain I and m in M :

() Suppose g(q, @, m) = (g, , 0). Then for all pin K, ¢.([q, p], @, m) =
([q:, pl, 0).

(¢7) Suppose g(q, a, m) = (q., +1) and é(p, a) = p, . Then g.([g, p,
a, m) = ([q, p], +1).

(’L’EZ) (f2)Ia.p1 = fa fOl' ELH P 111 K'

The states of A,’s finite control have two components. The first
is a state of A4 and the second a state of A,. By rules (Z) and (:%7),
when the input head of A does not move, 4, simulates a move of A,
but does not change the state of A,. By rules (¢7) and (ziz), when
the input head of A moves right, A, simulates that move also, but
adjusts the state of 4, in the logical manner.

Formally, we can show by induction on the number of moves of
A or A, , starting with 0 moves, that ([¢,, po], w, 0, 1) IA, [q, p], w, 4, %)
if and only if:
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(@) (g0, w, 0,1) [3 (g, w, j, i), and

(72) 6(po, w,) = p, where w, is that portion of w to the left of posi-
tion 7.

Now a word, w, of length n, is accepted by A, if and only if ([, , pd],
w, 0, 1) ],_, ((q, p], w,n + 1, 2), forsomegin F, pinF, and any integer, 7.
The above is equivalent to saying that (g, , w, 0, 1) f 1 (g w,n+1,19)
and 8(p,, w,) = p, where w,$ = w. That is, w is in T(4) and w, is
in T(4,). But w, is in R, = T(4,) if and only if w is in R,. Thus,
T(4.) = LN\ R, . Itshould be clear, by Lemma 2, that 4, is in class C.

Corollary 1: If L is a language in class C for the 1DBA, and R is a
regular sel, then L — R s in class C.

Proof: Let L be contained in 7* for some finite alphabet, I. Then L —
R = L N (I* — R), which is in class C by Theorem 6.

Theorem 6 applies also to the INBA. In fact, there is an additional
corollary that can be shown for the INBA.

Corollary 2: Let L be in class C of 1INBA, and let R be a regular set not
involving symbols ¢ or $. Then L \J ¢RS$ is in class C.

Proof: The results is a simple extension of Theorem 6, and will be
left to the reader.

VII. ONE-WAY NONDETERMINISTIC BALLOON AUTOMATA

As the 1DBA was the poorest of the four models, in terms of provable
properties, the INBA is the richest. Theorem 4, concerning inverse
g.s.m. mappings, certainly holds for the INBA, as do Theorem 5,
Theorem 6 and its corollaries.

To begin a study of the INBA, we will show that with the proper
definition of acceptance, endmarkers on the input are not necessary.
Let A = (8,1, M, {, g, h, go, F) be a INBA, We informally define
T(A) as the set of strings, w, in (I — {¢, $})* which cause A to leave
w moving right, at the same time entering an accepting state.

We need a slightly revised notion of a configuration. Since w has
no endmarkers, its length is the number of symbols comprising w.
(Recall, we never counted endmarkers in determining length.) Let w
be of length n. Then (g, w, j, 7) is a configuration of A if ¢ isin S, ¢
is an integer and 1 = j = n. The initial configuration for a INBA
without endmarkers is (gq,, w, 1, 1). For convenience, we define a
configuration, (*), which is imagined to result when A is in a configura-
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tion (g, w, n, 7), and the finite control function allows 4, on the next
move, to move its input head right and enfer an accepting state.f
There is no change in the definitions of |7 and |7. The former relates two
configurations if the second is obtainable from the first by a single move,
and the latter — if by some finite number of moves. Note that no con-
figuration can result from (*).

Now, we define T(4) as {w| (q., w, 1, 1) E (*)}. When talking
of a INBA and the 7' definition of acceptance, we will allow the start
state to be an accepting state. If so, we shall, by convention, say that
¢ is in T(4). We will endeavor to show that a language is T(4,) for
some 1NBA, A, , if and only if it is T'(A4,) for A, , a INBA in the same
classes as A, . The result is broken into two parts.

Theorem 7: Let A, = (S, I, M, f,, g1, h, ., F1) be a INBA with
L = T(A,). Then there is another INBA, A, = (S., I, M, f, g2, I,
2, F2), such that ¢L$ = T(A,).1 Moreover, if A, is in some closed class,
C, then A, s in C.

Proof: Choose g, to be a symbol not in S, , and let S, = S, U {qa}.
F, = F,if ¢, isnotin F, ; F, = F, \J {g.} otherwise. Define f. and g,
as follows:

@  (f)e = a™
(@) (fo)e = (fi)o for gin S, .

Forallain I — {¢, $} and all m in M:

(@1) g:(q, a, m) = g.(q, @, m), for g in S, .
('w) 92(’]2 y @y "m’) = gl(Ql y @ m)
@ g:(q, §, m) = ¢, for gin S, .
(U’t) gﬂ(q2 b ¢r m) = {(q2 1 +1) }
(v17) g2(g, ¢, m) = ¢ forgin S, .

Let w, of length n = 1 be in (I — {¢, $})* By rules (i) and (v3),
we have (g, fw$, 0, 1) |5, (¢=, ¢w$, 1, 1). By rules (%) and (), it
follows that (g, ¢w$, 1, 1) |7, (g, ¢w$, 4, %) if and only if (g,, w, 1, 1)
|7, (g, w, j, ©). Then, by induction on the number o”f moves made,
starting with one move, we see that (g2, ¢w$, 1, 1) [, (q, ¢w$, 4, ©)
if and only if (g,, w, 1, 1) |3, (g, w, j, ©), for j < n. Finally, by rules
(4%) and (#12), if (g, w, n, 7) |7 (*), then it must be that g,(g, a, m) con-

T _Strictly speaking we require also that the balloon control function be defined
for i and the new state if configuration (¥) is to be entered,
1 Recall that by convention, ¢ and $ are in every set of input symbols, even if

endmarkers are not used.
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tains (p, +1) for some p in ¥, , where 2(Z) = m and a is the nth symbol
of w. Also, f,() is defined, so (g, ¢w$, n, 1) |7, (p, fw$, n + 1, 7,), where

= {,(i). Thus, if 'w*ls in 7'(4,), then ¢w$ isin 7'(4,).

If (q,, ¢w$, 0, 1) |7, (p, ¢w$, n =+ 1, 7), where p is in F, , from rule
(v) we see that A, could not have made a move while scanmng the §.
Thus, for some ¢ in S and integer, %, (g, , ¢w$, 0, 1) IA. (g, tw$, n, k)
T (p, ¢w$, n*-l— 1, 7). From the previous paragraph, we know thfmt
(qr, w, 1, 1) |7, (g, w, n, k) and (g, w, n, k) |7, (*). Thus, if ¢w$ is in
T(A,), then w is in T'(4,).

One detail remains, concerning the case w = e If e is in T(4),),
then ¢, is in F;. Thus, ¢, is in F, . By rule (v), (¢., ¢$, 0, 1) [z, (g2,
¢$, 1, 1), so ¢$is in T(A,). If € is not in 7'(4),, then g, is not in F,
and g, is not in F, . By rules (v) and (vz), only one move of A, is pos-
sible, and A, does not accept ¢$. We conclude that T(4,) = ¢L$.
It is clear from Lemma 2 that A, is in class C.

Theorem 8: Let A, = (S,, I, M, f,, 9., h, q., F,) be a INBA, in some
closed class, C, with L, = T(A,). Let L, = {w | ¢w$ is in L,}. Then
there is a INBA, A, = (S., I, M, {., g=, h, [q,, 1], F2) in class C, with
T(A,) = L,.

Proof: We will place in S, all symbols of the form [g, 7], where ¢ is in
Syand i =1, 2, 3, or 4. If¢$isinL1,thenF2 = {lg., 11} WV {lg, 4] | ¢
inS,}. If ¢$isnotin L,, F, = {[g, 4] | ¢ in S,}.T Define f, and g, as
follows:

(@) (f)iae) = (fi)oforall gin S, and 7 = 1, 2, 3, 4.
Forallmin M, gin S, and ain I — {¢, $}:

() g2(lg, 1], @, m) = {([p, 1], 0) | (p, 0) isin g,(q, ¢, m)} Y {([p, 2], 0)
| (p, +1) is in g,(g, ¢, m)}.

(@) g2(lg, 2], @, m) = {([p, 2], d) | (p, d) is in g,(q, @, m), d = 0
or+1}\V {([p, 3],0) | (p, +1) isingi(q, a,m)} \J {([p, 4], +1) | (p, + 1)
isin g,(g, @, m) and p is in F,}.

('w) g?([‘]: 3]: a, ?n) = {([p; 3]) 0) I (px 0) iS .il'l. gl(Q: $: m) a-l]d P iS
not in 7, U {([p, 4], +1) | (p, 0) is in g,(g, $, m) and p is in F,}.

() g.(lg, 4,], a, m) = ¢ for any a in I, including ¢ and $.

Intuitively, when the second component of state of A,is 1, A, imagines
it is reading ¢ on its input. If the second component is 3, it imagines

1 Obviously, it may not be possible to tell whether ¢§ is in L, . In that case, the
procedure given here can be thought of as defining two automata, one of which
accepts L: . Computation of A2 from A, is not effective, but this fact will not alter
our theoretical results.
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it is reading $. If the second component is 2, it uses the symbol actually
scanned. A second component of 4 indicates an accepting state.

Formally, let w be in (I — {¢, $})% of length n = 1. From rules (7)
and (17), we see that ([¢,, 1], w, 1, 1) |5, (Ip, 1], w, 1, ) if and onlyif
(q:, ¢w$, 0, 1) [3, (p, ¢w$, 0,9). Also, ([g, 1], w, 1, %)) |7, ([p, 2], w, 1, %)
if and only if (g, ¢w$, 0, 7)) |7, (p, ¢w$, 1,42).

NBXt) by rules (7') and (1'”)) ([P; 2]1 w, 1.! I"’l) J-A-. ([pr 2]r w, n, I"'2) if
and only if (g, ¢w$, 1, 3)) [5, (p, fw$, n, is). Also, (g, 2}, w, n, %) |3,
(p, 3], w, m, i) if and only if (g, fw$, n, ) 5, (B, ¢w$, n + 1, 7).
In addition, ([g, 2], w, n, 1,) |7, (*) if and only if (g, ¢w$, n, 1) |7, (
¢w$, n + 1, 7,) for some p in F, . For in the latter case, ([p, 4], +1)
will be in g.(g, @, m), where m = h(i,) and a is the nth symbol of w.
Note that (f2)(,.4; is defined exactly when (f,), is (ieﬁned.

Third, by rules (:) and (), (g, 3], w, m, ) |5, (p, 8], w, n, %) if
and only if (g, ¢w$, n + 1, 7,) 1. (p, ¢w$, n + 1, 5,) by a sequence
of moves such that 4, does not enter a state of F, . Also, ([g, 3], w, n, 7:)
7, (*)if and only if (g, fw$, n + 1, 7)) |7, (p, ¢w$, n + 1, 72) for some
pin F,.

Putting together the I;esults above, we have that for w*of length
n —2- 1! ([QI: 1]1 w, 1: 1) ';. (*) if and Only lf (917 ¢'UJ$, 0: 1) ,;1 (py ¢w$;
n + 1, 1) for some p in F, and integer, 7. Also, [g,, 1] is in F, if and
only if ¢$ is in L, . Thus, e is in T(4,) exactly when ¢$ is in T'(4,).
We conclude T(4;) = L,. It is again straightforward to see that
A, is in class C.

We say a closed class of automata is recursive if there is an algorithm
to determine if any given word is in 7'(4), for any automaton A in
the class. We have a corollary to Theorem 8.

Corollary: If C is recursive, then for L, and L, as in Theorem 8, we can
effectively find an automaton, A, , with T(A,) = L., from the specification
for A, .

Proof: It is sufficient to note that in this case, we can effectively de-
termine if ¢§ is in L, , hence we can effectively find 4, .
We can now prove a series of closure properties of the INBA.

Theorem 9: Let A, and A, be INBA in some closed class, C. Let L, =
T(A,) and Ly = T(A,). Then there exists A, in C with T(A¢) = L.L, =
{w|w = wvand wisin Ly, vin L.},

Proof: Let A, = (S,, I, My, {1, g1, hy, @1, F)) and 4, = (S, I,
My, f2, g2, ha, g2, F2). By Lemma 2, we can assume that S, and
S, are disjoint, and L, and L, are contained in (I — {¢, $})* Define
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As = (S5, I, Mo, {5, g3, ha, [q., 1], F2), where hy = hy-ho, My =
MM, and S, = 8: U {qa) \J {lg, i] [ g in S,, 7 = 1 or 2}, where
s is a new symbol. T'(4,) will not be L,L., but rather {whw = w, u
and v 5 ¢ win L,, vin L,}. We define f, and ¢, as follows:

@) (f)e = (f),ifgisin 8,,7 = 1 or 2.
(71) (fa)g = (f2), if ¢ is in S,.
(7)) (fa)es = ™.

Forallain I — {¢, $} and min M, , with  the largest element in M, :

(i) If gisin S, but not in F, , then g4([g, 1], a, m) = {([p, 1], 0) | (p, 0)
iS in gl(Ql ar al(k) m))} U {([pr 2]; +1) l (p.v +1) iS ]_D gl(?; a: Gl(k: m))}!
1= 1lor?2

(v) If gisin F, , then g4([q, 1], a, m) is defined as in (w) 7s([q, 2], a, m) =
t(Ip, 11, 0) | (p, 0) is in g,(q, a, o,(k, m))} \J [([p, 2], +1) | (P, +1)
Is in g,(g, a, o,(k, m))} \J {(gs, 0)}.

v7) 9s(qs, @, m) = gu(q., a, aa(k, m)).

(vi1) gs(q, @, m) = g.(q, @, a.(k, m)) for all ¢in S, .

Note that if 4, is in a state of the form [g, 2], then on its last move,
its input head moved right. If in a state of the form [g, 1], the input
head did not move right on the previous move. When A; has just
moved right and entered an accepting state, according to rule (v),
it has the option of continuing to simulate 4, or going to state gs,
resetting the balloon to state 1, and then simulating 4. .

Formally, from ru]eq (7), (i) and (v), it is straightforward to show
that ([q,, 1], w, 1, 1) [A, ([p, 2], w, 4, ) for j = 2 and p in F, if and only
if (g, u,1,1) 'A. (*), where u is the first § — 1 symbols of w. Certainly,
if and only if p is in F, does ([p, 2], w, 7, 1) |7, (gs, w, §, 1), by rules
(742) and (v). Finally, by rules (i7), (vi) and (vid), (gs, w, J, 1) |7, (*)
if and only if (g, where v is the jth and subsequent
symbols of w.

Thus, T(4,) = {w|w=w withu, v 5 ¢ uin L, , v in L,}. Clearly,
Aj is in C. Suppose € is in L, . By Theorem 5, redone for the INBA,
and Theorems 7 and 8, there exists 4, in ¢ with T(4,) = T'(4,) U L,.
If eisnot in L,, let A, = A,. If eisin L,, there exists 4; in C' with
T(A;) = T(4,) U L,. If € is not in L,,let A; = A,. Finally, if ¢
is in both L, and L,, by Corollary 2 to Theorem 6, redone for the
INB’&, and Theorems 7 and 8, there exists 4, in €' with T(4,) =
T(A;) U fe). Otherwise, let A; = A;. In any case, it should be clear
that T'(4,) = L,L..

Corollary: If C is recursive, A, can be effectively found.
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Proof: Immediate from the corollary to Theorem 8.

Theorem 10: Let A be a INBA in class C, with T(A) = L. Then there
is an automaton, A, , in C, with T(4;) = L* = {¢f U L \J LL\J
LLL\J ---

Proof: By Corollary 1 to Theorem 6, redone for INBA and Theorems
7 and 8, there exists 4, in C with T(Al) = = L — {¢}. Note that
L* = L* . Moreover, since ¢ is not in T(A,), We can always effectively
find A,. Let A, = (S,, I, M, f,, g, h, @, ). We will construct
A, = (SZ,I M, {2, 92, h, qz,Fg)mC mthT(Az) = L* — {¢}. Define
S, = {q.} Y {[q, i]|¢in S,, 7 = 1 or 2}, where g, is a symbol not
in S, . Let F, = {[g, 2] | ¢ in F,}. Define f, and g, as follows:

(@) (e = (fi)aforgin S,, 7 = lor2.

(@) (f)e = '

Forallain I — {¢, $} and m in M:

(i) If g is in S, — F., ¢.(Ig, i, @, m) = {([p, 1, 0) | (p, 0) is in
gl(q! a, m)} U [( P, 2]; +1) l (P: +1) 18 in gl(Q: a, m)}: 1 = lor 2

(@) If g is in F,, g2([g, 1], @, m) is as in rule (#42). g2([g, 2], a, m)
{([p, 1], 0) | (p, 0) is in g(g, @, m)} Y {(p, 2], +1) | (p, +1) is in
71(g, a, m)} \J {(gz, 0)}.

(v) 9'2((]2; a, m) = gl(QI ) @ m)

The significance of 1 and 2 in the second component of state
of S, is as in Theorem 9. A, simulates 4, , but when in an accepting
state, just having moved its input head right, has the option of entering
state g, . Thus, it is easy to see that (g., w, i1, 1) [ 4. (p, 2], w, 42, 1),
with 7, > 4, if and only if (g,, %, 1, 1) I,, (*), where u is symbols T
through j, — 1 of w. Exactly when p is in F, do we have ([p, 2], w, §z, %)
[7. (g2, w, §=, 1). Thus, if and only if (g., w, 1, 1) |A, (*), can w be
written in the form w%,u. - -+ U, k = 1 whereu;,1 <7 = k,isin L, .

Thus, T(4.) = L% — {¢} = — {e}. Surely, 4, is in class C.
By an argument used in Theorem 9 we can find Aa in €, with T(4,) =
T(A,) \U {e] = L* Moreover, since € is in T(A;), we can always
effectively find 4, .

Theorem 11: Let A = (S, I, M, f, g, h, qo, F) be a INBA in class C.
Let G = (K, I — {¢, 8}, I, — {¢ $}, 8, \, po) be a g.s.m. We assume
for convenience that I, is a finile alphabet containing ¢and $. Let L =
{w | ¢w$ isin T(A)}. Then there is an automaton, A, in C, with T(4,) =
¢L.$ and L, = G(L).
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Proof: Let A, = (S,,1,,M,1,,q:,h, ¢, F,). The proof is represented
in Fig. 4. The finite control of 4, contains a generator which non-
deterministically generates symbols in I — {¢, $}. These symbols
are processed by G, and compared with the input. The input head
rests on the leftmost uncompared symbol. 4, also uses the generated
symbols as inputs to A, which it simulates. A, accepts if A accepts
while A, is scanning $ on the input, with no symbols left to compare.

We define S, = {[g, p, a, v, 4] | ¢ in S, pin K, ain I — {§}
ora=¢1=120or3and uin (I — {¢, $})* but |« | < max (| A(p, a) |
for pin K, a in I.}. The first component keeps track of the state of A4,
the second, of the state of G. The third component holds the symbol
generated, and the fourth, the output of @ for that symbol and the
current state of . The last component is 1 usually. It is 2 when A4
would have just moved its input head right, and it is 3 when A would
be scanning ¢ or $.

Define F, = {[q, p, ¢, ¢, 2}]]qin F, ¢ = 1 or 3}. Also, ¢ = [q0, D0,
€ € 3.

Define f, by:

(7)) ()tap.aw,is = foif eithera ## eore = 3.
(#7) () 1a.p.ans1 = o' otherwise.

Torallmin M, bin I, — {¢, $}, ¢in S and p in K, define:

|¢_ INPUT $—’

e — -
’ FINITE —I—_—|

CONTROL
OF Ay —-‘ G COMPARE

GENERATOR CONTROL

L OFLA—

BALLOON
OF A

Fig., 4 — Automaton A,.

SIMULATED INPUT FINITE |
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(i13) g.((g, Do, & ¢ 3], ¢, m) contains ([s, po, ¢ ¢ 3], 0) if (s, 0) is
in g(g, ¢, m).

(iv) 9:([q, Po, & ¢ 3], ¢, m) contains ([s, po, ¢, ¢ 2], +1) if (s, + 1)
is in g(g, ¢, m). (A, simulates A with ¢ as input.)

@) ¢:(q, p, & € 1], b, m) contains {([s, p:, @, u, 1], 0) | for any a
in I — {¢, $},if (s, 0) is in g(g, a, m), p, = 4(p, a), and u = \(p, a)}.
Likewise, if b = §.

() g:(lg, P, & & 1], b, m) contains {([s, p., a, ¥, 2], 0) l for a in
I — {¢, 8}, if (s,+1) isin g(g, @, m), p, = &(p, a), and u = \(p, a)}.
Likewise, if b = §. (The random generator generates symbol @, which
is stored in the third component. \(p, a) is stored in the fourth. The
new state of 4, with a as input symbol is stored in the first component,
and the new state of G in the second. If A would immediately move
its input head right, the fifth component is 2. A 2 there tells 4, it is
finished with symbol a. Otherwise, a 1 is placed in the fifth component.)

(vii) 9.([g, P, @, w, 1], b, m) includes {([s, p, a, u, 1], 0) | (s, 0) is in
g(gq, @, m)}. Likewise, if b = §.

(viti) g.(la, P, @, u, 1], b, m) includes {([s, p, @, u, 2], 0) | (s, +1)
is in g(g, a, m)}. Likewise, if b = $. (4, simulates a move of A. The
fifth component of A,’s state becomes 2 if the input head of 4 moves
right.)

(iz) g.(lq, P, a, u, 2], b, m) = {((g, P, ¢ u, 1], 0)}. Likewise, if b = §.
(Remove @ as third component and set fifth component to 1.)

() For any «, ¢.((g, p, ¢ bu, 1], b, m) = {([g, p, ¢ u, 1], +1)}.

(zi) g:((q, p, €& bu, 1], by, m) = ¢ for b, # b. (4, compares its fourth
component with the input.)

(zi1) g:([q, P, € ¢ 1], $, m) contains ([s, p, ¢ ¢ 3], 0) if g(g, §, m)
contains (s, 0).

(x177) g:([g, D, & € 3], $, m) contains ([s, p, ¢, ¢ 3], 0) if g(g, §, m)
contains (s, 0).

We will state a series of intermediate results that follow directly
from the rules given. We assume that G(w) = z. .

I. By rules (i) and (i7d): ([g0, Po , & &3], €28, 0, 1) [3, (g, Po, & & 3],
¢$$1 0: t) lf a'nd only lf (flo ] ¢‘UJ'$, O’ 1) '; (Q, ¢W$, 01 ?')-

1I. By rules ("")r (”): (?'U), and (13:) ([Q; Do, €& & 3]1 ¢I$, 0; 11) [I:
([S, Po ¢': € 2]: ¢1‘$, 1, "2) |I. ([31 Po, & & 1]; ¢t$: 1, 7'2) if and only if
(g, ¢w$: 0, 7,) II (s, ¢'w$: 1, 12). "

II1. By rules (i), (v) and (vi7): (g, P, &, & 1], ¢28, 4, %) |7, ([s, 7, @, w, 1],
¢z$, 7, 7,) by a sequence of moves for which the third component of
state never becomes ¢, or the fifth = 2, if and only if (g, ¢fw$, k, 7,)
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I% (s, ¢w$, k, 1,), where the kth symbol of w is @, 8(p, a) = r and
Mp, a) =

IV From II1, and rules (7), (vi) and (vit2): ([q, p, € ¢ 1], ¢x$, 4, 1)
[ 1 sy 7y @, u, ] ¢x$, j, 7.), by a sequence of moves in w lnch the third
component, of state never becomes e if and only if (g, ¢w$, k, 7)) I 3
(s, ¢w$, k + 1, 7,) by a sequence of moves in which the input head
remains at position % until the last move is made. Here, again, the
kth symbol of wis a, 8(p, @) = r and \(p, a) =

V. From rule (iz), (g, p, @, w, 2], ¢28, 4, 7) |7, ([3, p, € w, 1], €28, 4, 7)
for any a # ¢, and if the hfth component is 2, no other move is possible.

VL. From rule (z), (g, p, &, 11, €28, 1 , ) |1, (g, P & & 1], 28, ja , 9
by a sequence of moves for whlch the third component of state remains
¢, if and only if symbols j, through j» — 1 of x form u.

VII. Combining IV, V, and VI: ([q, p, ¢ ¢ 1], ¢28$, i, %) |,,‘ ([s, r,
¢ € 1], ¢28, 4., 1,) by a sequence of moves in which the third component
changes from e to a symbol in I — {¢, $} back to e only once, if and
only if for some a in 7 — {¢, $} and w in (I, — {¢, $})* we have

(a) 8(p, a) = r;

(b) Mp, @) = u;

(¢) Symbols j, thlough j» — 1 of x are u;

(d) (q, ¢w$, k, 7,) ] 2 (s, ¢w$, k + 1, 7.) by a sequence of moves in
which A’s input head remains statmnary until the last move, and
a is the kth symbol of w.

Note that j, = j» = n + 1 is not prohibited.

VIII. Using I, II, and VII iterated: ([go, po, € ¢ 3], ¢2$, 0, 1) ]A‘
(lg, p, & ¢ 1], ¢2$, n + 1, 7), where | z | = n, if and only if, for some
win (I — {¢ $1)* of length k:

(@) (g0, ¢fw$, 0, 1) l 1 (g, ¢w$, k + 1, ©) by a sequence of moves
in which A’s input head does not reach $ until the last move;

(b) 8(po, w) = p;

(€) Mpo, w) = .

IX. Directly from VIII, A, accepts ¢a$ by entering a state [¢, p, ¢ ¢, 1],
where ¢ is in F, if and only if there is a w as in VIII such that A accepts
¢w$ by entering state ¢ on the same move on which A first moves
its input head to $. N

X. From rules (x77) and (zi20), ([q, p, ¢ ¢ 1], ¢w$, n + 1,4,) |5, (s, ,
€ € 3], ¢x$, n + 1, 4,), where | x| = n, by a sequence of moves in
which the third component of state remains ¢, if and only if (g, fws,
kE+1, h)ld(s ¢w$, k + 1, 7.), where kb = | w |.

XI. From VIII and X, A, accepts ¢z$ by entering a state [s, p, ¢, €, 3]
if and only if A accepts ¢w$, where \(p,, w) = 2, by a sequence of
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moves in which A enters state s while its input head remains scanning $.
XII. Finally, from IX and XI, we have that 4, accepts ¢z$ if and

only if A accepts ¢w$, where \(p, , w) = x. Thus, T'(4,) = ¢G(L)$.
We need only add that A, is, by definition, in class C.

Corollary: If L = T(A) for some INBA, A, in class C, and G is a g.s.m.,
then there is an automaton A, in class C, for which T(A4,) = G(L).
If class C is recursive, we can effectively find A, .

Proof: Direct from Theorems 7 and 8.

Theorem 12: Let L = T(A) for some INBA, A, in class C. Let R be
a regular set. Then there is an automaton, Ay , in class C, with T(As) =
L/R = {w | for some z in R, wx is in L}.

Proof: Let A = (S, I, M, f, g, h, o, F). We can surely find a finite
automaton, 4, = (K, I — {¢, $}, 8, po, F',) accepting RN (I — {¢, $})*
Intuitively, 4, will simulate A4, but will always have the additional
choice of guessing that it has seen w. It then nondeterministically
chooses the symbols of z, continuing to simulate A. We will construct
A, to accept L/R — {¢}. The reader can easily see how e can be added
to the set accepted by A, .

Formally, let A; = (Sy, I, M, {2,902, b ¢o, F2). 82 = S\ {[g, p, al | ¢
inS,pinK,ainI — {¢,$}ora=¢.F.= {[g,p, el | gin F, pin F',}.
Define f, and g, as follows:

(7') (fE)e = fu fOI' q in S

(@) (f2)tepor = foforallgin §, pin K, ain I — {¢ $} ora = «
Forallbin I — {¢, $}, min M:

(¢37) ga(g, b, m) contains (s, d) if g(g, b, m) contains (s, d).

(iv) g2(q, b, m) contains ([s, po, €, +1) if g(g, b, m) contains (s, +1).

(v) g2(q, b, m) contains ([s, p, al, 0) if g(g, b, m) contains (s, +1)
and &(p,, @) = p, for any ain I — {¢, $}.

(v7) g=(lq, p, al, b, m) contains ([s, p, a], 0) if g(g, a, m) contains (s, 0).

(vii) g:((g, p, al, b, m) contains ([s, 7, a,], 0) for any a, in I — {¢, §]
if g(g, @, m) contains (s, +1) and &(p, a,) = 7.

(viii) g.([q, p, al, b, m) contains ([s, p, €, +1) if g(g, a, m) contains
(s, +1).

Note that no moves are possible if the third component of A.’s
state is e. From rules (z) and*('iz'i), we see that (g0, w, 1, 1) |7, (g, w, 4, ©)
if and only if (g, , w, 1, 1) |3 (g, w, j, 7). Let w be of length n. By rules
(#7) and (@), (g, w, n, ©) |7, (*) if and only if p, is in F, (i.e., €is in k)
and (g, w, n, 1) |7 (%)
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By rules (7) and (v), (g, w, n, ) |3, (s, p, al, w, n, 1,) if and only if
(g, wz, m, 7,) |7 (s, wx, n + 1, 7,), where the first symbol of z is a and
8(po, a) = p.T Let | 2 | = k. Then, by rules (), (v7), and (vi7), gq, P, al,
w, n, 1’1) :. ([Sa T al}! w, n, 12) if and OHIY if (Q; wx, n + 1; "!‘l) l: (SJ wx,
n + k, i,), 6(p, 2) = r, and x ends with a, .

By rules (i7) and (vii?), ([q, p, al, w, n, 7) |7, (*) if and only if (g, wa,
n + &, ©) |7 (*), where the last symbol of z is @, and z is in R.

Putting the above together, we see that (g, w, 1, 1) |7, (*) without
ever entering a state of the form [q, p, al, a = eif and only if € is in
R and (g0, w, 1, 1) |3 (). Also (go, w, 1, 1) |5, (*), entering a state
g, p, a], a # e in so doing, if and only if for some z in (I — {¢, $})%
(i, wr,1,1) |7 (* and zis in B — {e}. If A, is modified to accept ¢,
provided ¢ is in L/R, then the resulting device is A, .

VIII. CONCLUSIONS

We have considered four types of general automata, and defined
closed classes for each of these four types. We have shown certain
common operations to preserve these eclasses, in the sense that if a
language, L, is accepted by an automaton in the class, and L, is the
result of the operation applied to I, then I, is accepted by some
automaton in the class,

The classes model many of the common devices which have been
heretofore considered in the literature, such as stack automata and
counter machines. It seems as though they could be expected to
model any future class of automata which are defined solely by the
ways in which their infinite storage ean be locally manipulated. The
classes do not model such things as linear bounded automata or
time/tape complexity classes of Turing machines, intuitively bhecause
such automata are defined by global restrictions on memory. (I.e., one
may use “this much” memory, and no more.)

In Table I, we list the types of balloon automata and the opera-
tions considered. A check indicates that the operation preserves
membership in a closed class of automata.

It is hoped that when models of automata are proposed in the
future, theorists will find it efficient to show that their model is
cquivalent to a closed class of balloon automata. They will then have
a variety of standard theorems already proven for them.

+ Note, however, that the first symbol of x does not affect the operation of A
at this step.
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TABLE I
2DBA 2NBA 1DBA 1NBA

Reversal v v
Intersection v Vv
g.8.m. inverse v Vv Vv
Union 4
Intersection with regular set Ve v Vv

Concatenation (-)

Kleene closure (*)

g.s.m. forward

AR A RN AN AN AN

Quotient with regular set (/)

IX. FUTURE PROBLEMS

There are various theorems about automata that have not been
reflected in the results on balloon automata. For example, one-way
deterministic pushdown automata are closed under complement. It is
probably true that all common types of one-way or two-way de-
terministic automata are closed under complement, although proofs
have not been published in all cases. Likewise, many one-way de-
terministic devices are closed under quotient with a regular set. Most
one-way nondeterministic devices seem to be closed under reversal, and
80 on,

We therefore propose as an interesting and worthwhile problem, the
question of putting additional restrictions on closed classes of balloon
automata such that some or all of these results can be proven. Of
course, the conditions must be liberal enough so that the usual auto-
mata are still modeled.

Second, it would be useful to have a model, like the balloon auto-
maton, which could describe, as closed classes, such things as linear
bounded automata and computational complexity classes. The prop-
erties of these classes deserve some treatment, and an approach sim-
ilar to the one taken here might be a reasonable one.

It is hoped that the methods we have used to prove certain
theorems plus the fact that we could not prove some others will shed
some light on why some theorems are hard to prove, or visualize, while
others are easy. Specifically, we have an indication as to why certain
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theorems seem easier to prove for nondeterministic devices than
deterministic.
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