Factoring Polynomials
Over Finite Fields

By E. R. BERLEKAMP
(Manuscript received May 9, 1967)

We present here an algorithm for factoring a given polynomial over
GF(q) into powers of irreducible polynomials. The method reduces the
factorization of a polynomial of degree m over GF(q) to the solution of
about m(g — 1)/q linear equations in as many unknowns over GF(q).

There are many applications in which one wishes to factor poly-
nomials. Some programming systems, such as Brown's ALPAK,' deal
with polynomials and rational funections with integer coefficients. In
such a context one is interested not in approximate numerical values
for the real and complex roots, but rather in irreducible factors which
are themselves polynomials with integer coefficients. One of the stand-
ard tricks mentioned by Johnson® for finding such irreducible factors
i1s to reduce all of the coefficients of the original polynomial modulo
some prime, p, and then factor the reduced polynomial over the Galois
Field, GF(p). If the reduced polynomial factors, one gets certain
constraints on the factors of the original polynomial; if the reduced
polynomial does not factor over GF(p), then one may conclude that
the original polynomial is irreducible over the integers. The success
of this method for factoring polynomials over the integers clearly de-
pends upon having an efficient procedure for factoring polynomials
over GF (p).

The problem of factoring polynomials over finite fields arises di-
rectly in Golomb’s study® of feedback shift register sequences. In
Golomb’s words, this study “. . . has found major applications in a wide
variety of technological situations, including secure, reliable and ef-
ficient communications, digital ranging and tracking systems, deter-
ministie simulation of random processes, and computer sequencing and
timing schemes.” The properties of all eyelie error correcting codes,
including the important Bose-Chaudhuri*-Hocquenghem?® codes, de-
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pend on the factors of their generator polynomials in some finite field.

Such codes have been studied extensively by Peterson® and Mac-

Williams.” Recent advances in decoding techniques by Berlekamp®

make these codes even more attractive from the practical standpoint.
We present here an algorithm for factoring a given polynomial,

0= 30, 1eGFQ,

into powers of irreducible polynomials.
First, we construct the m X m matrix Q@ over GF(g), whose 7th
row represents z°“™" reduced modulo j(2). Specifically,

m—1
2 = E Qi+‘l.k+12i mod f(z).
k=0

The Q matrix may be computed with a shift register wired to multiply
by z mod f(z). The register is started at 1, which is the first row of Q.
After ¢ shifts, the register contains the second row of @; after g more
shifts, it contains the third row of @, --- , ete. After g(m — 1) shifts,
it contains the last row of Q.

Given any polynomial g(2) of degree <m over GF(q), g(2) = 2_."i=0 0 2
we may compute the residue of (g(2))* mod f(z) by multiplying the
row vector [go, gis *** » m_1] by the @ matrix. This follows from the
observation that

m—1
(Z Q’.‘Qiﬂ.kﬂzk)
k=0

I
ML

GO = 96) = T 0"

m—1 m—1

= E (Z QiQHJ.kH)zk-
k=0 i=0

Similarly, we could compute (g(z))° — g¢(2) mod f(z) by multiplying

the row vector [go, g1, *** » gm_1] by the matrix (Q — I), where I

is the m X m identity matrix over GF(g).

Second, we find a set of row vectors which span the null spa,ce of
(Q — I). This may be done by appropriate column operations on the
matrix (Q — I).* Each such row vector in the null space of (@ — I)
represents a polynomial g(z) which satisfies the equation (g(2))* —
g(z) = 0 mod (), and conversely, each g(z) which satisfies this equa-
tion is represented by a row vector in the null space of (@ — I).

Third, we select any of the polynomials g(z) found in the second step,
and apply Euclid’s algorithm to determine the greatest common
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divisor of f(z) and g(z) — s for each s £ GF(g).* We then have the
factorization

f@) = (IFI( ) (z.cd. (/&), g(2) — 9)).
Remark: If g(z) is a scalar, then this factorization degenerates into

{z) = g.ed. (f(z), 0) I,I, g.cd. (b(z), s)
i) I 1.

a0

However, if g(z) has positive degree, then the factorization is non-
trivial.

Proof: Since (g(z))* — ¢(z) = 0 mod f(2), f(z) divides (g(2))* —
9() = [L.corw(g(2)) — s. Therefore, f(2) also divides

Hnar(u)(g-‘?-d- (f(2), g(2) — 9))-

On the other hand, g.c.d. (f(2), g(z) — s) divides f(z). If s # ¢, and
s, t € GF(q), then g(z) — s and g(2) — ¢ are relatively prime, as are
g.e.d. (f(2), g(2) — s), and g.c.d. (f(2), g(z) — t). Therefore,

HatGF‘(q)(g‘C'd' (f(z)s g(Z) - S))

divides f(z). Assuming both polynomials to be monie, they must be
equal since each divides the other. Q.E.D.

Ezample I: Let {(z) be the binary polynomial 1110001110001, or f(z) =
14+z+4+27 4+ 22+ 2 + 28 + 2" The successive powers of z are

100000000000 111000111000
010000000000 011100011100
001000000000 001110001110
000100000000 000111000111
000010000000 111011011011
000001000000 100101010101
000000100000 101010010010
000000010000 010101001001
000000001000 110010011100
000000000100 011001001110
000000000010 001100100111
000000000001

*In practice, there is no need to perform all of Euclid’s Algorithm ¢ separate
times to determine all of the g.c.d.’s. A short cut will be seen in the example.
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100000000000 000000000000
001000000000 011000000000
000010000000 001010000000
000000100000 000100100000
000000001000 000010001000

50 000000000010 and 000001000010
@ = 111000111000 @ — I = 111000011000.
001110001110 001110011110
111011011011 111011010011
101010010010 101010010110
110010011100 110010011110
001100100111 001100100110

If we number the columns of @ — I from 0 to 11, then the upper
right quarter of the @ — I matrix may be zeroed if we add the 3rd
column to the 6th column, the 1st, 2nd, and 4th columns to the 8th
column, and the 5th column to the 10th column. The lower right
quarter of the @ — I matrix then becomes

011000

111110
011001
©010110°

011110

001110

The equation [gs, g7, *++ , gulR = 0 is found to have solutions
lges g7, -+, gul = [4,0,0, 4, 0, A] where A = 0 or 1. The first six
coordinants of g are then readily found from the equation g(Q — I) = 0,
with solutions ¢ = [B, 4,0, A, A,0, 4,0,0, 4,0, A]; A, B « GF(2).
Finally, we apply Euclid’s algorithm to f(z) = 1110001110001 and
g(z) = s10110100101. By letting ¢t = s + 1, and leaving s as an in-
determinate, we may effectively find the g.c.d. of 111000111001 and
010110100101 with the same computation that computes the g.c.d.
of 111000111001 and 110110100101:

1110001110001
510110100101
1001110101
10110100101
50111101
1001110101
110s1s01
s0 11101
T

R
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If t = 0, the g.c.d. is 10011101; if s = 0, the g.c.d. of 1110001110001
and 010110100101 is equal to the g.c.d. of 111101 and 11001001, which
is 111101. Both 111101 and 10011101 are irreducible and the factoriza-
tion is complete:

Q+z+2 42"+ 42 +29
=(l4+z+4+2+20+2+2"+2°+2) over GF(2).

In general, suppose f(z2) = [[: (p'"(2))**, where each p'’(z) is
an irreducible polynomial over GF(g). Then f(z) divides

Hucﬂa)(f/(z) —3)
if each (p'”(2))* divides g(z) — s; for some s; ¢ GF(g). On the other
hand, given any set of scalars s, , s,, ++- , s, ¢ GF(q), then the Chinese
remainder theorem guarantees the existence of a unique g(z) mod f(z)
such that g(z) = s; mod (p'*(2))** for all 7. Since there are ¢" choices

of 8,8, ,s,, there are exactly ¢" solutions of the equation (g(z))* —
¢(z) = 0 mod f(z). Therefore,

The number of distinet irreducible factors of {(2) is equal to the dimen-
sion of the null space of (Q — I).

In particular, the polynomial f(z) is the power of an irreducible
polynomial iff the null space of (@ — I) has dimension 1. In this case,
the only solutions of (g(z))* — g(2) = 0 mod j(z) are scalars in GF(q),
and the null space of @ — I contains only vectors of the form
[s, 0,0, --- , 0]. If the null space of @ — I has dimension n, it has a
basis consisting of # monic polynomials: g’ (2), ¢¥(2), --- , g™ (2).
Without loss of generality, we may assume that ¢ (z) = 1 and that
the other n — 1 basis polynomials have positive degree.

When we apply Euclid’s algorithm to f(z) and g’ (z) — s, we obtain
a factorization of f(z). If this gives fewer than n factors of f(z), then
we may compute the g.c.d. of ¢*'(2) — s and each known factor of
{(z). By this process, we may continue to refine the factorization of
f(2). The following argument shows that this process must eventually
yield all n irreducible-powers which are factors of j(z).

Let C be the n X n matrix over GF(g) defined by the equations
9" () = C;; mod (p'”(2))*. Then C must be nonsingular. For if
2 A;C.; = 0 for all 4, then Y_; A;9”(2) = 0 mod (p*”(2))** for
all 7, whence »_; A;g'”(z) = 0, contradicting the linear independence
of gV(2), ¢”@), -+, g"(2). When we apply Euclid’s algorithm to
f(z) and g‘”(z) — s, we obtain a factorization of f(z) into as many
different factors as there are distinct elements in the jth row of C.
The irreducible-powers (p**’(2))** and (p*’(2))** are separated iff C, ;
Cy,; . Since C is nonsingular, for every 7 and k there exists some j such
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that C;; # C.;. Thus, any two irreducible-power factors of f(z)
will be separated by some g‘”(2).

The factorization of any power of an irreducible polynomial is
readily accomplished by applying Euclid’s algorithm to the poly-
nomial and its derivative.

We conclude with another example.

Ezxample II: TFollowing a suggestion of R. L. Graham, we let f(z) =
z" — 1 over GF(g), where n and ¢ are relatively prime. Then @;., ,;+, = 1
if ¢7 =j mod n. Specifically, suppose n = 15 and ¢ = 2. Then

100000000000000 000000000000000 0O
001000000000000 011000000000000 1
000010000000000 001010000000000 2
000000100000000 000100100000000 3
000000001000000 000010001000000 4 -
000000000010000 000001000010000 5
000000000000100 000000100000100 6
000000000000001 @ — I = 000000010000001 7-
010000000000000 010000001000000 8
000100000000000 000100000100000 9
000001000000000 000001000010000 10
000000010000000 000000010001000 11
000000000100000 000000000100100 12
000000000001000 000000000001010 13
000000000000010 000000000000011 14

By suitably permuting the rows and columns, we can bring @ — I
into the form
0000{0000/0000/00
1100(0000(0000{00
0110)0000|0000(00
0011/0000{0000|00
1001/0000|0000(00
0000{1100{0000|00
0000/0110{0000/00 14
0000/0011(0000j00 13
0000{1001(0000|00 11
0000{0000(1100/00 3
0000/0000{0110[00 6
0000{0000(0011/00 12
0000/0000/1001/00 9
0000000000001 5
0000]0000/0000/11 10

300 i o —~|o
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A basis for the null space of @ — I is seen to be
0@ =z + 2+ 42
9P =7 + 2"+ 27 42"
000 =P
0@ =2 + 2.
In general, if f(z) = 2" — 1 over GF(q), then we may choose

96 = 2 7,

keC

where C is any set of numbers which is closed under multiplication
by ¢ mod n. Each such polynomial g(z) has some nontrivial factor in
common with 2" — 1.
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