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By E. R. BERLEKAMP
(Manuscript received May 9, 1967)

This paper presents cerlain formulas for I(g, n, d), the number of
information symbols in the g-ary Bose-Chaudhuri-Hocquenghem code of
block length n = q" — 1 and designed distance d. By appropriale ma-
nipulations on the m-digit g-ary representation of d, we derive a simple
linear recurrence for a sequence whose mth term is the number of informa-
tion symbols in the BCH code.

In addition to an exact solution of all finite cases, we obtain exact as-
ymptotic results, as n and d go to infinity while their ratio n/d remains
fized. In this limit, the number of information symbols increases as n'.
Specifically, we show that for fived u, 0 = u = 1,

tmqg ™I(q, ¢" — 1,uq™) =1,
where s 1s a singular function of w. The function s(u) is continuous and
monotonic monincreasing; it has derivative zero almost everywhere. Yel
s(0) = 1 and s(1) = 0. For q = 2, s(u) is plotted in Fig. 1.

Any cyclic code of block length n over GF(¢g) may be defined by its
generator polynomial, g(z), which is some factor of z* — 1 over GF(qg),
or by its check polynomial, h(z) = (2" — 1)/g(z). The number of
check digits in the code is given by the degree of g(z); the number of
information digits, by the degree of h(x). We assume that n and ¢
are relatively prime. It is most convenient to work in a particular ex-
tension field of GF(g), namely GF(g"), where m is the multiplicative
order of ¢ mod n. In this field, 2" — 1 factors into distinct linear factors:

2" — 1= ]iI (x — o).

Here « is any primitive nth root of unity in GF(¢™); «" = 1. From the
factorization " — 1 = g(x)h(x), we see that every power of « is a root
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Fig. 1 — Graph of s(w) vs. u.

of either g(x) or of h(z), but not both. Thus, a cyclic code partitions
the powers of a into two sets: those powers which are roots of the
generator polynomial, and those powers which are roots of the check
polynomial. If g(z) and h(x) were permitted to have coefficients in
GF(q™), then any partition of the powers of a would define a cyclic
code. However, the coefficients of g(z) and h(z) must lie in the ground
field GF(g). Consequently, if o’ is a root of g(x), then so are the con-
jugates of o, namely &', &'*, &'®, --- . Conversely, if all conjugates
of roots of g(x) are also roots of g(z), and all conjugates of roots of
h(z) are also roots of h(x), then all of the coefficients of the polynomials
g(x) and h(zx) lie in GF(q).

The previous remarks hold for all cyclic codes.

A g-ary BCH code of block length n over GF(g) may be defined as
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the cyclic code whose generator’s roots include only a, &', -++ , a'™’
and their conjugates. This code is capable of correcting any combina-
tion of less than d/2 errors; (¢f. Berlekamp') the minimum Hamming
distance of this code is at least d. For this reason, d is called the designed
distance of the code.

The first result on the number of information symbols in BCH codes
is the following lemma:

Classical Lemma I: Let I(q, n, d) be the number of information symbols
in the g-ary BCH code of block length n and designed distance d.

Define [ 1] by the equations
i=[1{|lmodn and 1 =[7] = n.

Then I(g, n, d) is the number of integers j, such that1 £ j = nand (i =zd
for all k.

Proof: a' is a root of the generator polynomial of the BCH code iff
there exists some %(j) such that [j¢"] < d. Conversely, o' is a root
of the check polynomial iff [ j¢*7] = d for all k. Q.E.D.

The classical lemma enables one to compute the number of informa-
tion symbols in any g-ary given BCH code without doing any cal-
culations in GF(q) or its extensions. One need only enumerate certain
types of residue classes mod n. In practice, this enumeration is still
often tedious, particularly when n and d are large.

In order to obtain more tractable results for large n and d, we prefer
to start from an alternate form of the classical lemma:

Classical Lemma I1: Let I(q, n, d) be the number of information symbols
in the g-ary BCH code of block length n and designed dislance d.

Define | 1| by the equations
i=|i]lmodn and 0 =|7i]=n— L

Then, I(q, n, d) is the number of integers 7, such that 0 < i = n — 1
and |ig* | < n + 1 — d for all k.

Proof: 1 < j<nand[jf]2dforallkiff 0 < (n—j) =n—1
and | (n — j)¢" | = n —dforallk. Leti =n — j. Q.E.D.

In the wide sense, BCH codes may be defined over any alphabet
whose order, g, is a prime power, and for any block length, n, which
is relatively prime to ¢. In the narrow sense, however, n is required to
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be one less than a power of g. For narrow sense codes, the smallest
extension field of GF(g) which contains the nth roots of unity is GF(n4-1).
For wide sense codes, this extension field is always larger, usually
much larger. Since the decoder must perform certain computations
in this extension field, narrow sense BCH codes are more easily im-
plemented than their more general wide sense counterparts.

We shall enumerate the information symbols in narrow sense BCH
codes by reducing the problem to the enumeration of certain kinds of
sequences over the alphabet consisting of the integers 0,1, 2, ---, ¢ — 1,
as first suggested by Mann.” We begin by defining the appropriate
manipulations with such sequences.

We shall always use capital letters for sequences. We let (Q — 1)
denote the sequence consisting of the single letter ¢ — 1. Unless other-
wise stated, we allow every sequence to be either finite or infinite.

Let V = V,V,V3 --- be any finite or infinite ¢g-ary sequence (i.e.,
a sequence of numbers V,, where V, is an integer, 0 = V; = ¢ — 1.
We let V = V,V.V, - -- denote the complement of V, defined by V, =
(g—1)— V,foralli. If W = W,W, --- W, is a finite g-ary sequence,
then we may form the cyclic shifis of W: W,Wy -« W, W,, W,W,

cee WW, Wy, --- . If X is a finite g-ary sequence, X = X, X, ---
X,, then we may form the concatenation X * V = X, X,X; ---
X;VV,Vy «+. . This concatenation may be formed whenever V is

a finite or infinite g-ary sequence. If V is a finite g-ary sequence, then
V * X is a cyclic shift of X * V.

The g-ary sequence Y is said to be a prefiz of X iff X = Y * Z for
some Z; Y is said to be a suffiv of X iff X = Z * ¥ for some Z. A prefix
must be a finite (or empty) sequence; a suffix may be empty, finite,
or infinite. V is a proper prefiz of X iff X = V * Z, and neither V nor
Z is empty. Z is a proper suffix of X iff X = V * Z and neither V' nor
Z is empty. If X is a finite g-ary sequence, X = X, X, --- X, , then we
may form the ileraled concalenation of X with itself, X = X,X, -
X, X.X, --- X, --- . In particular, ( = 1) denotes the infinite g-ary
sequence all of whose letters are ¢ — 1.

Wesay X < Y iff there exists a jsuch that X; = ¥V, for¢=1,2, .-,
i—1,butX; < Y;.If X € Y and ¥ 4 X, then one is a prefix of
the other.

This ordering is similar to the numerical ordering of g-ary fractions,
but there are important differences. For example, 1 = 0.01 < 0.0101 =
5/16, but the sequences 01 and 0101 are incomparable, because one is
a prefix of the other. On the other hand, 0.0111111 --. = 0.1 = 3,
yet 01111 --- < 1. This type of example may be excluded by writing
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all fractions in their terminating form if they have one. We may then
assert the following:

Let
=Y Uqg", v=XTVq" U=UUU, -

and V = V,V,V, - -+, and suppose that (Q = 1) is not a suffix of U or V.
Then
U< TVT=u<y

JU <V
vy or
1U is a prefix of V.

IIA

u

We say that X is an immediale subordinate of ¥ iff X is a finite se-
quence, X = X, X,X; - X;,and X, =Y,, X, =Y., -+, X4my =
Y,-1, but X, < Y,. The sequence ¥ has ¥, immediate subordinates
of length 1, ¥, immediate subordinates of length 2, ¥, immediate
subordinates of length 3, ... Y, immediate subordinates of length k.
If the sequence ¥ has only a finite number of nonzeros, then we may
define the greatest 1mmediate subordinate of Y. If the last nonzero in
the sequence ¥ = Y,Y, .- is ¥, , then the greatest immediate sub-
ordinate of ¥V is V, ¥V, .-+ V,_,(V, — 1). If the sequence Y contains
an infinite number of nonzeros, then ¥ has infinitely many immediate
subordinates. All of them are less than Y itself, but none of them is
the greatest immediate subordinate.

Similarly, we say that Y is an immediate superior of X iff ¥ = V,Y,Y;
oo ¥y, where?V, = X,,Y,=X,,---,Y,, = X,_, but ¥, > X,.
IfX =X,X, --- Xy and X, & (@ — 1), then the least immediale
superiorof XisYV =Y, ¥, - V,; ¥V, =X, fort=1,2,--- , bk — 1,
and Y, = X, + 1. It should be evident that the least immediate superior
is among the longest immediate superiors, and the greatest immediate
subordinate is among the longest immediate subordinates.

Definition: 1If q is any integer, U/ is any infinite ¢g-ary sequence and
m is any integer, we define J(g, U, m) to be the number of g-ary m-
tuples all of whose ecyelic shifts are less than U.

Lemma III: (Complemented form of Mann’s Lemma)
1f
n=q" —1, n+1—d= > Uq", 0=U: <q,
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U=UU,-- U,,and Y is any g-ary sequence then
Ig,n,d) = J(q, U*Y,m).

Proof: Lemma IIT reduces to Lemma II under the following cor-
respondence: The g-ary m-tuple U corresponds to the integer n +
1 — d; another g-ary m-tuple W = W,W, --- W,, corresponds to the
integer w = .7, W.g" ". The first cyclic shift of W is the sequence
WoWy -« W,.W,, which then corresponds to the integer

Z W™+ W, =quw— (¢" — DW,.
Modulo n = ¢" — 1, the integer corresponding to the first cyclic shift

of W is seen to be congruent to gw. Therefore, the successive cyclic
shifts of an m-digit g-ary sequence W correspond to the integers | w |,

Lwq |, [wg® ], - -+, Lwg™ ") These integers are all <n + 1 — 4 iff all
cyclic shifts of W are < U, which is true iff all cyclic shifts of W are
<U=*Y, forany Y. Q.E.D.

The choice Y = U has an interesting interpretation:

; U—{g—i — z 2 U‘_q—(ﬁ-mic) — (Z: Drgq_i)/(l _ q-—m)

k=0 i=1 i=1

(Zm: U-'Fl’“_")/(q’" —-D=1- %

i=1

Thus, the sequence U is the g-ary expansion of 1 — (d — 1)/n. For
this reason, we may investigate the behavior of I(g, n, d) for large n
and d with a fixed fractional error correction capability, (d — 1)/2n,
by studying J(g, U, m) as a function of m for fixed ¢ and U.

We shall temporarily ignore the periodicity of the U sequence,
and consider the function J(g, V, m) for an arbitrary g-ary sequence
V. We assume only that the sequence V has no terminal zeros.

From the definition of the immediate subordinates of V, it is clear
that if an m-digit g-ary sequence W 1s less than V, then some immediate
subordinate of V is a prefix of W. For if W is less than V, then there
exists a k such that W; = V;fori = 1,2, --- ,k — 1,but W, < V,,
and the sequence W,W, --- W, is a prefix of W and an immediate
subordinate of V.

Now suppose that some m-digit sequence W and all of its eyclic
shifts are less than V. Since W itself is less than V, some prefix of W
must be an immediate subordinate of V. Are all possible immediate
subordinates of V possible prefixes of W? In general, they are not, for
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some immediate subordinates may have suffixes which are greater
than V. If X * ¥ is an immediate subordinate of V" and YV is greater
than V, then X * ¥ cannot be a prefix of W. For, if W = X * V * Z,
then one of the eyclic shifts of W is ¥ * Z * X which is greater than V.

For example, consider the ternary sequence V' = 20212. Its im-
mediate subordinates are 0, 1, 200, 201, 2020, 20210, and 20211. The
immediate subordinate 20210 has the suffix 210 which is greater than
V. Therefore, if 20210 is the prefix of T, then the second cyclic left
shift of T is greater than V. Similarly, 7’s immediate subordinate
20211 has the suffix 211, which is also greater than V.

For some sequences V, this difficulty does not arise. If V' exceeds
all of its own proper suffixes, then we have the following theorem:

Theorem 1: Let V be a g-ary sequence which exceeds all of its own
proper suffives. Then:

(?) No immediate subordinate of V is a proper prefix of any other
smmediate subordinate of V.

(i) Every suffix of every immediate subordinate of V 1is a concalena-
tion of other immediate subordinates of V.

(i) If W and all of its cyclic shifts are less than V, then W can be
uniquely decomposed inlo a concatenation of immediate subordinates of V,
including a (possibly empty) end-around immediate subordinale. Spe-
czﬁcally W = ”7(1) * '”;(2) K oe . ¥ -lV(i) * -n-)-(i-rl) * W(e‘+2} * ek nﬂi—l] *
W@ W, Ww® oo WYY are immediate subordinates of Vi W %
WS« W % oo W 4s the end-around immediale subordinate. The
end-around tmmediate subordinate has a prefix, W', which is a suffix
of W, and a suffic W * W * ... « W which is a prefix of W, as
well as a concalenation of the shorter immediale superiors W', W |
cee W,

(i) Every concatenation of immediate subordinales of V, including
a (possibly emply) end-around immediale subordinate yields a sequence
which has the property that all of its cyclic shifts are less than V. No
such sequence of length m can exceed the marimum m-digit concatenation
of immediate subordinates of V. If Y 7s the maximum m-digit concalena-
tion of tmmediate subordinales of V,and Y = U = V, then J(q, V, m) =
J(q, U, m).

)

Jlg, V,m) = mV, + X2 Vidlg, V, m — k),
k=1

where V; is taken as 0 if j exceeds the length of the sequence V.
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(vi) Let
n=q¢"—1, d=ZXDyg"", 0=D:<y,

D=DD,: D,.
If
V*(@Q ~1) <D=
least m-digit concatenation of tmmediate superiors of V,

then,
I(q,n,d) = J(q, V, m).

Proofs:

(?) This property of immediate subordinates does not even depend
on the suffix condition on V. From the definition of immediate sub-
ordinates, each immediate subordinate must disagree with V only
in the immediate subordinate’s last digit, and hence no immediate
subordinate can be a prefix of any other.

(77) Let us first prove the weaker assertion:

(a) Every proper suffix of every immediate subordinate of V' has
a prefix which is a shorter immediate subordinate of V.

Let S be an immediate subordinate of V, and let S be a suffix
of S. We may write § = 8% * 8§ Since S differs from V only in its
last digit, S is a prefix of V, and V = 8™ * V. Since S < V,
8?® <« V™. Since V exceeds all of its own proper suffixes, V¥ < V.
Therefore, S < V. Therefore, some prefix of S® is an immediate
subordinate of V.

(b) If every suffix of an immediate subordinate has a prefix which
is an immediate subordinate, then every suffix of every immediate
subordinate is a concatenation of immediate subordinates.

For, suppose F is a suffix on an immediate subordinate, then I =
B % F* where B™ is an immediate subordinate. Since F is a suffix
of F, it is also a suffix of an immediate subordinate, and F* = B®* * F®,
where B® is an immediate subordinate - - - F = B® * B® * B® ...

(#17) Since W < V, it contains a prefix W which is an immediate
subordinate of V. After shifting this prefix around to the end, we may
similarly identify W, W, ... | WY, each of which is an im-
mediate subordinate of V. The sequence W " * W™ * W™ x ... %
WYY is a cyclic shift of W, and so it must have a prefix, P, which
is an immediate subordinate of V. P is not a prefix of W*”, so W’
must be a prefix of P. Suppose that W * W™ % ... « W' is a prefix
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of P, but that W # W % ... % W"“*" is not a prefix of P. (This
defines 7.) Then P = W' « W™ * ...+ W % § where the (possibly
empty) sequence S is a proper prefix of W, Since S is a suffix of
P, which is an immediate subordinate of V, S is itself a concatenation
of immediate subordinates of V. But no immediate subordinate of V
is a proper prefix of any other immediate subordinate of ¥, so S must
be empty.

(#v) This is the converse of (777). Suppose we are given the sequence
W= 89 % WY s WD % v s WD 5 PO where W, W, ... |
WY and WY = P + 8 are immediate subordinates of V. We must
show that all eyclic shifts of W are less than V. Any cyclic shift is of the
form ¢ = S™ « WY % WD 4 ooLox WD % WO o« WE % ... %
WD % PR where W™ = P® = S If 8® is empty, C has the
prefix W**V which is an immediate subordinate of V. If S* is not
empty, by (¢Z) it has a prefix which is an immediate subordinate of V,
which is a prefix of C. In either case, C' has a prefix which is an im-
mediate subordinate of V. Therefore, C < V.

(v) V has V, immediate subordinates of length m, each of which
has m distinet cyelic shifts. Thus, W may be chosen as a single end-
around immediate subordinate of ¥ in mV,, ways.

If W is a concatenation of several immediate subordinates of V,
I’V —_ IV(” * ]’V(?] * ovee ¥k ‘”{r(f—l) * II](:I') ‘Vhel‘e W“), W(i')’ e ‘pvii‘l)
are immediate subordinates of ¥ and W is a (possibly empty) proper
prefix of the immediate subordinate TV % W™ % ... * W then the
length of T is the length of W '""*” plus the length of W™ # W™ % ... «
WY % W' For each k, there are V, choices of W™ of length F,
and J(g, V, m — k) choices for W™ = W % ... x W' « W,

(vi) Least special case: Suppose D is the least m-digit g-ary sequence
greater than V * (Q — 1). Letting

d = =D ", v = ZV.g"F, 7= V. ",

it is evident that d + v = n 4+ land v = n + 1 — d. According to
Lemma III, I(g, n, d) = J(gq, V, m).

(vi) Greatest special case: Let D be the least m-digit concatenation
of immediate superiors of V. Complementing, D is the greatest m-digit
concatenation of immediate subordinates of V. In the notation of
part (@), D = Y. Lettingd = =D.¢""*,d = n — d. Lettingn + 1 —
d = 32U;g"*, U > Y because n + 1 — d > n — d. Theorem follows
from part (7z) and Lemma I1I.

(vi) The general case follows because J(gq, U, m) is a monotonic
function of U. Q.E.D.
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Example I: Let V be the binary sequence 1101. We compute

Bose distancet Designed distance

m  J(g, V, m) Binary Decimal Binary Decimal
1 1 1 1 1 1
2 3 01 1 01 1
3 + 011 3 010 2
4 11 0011 3t 0011f 3
5 16 00111 7 00110 6
6 30 001101 13 001100 12
7 50 0011011 27 0011000 24
8 91 00110011 51 00110000 48
9 157 001100111 103 001100000 96
10 278 0011001101 205 0011000000 192
11 485 00110011011 411 00110000000 384

12 854 001100110011 819 001100000000 768

Here J(g, V, m) is computed by Theorem 1. The designed distances
are computed according to Theorem 1v7, using ¥ = 0010, with im-
mediate superiors 1, 01, and 0011. V#*(Q = 1) = 001011111111 -+ .

Evidently, the binary BCH code of block length 2'* — 1 and designed
distance 768 is identical to the binary BCH code of block length 2 — 1
and designed distance 769 or 770 or --- or 819. This code has 854
information symbols. This code is distinct from the binary BCH code
of block length 2* — 1 and designed distance 820. This is true in
general, because the least m-digit concatenation of immediate superiors
of V is necessarily minimum among all of its own cyclic shifts. This
“greatest designed distance’” is called the Bose distance.

It happens that the binary BCH code of block length 2" — 1 and
designed distance 768 is also distinct from the binary BCH code of
block length 2* — 1 and designed distance 767, because the 12-digit
binary expansion of 767 is minimum among all of its cyclic shifts.
This, however, need not be true in general. For example, the binary
BCH code of block length 2* — 1 and designed distance 3 is not distinct
from the binary BCH code of block length 2* — 1 and designed distance
2, because the 4-digit binary expansion of 2 = 0010 is not minimum
among its eyelic shifts; the minimum is 0001.

¥ Defined later in the text.
£ This code is identical to the binary BCH code of block length 15 and de-

signed distance 2.
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In general, we would like to determine the number of information
digits in the g-ary BCH code of block length » = ¢” — 1 and designed
distance d = ZD;¢" ’. The previous theorem gives us a solution to
this problem if we can find a sequence V which is greater than all of
its own suffixes and has the property that

V*@-=-1)<Ds

least m-digit concatenation of immediate superiors of V.
Complementing this condition gives

V>Dz
greatest m-digit concatenation of immediate subordinates of V.
or

V>D*@Q<=1 >
( greatest m-digit concatenation)
of immediate subordinates of V/ * 0 > X,

where X is the greatest immediate subordinate of V. We may assume
that V" has no terminal zeros, and that the length of 7 does not exceed
the length of D. Since X and V have the same length, X is a prefix of D,

Since V is the least immediate superior of X, the problem of finding
V is reduced to the problem of finding X, which is a prefix of D. The
solution is as follows:

Theorem 2: Let X be the shortest prefix of D such that
D=X+*F, F+x@-1D)zD*@Q-1,
and let V be the least immediate superior of X. Then
(@) V*(@Q ~1) <D=
least m-digit concatenation of immediate superiors of V.
(77) V exceeds all of its own proper suffives.
Proof of (i):

Since X is a prefix of D and V is an immediate superior of X, V
is an immediate superior of D. So V> Dand V > D * (Q = 1).
Complementing gives ¥V * (Q — 1) < D=*0,s0 V* (Q = 1) < D.
— P —
Let X* = X* X% ...« X, Then F* (Q = 1) = D*(Q - 1) is
equivalent to X' * F + (Q =~ 1) =2 X" * F = (Q = 1). Therefore,
X*X"*F+(Q -1 zZX*XV+F+(Q - NorXV*F*(Q 1) =
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X® % F#* (Q = 1). By induction, X® * F+ (@ = 1) = XED % Fox
Q@—=-1andD=*(Q —~1) 2 X® xF= Q - 1) for all k. Since tb%'s is
true for arbitrarily large k, D * (@ — 1) = X. Complementing, D * (0 =
X =< any infinite concatenation of immediate superiors of V. There-
fore, D < any m-digit concatenation of immediate superiors of V.

Proof of (i7):

Tet X = YV # Z * L, where ¥ and Z are arbitrary (possibly empty)
and L is the final digit of X. We have

V=Y*Z*x({L+1)
D=Y*Zx*xL*F
F+Q-1)=2Y*Z*xL*F*(Q 1) =X=*F*(Q —1);

X*Fx(Q=1)=Y*Z+*L*F*(Q—1)>Z*L*F=*(Q =~ 1),
else ¥ would be a shorter prefix than X which satisfied the same condi-
tions.

No proper suffix of V can equal V, for the suffix must be shorter.

If some proper prefix of V, say Z * (L 4 1), (Z possibly empty)
exceeds V, then

Z*(L+1)>Y*Z*(L+1)>Y+*Z*xL =X,

IfZ+*L>X,thenZ*L*F+*(Q —1)> X*F=#* (@ = 1), a con-

tradiction. If Z # L is a prefix of X, then X = Z # L # ¢ and from
X*F+(Q = 1)>Z*L*xF=*(Q—1)
we have
Z+L*G@*F*»(Q ~1)>Z+*L*F=*(Q —~1)
GxF*+Q@=-1D)>F+@Q=-1)zX*F*(@Q—1.

Now Z * L is a shorter prefix than X, a contradiction. Therefore,
Z*x (L+ 1) <Y=*=Z=*(L+1),ie., V exceeds all of its own proper
suffixes. Q.E.D.
Example II: Let ¢ = 9,n = 728 = 9° — 1,d = 217. Then D = 261,
D=621,D*8 = 627888 --- , X =62,V =63, V = 25.

Bose distance

m JT g-ary decimal
1 6 3 3
2 42 26 24
3 270 263 219

+In this and subsequent tables we use the single later J as an abbreviation
for J(q, V, m).
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Ezample II1: Let ¢ = 2, n = 511, d = 185. Then D = 010111001,
D = 101000110, D * 1 = 101000110111111 --. , X = 101000, V =
101001, V = 010110. Immediate superiors are 010111, 011, 1.

m J Bose distance Smaller designed distance
1 1 1 1

2 1 11 11

3 4 011 011

4 5 0111 0111

5 6 01111 01111

6 16 010111 010111

7 22 0101111 0101110

8§ 29 (01011111 01011100

9 49 (010111011 010111000

Example IV: Let ¢ = 2, n = 511 = 2° — 1,d = 187. Then D =
010111011, O = 101000100 = X, V = 101000101, V = 010111010.

m J Bose distance
1 1 1

2 1 11

3 4 o011

4 5 0111

5 6 01111

6 10 011011

7 22 0101111

8§ 29 01011111

9 49 010111011

The answer agrees with Example III, although the recurrence is
different. This illustrates the general nonuniqueness of V. Theorem
2 specifies one satisfactory method of finding V, but as seen from
this example, this ¥V need not be unique. The simplest recurrence
rule generally arises from the shortest possible V, which corresponds
to the greatest V, or the least D. This can generally be found by first
reducing D insofar as permissible.

Example V: Let n = 2" — 1, d = 411. Then D = 00110011011.
We could take D = 11001100100 = X and proceed. However, we
instead consider d = 410, D = 00110011010. Since D has a cyclic
shift smaller than itself, the code is unchanged. But D = 11001100101,
X = 1100110010 does not look much easier, so we continue. Each
prime marks the starting point of a smaller cyclic shift.
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D

00110011010
00110011001
00110011000
001170010111
00110010110

00110010000
0011°0001111

00110000000
00101111111

Since 00101111111 has no cyeclie shift less than itself, this designed
distance is the Bose distance of a different BCH code. We must instead
use D = 00110000000, D = 11001111111, X = 1100, V = 1101. The
recurrence is given in Example I: I(2, 2" — 1,411) = 485, This
same V is obtained if we started with D = 00110011000, or any D
in the region

00110000000 = D = 00110011000

Example VI: Letq = 2,n = 2" — 1, D = 001010010100111, D * { =
1101011010110001111 - - -, X =110101101011000, V =110101101011001,

¥ = 001010010100110

m J Bose distance
1 1 1
2 3 01
3 4 011
4 11 0011
5 16 00111
6 36 001011
7 64 0010101
8 115 00101011

9 211 001010011

10 378 0010100111

11 694 00101001011

12 1256 001010010101

13 2276 0010100101011
14 4112 00101001010111
15 7474 001010010100111
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Although the brute force method just used gives the right answer, a
more devious approach proves easier. Instead of D = 001010010100111,
let us consider D = 001010010100101, X = 11010, V = 11011, V =
00100. This yields a different set of codes, with a much simpler re-
currence:

m J Bose distance
1 1 1
2 3 01
3 4 011
4 11 0011
5 21 00101
6 36 001011
7 64 0010101
8 115 00101011
9 211 001010011

10 383 0010100101

11 694 00101001011

12 1256 001010010101

13 2276 0010100101011
14 4126 00101001010011
15 7479 001010010100101

The code with D = 001010010100111 has 5 less information digits
than the code with D = 001010010100101, corresponding to the 5
distinet eyelic shifts of 001010010100101.

1. ABSYMPTOTIC RESULTS

Let us define the enumerator
J(q, Us;2) = 22 J(q, U, m)z".

Given a sequence V' which is less than all of its own proper suffixes,
we may also define

Vi) = ; v,
so that
V') = X kVie.

The recurrence

m=—1
Jg, V,m) = mV,+ 2 ViJ(qg, V., m — k)
k=1
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becomes
J(gq, V;2) = 2V'(®) + V(@J(g, V;2)

whose solution is

oy = V@
J(q» T 3") - 1 — V(Z)
Let p,, p2, --- be the (not necessarily distinct) complex reciprocal

roots of 1 — V(z). Then
1=V =TI -5

- V@ = -Zn Il -2

i#i

2V'(e Zl—i’z;‘; — .Z i (p)™ = MZ: Z phiz™,

1— Ve 4 ot

Therefore,
Ja, Vi = 2 2"

50
J(g, V,m) = Z o,

where p; are the complex numbers defined by the equation

1— V@) = Ha — pid).

Although this gives an explicit expression for J(g, V, m), the expression
depends upon the complex numbers p; . For finite values of m, it is
usually easier to compute J(gq, V, m) directly from the recurrence
relation of the previous section, since these calculations involve only
integers. For asymptotic results, however, the above equation is very
useful.

Definition: Let p = max | p; |, let s = log, p.

Since all coefficients of the polynomial V(z) must be nonnegative
integers not exceeding g — 1, it is easily seen that the p; with the
maximum absolute value is real and positive, and 1 £ p = g. Clearly,

J(g, V,m) = p"
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for large m, in the sense that

lim p™"J(q, V, m) = 1.

Similarly,
log, J(q, V, m) = m log, p = ms.
If
u= 2 Uyq"’,
=1
and

X=U<sV*0,

where V exceeds all of its own suffixes and X is the maximum sub-
ordinate of V, then

I(g, ¢" — 1, uq") =~ ¢™.

In other words, if we fix the fraction d/n = w and let n and d grow
large, then

I ~n'
or, more precisely,

s(u) = lim log, (g, qm — 1.ug"),

For given g, the function s(u) is a rather complicated animal. To
compute it, one must first write u in g-ary. If U exceeds all of its proper
suffixes, set V = U; otherwise write U = X * F where X is the shortest
prefix such that U < F. V is then taken to be the least immediate
superior of X. Then, s is defined as the logarithm (base ¢) of the maxi-
mum reciprocal root of 1 — V(z).

It may easily be shown that s is a continuous, monotonic nonincreas-
ing function of w. It may also be shown that the derivative of s with
respect to u is either 0 or it is undefined. There are two kinds of points
at which the derivative s'(u) is undefined. First, there are the end-
points of the intervals on which s(u) is constant. % is a lower endpoint
of such an interval iff U is a finite sequence which exceeds all of its
own proper suffixes; u is an upper endpoint of such an interval iff U
is a periodic sequence, equal to some of its suffixes but not less than
any others. At these endpoints, s(u) is undifferentiable because it has
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only a right derivative or a left derivative, but not both. There is
only a countable number of points of this type.

The more interesting points are those at which s(x) has neither a
right derivative nor a left derivative. This happens iff U is an infinite
sequence which exceeds all of its own proper suffixes, and 0 is not a
suffix of U.

The set of points u such that s(x) is not differentiable is uncountable,
but it has measure 0. Professor T. Pitcher of the University of Southern
California has also shown® that this set has Hausdorf dimension 1.
This appears to be entirely due to the large density of these points
in the vicinity of # = 0. In general, I conjecture that the Hausdorf
dimension of the set of points in the interval ¢ £ u = b [where 0 = aq,
b £ 1, s(a) # s(b)] is s(a). In some sense, almost all of the nondif-
ferentiable points in any interval seem to lie very near the leftmost
cluster point of the interval.

When Mann® first obtained results identical to those here in the
special cases u = ¢, he also showed that p is the only reciprocal
root of 1 — V(z) with magnitude greater than 1. Thus, not only is

I=p",
but in fact, for sufficiently large m,
I ={"),

where () denotes the nearest integer to ‘-’. Unfortunately, this
strengthened result is not true in general. For some values of u, 1 — V(2)
has only one reciprocal root with magnitude greater than 1, but for
other values of v, 1 — V(z) has many reciprocal roots with magnitude
greater than 1. Little is known about the behavior of the smaller
complex reciprocal roots of 1 — V(z) as a function of u, although
B. T. Logan®* has obtained a few preliminary results in this area.

II. ACTUAL DISTANCE

As one increases the designed distance, the number of information
symbols in the resulting code must either remain constant or decrease.
Thus,

I(q, n, d) is the maximum number of information symbols in any of the
g-ary BCH codes with designed distance = d.

We must be careful to distinguish between I and I, defined by
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I(g, n, d) is the maximum number of information symbols in any of the
g-ary BCH codes with actual distance = d. '

It is obvious that I(g, n, d) = I(q, n, d).

For example, there are three binary BCH codes of block length 23,
having 23, 12, and 1 information symbols. The code with 23 informa-
tion digits has Bose distance = actual distance = 1, but the code
with 12 information digits has Bose distance 5, actual distance 7.
The code with 1 information digit has Bose distance = actual distance =
23. Therefore, 1(2, 23,6) = I(2,23,7) = 1,but 1(2, 23,6) = [(2,23,7) =
12. For all values of d = 6 or 7, I(2, 23, d) = I(2, 23, d).

The known cases in which I(g, n, d) > I(q, n, d) are relatively sparse.
Peterson, Kasami, and Lin® and Berlekamp® have investigated this
question for narrow sense binary BCH codes (where ¢ = 2 and n =
2™ — 1), They proved that 7(2, 2" — 1,d) = I(2, 2" — 1, d) if d divides
2™ — 1, or if d is one less than a power of 2, or if m’ divides m and
122~ —1,d) =12,2" — 1,d) > I(2,2% — 1,d + 1), orif m is
sufficiently small, or if d is sufficiently small, or if d and/or m satisfy
any of various other number theoretical constraints. More recently,
Peterson and Lin” have shown that if 7(2,2" — 1,d) = I(2,2" — 1,d) >
I1(2,2" —1,d+ 1),and 1 £ j £ m — dthen I(2,2" — 1,2'd 4+ 2" — 1)
= I(2, 2" — 1, 2'd + 2" — 1). No examples are known in which 7(2,
2™ — 1,d) > I(2, 2" — 1, d), and it has been conjectured that (2,
o — 1,d) = I(2,2" — 1, d) for all m and d.

Although this conjecture remains open, we can obtain certain results
about the asymptotic behavior of 7(2, 2" — 1, 42"} from the known
classes of special cases in which 1(2, 2" — 1, d) = I(2, 2" — 1, d).
We would like to define

2 ) <+ 27:1 _ m
§(u) = lim log, /(2, 1, u2 )

m—o m

Unfortunately, however, we have no assurance that the limit exists.
In order to discuss the asymptotic behavior of the best BCH codes,
we define

.02, 2" — "
&) = lim sup log, 7(2, 2 1, u2 )-

moszo m

Clearly §(u) = s(u). Like s(w), §(u) must be a monotonic nonincreasing
function of u, because if &' > d, the codewords of the ¢g-ary BCH code
of distance d’ are a subset of the codewords of the g-ary BCH code of

distance d.
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We can prove that §(u) = s(u) for certain values of u, as indicated
by the following theorem:
If u = 27% then 8(u) £ s(27%)

Proof: We know that if w = 27%, then
I, 2" w2™ < I2,2" —1,2"" — 1)

=12 2" —1,2""% -1 mzzk
Hence,
log 7(2,2" — 1,u2") _ log I(2,2" — 1,2"* — 1),
m = m
So
m m—k __
§w) < lim log 1(2, 2 1,2 D _ @
m—c0 m
because s(u) is continuous. Q.E.D.
This shows that §(u) = s(w) if v = %, 1, %, --- . Similarly, one can
show from the recent theorem of Peterson and Lin that §(u) = s(u)

for certain other values of u.

We conjecture that §(u) = s(u) for all w. This is a weakened form
of Peterson’s conjecture that (2, 2" — 1, d) = I(2, 2" — 1, d) for
all m and d.
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