Equations Governing the Electrical
Behavior of an Arbitrary Piezoelectric
Resonator Having N Electrodes*

By P. LLOYD
(Manuseript received May 24, 1967)

In a paper by J. A. Lewis (B.S.T.J., 40, 1961, pp. 1259-1280) general
formulas for the electrical admitiance of a piezoelectric resonator, having
essentially one pair of electrodes, were derived in terms of motional param-
elers associated with the normal modes of vibration of the device. The logical
extension of this work lo a resonator with N electrodes 1s presented here.
Expressions are given for both the admitlance and impedance matrices
of the resonator. These malrices are expressed n terms of molional param-
eters associaled with, respectively, (i) the normal modes of vibration with
all electrodes connected together, and (i5) all electrodes left open circuited.
The electrical equivalent circuil for the 2-port characteristics of the N
electrode resonator is given for two particular examples.

I. INTRODUCTION

General formulas for the electrical admittance of a piezoelectric
resonator having essentially one pair of electrodes were derived by
Lewis These formulas are consistent with those derived earlier for
special cases such as long bars and large plates (see, for example,
Mason?®). In Lewis’ work the admittance funection is expanded about
its poles in an infinite series. The residue at one of these poles deter-
mines the strength of the contribution of the normal mode, associated
with the pole, to the overall vibrational behavior of the resonator
when it is driven at a frequency close to the natural frequency of the
mode. Surprisingly, the work of Lewis seems to have seen little ap-
plication, as far as can be judged, except for that of Lloyd and Red-
wood,* and Byrne, et al.*

* Most of the work described here is based on part of the author's doctoral
thesis (University of London, 1966).
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With the current interest in multi-electroded resonators, such as the
monolithic erystal filter? it is pertinent to consider the logical exten-
sion of the work of Lewis to the case of an arbitrary resonator having
N electrodes. A discussion of this problem has previously been pre-
sented by the author,® and also by EerNisse and Holland.”

Included in Section II of this paper are the basic equations govern-
ing the piezoelectric resonator, presented here for completeness.

In Section III various integral relations are derived for use in Sec-
tion TV where the properties of the admittance and impedance matrices
are investigated. The electrical equivalent circuits for two particular
2-port configurations of the N electrode resonator are also derived in
Section IV, in order to illustrate the application of the admittance
and impedance matrices.

A brief list of the principal symbols used in the text is given below.

1.1 List of Symbols

p  Mass per unit volume.
p. Mass per unit area of an electrode.
u; Particle displacement vector.
S Strain tensor.
T,, Stress tensor.
7, Traction (stress vector).
¢  Electric scalar potential.
E,; ZElectric field vector.
D; Electric displacement vector. :
c%., Elastic stiffness tensor (measured at constant electric field).
e..; Piezoelectric constant tensor.
5 Dielectric constant tensor (measured at constant strain).
n: Unit vector normal to, and outwards from surface of body.
®, Flectric potential on the pth electrode.
Q, Total charge on the pth electrode.
B Volume of the body.
A TUnelectroded area of the body.
A, Area of the pth electrode.
w  Angular frequency.
A =o'
The tensor components above are referred to orthogonal Cartesian
coordinate axes z, . The comma notation is used to indicate differentia-

tion, e.g. D; ; = 8D./dx; , and the repeated index summation conven-
tion iS H.Sed, e.g., D;,, = Dl.l + Dg,g + D3 3.
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II. BASIC EQUATIONS OF A PIEZOELECTRIC RESONATOR

The equations describing the steady vibrations of a piezoelectric
body are listed below.
The equations of motion:

p\u; + Ty ; = 0. (1
The divergence equation of electrostatics (for an insulator):
D;,;=0. (2)
The piezoelectric constitutive relations:
T = ciiuSu — e.;E. (3)
D, = €nuSu + en B, 4
where
S = $,r + i), (5)
and
E, = —¢,. (6)
The symmetry relations
Clikt = Chix = Crit = Crrii » (7
enii = €nii (8)
€mn = €nm - (9)

2.1 Boundary Conditions

The boundary conditions for the resonator shown in Fig. 1 will now
be discussed.
On the unelectroded portion of the surface A

r; =0, on A, (10)
Dn; = ¢(E,) extn, = 0, on A, (11)

that is, no surface tractions and zero external electric field exist normal
to the surface. Note that (11) is an approximation which in practice is
usually valid for materials with large values of €5,/ . The driving
electrodes are assumed to be very thin metallic conductors with infinite
conductivity. Potential ®, and charge @, exist on the electrode area
A, . External electrical connections to the electrodes will not be specified
at present. We pause to note, however, that ¢ = 0 at some point ex-
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Fig. 1 — Arbitrary piezoelectric resonator with N electrodes.

ternal to the resonator. Since we have neglected the effects of the
external potential distribution, this “earth’ point only has significance
in connection with the topography of the external electrical circuit.
The latter is assumed to interact only with the currents I, and potentials
¢, on the electrodes of the resonator. The mechanical properties of
the electrode are assumed here to be nonexistent except for a surface
mass density p, . The surface of the resonator beneath an electrode is,
therefore, assumed responsible only for exerting a force consistent
with maintaining the acceleration of the electrode. The boundary
conditions at the electrode can therefore be written as

Ti = MU, on 4, , (12)
¢ = constant, on A, (13a)
and either
¢ = &, or (13b)
D;ﬂ-,‘ dAp = -"Qp . (130)
4z

Note that the choice between (13b) or (13¢) as a primary condition
is unimportant.

III. PROPERTIES OF SOLUTIONS

As is well known, the solution of the equations reviewed in Section
II for a practical case is a formidable problem, and it is often neces-
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sary to resort to some approximate method of solution. In this paper,
we will not discuss the methods for solving the equations, but rather
the nature of the solution assuming that it has been found.

Equations (1) through (13) can be expressed in terms of u; and ¢,
from which it follows that

oMt et ewiidm = 0, (14)
Catilli in = EunPram = 0, (15)
subject to the boundary conditions
efivtte,my + erisbun; = 0, on A, (16)
ey, M; — endun; = 0, on A4, (17)
with
¢ = constant on A4, (18a)
and either
¢ = &, on 4, (18b)
or
) Dn;dA, = —Q,, on A, (18¢)
and
Clptle, My F eribumn; = pus on 4, . (19)

We now note that (14) through (19) become homogeneous when ®, = 0
for all p. This latter condition represents one of the eigenvalue problems
associated with Fig. 1, namely, that of mechanical vibrations possible
when all electrodes are connected directly to the reference point. Other
eigenvalue problems associated with Fig. 1 include those where some
electrodes are open-circuited (@, = 0) and the remainder are short-
circuited (¢, = 0) (i.e., connected to the reference point).

3.1 Reciprocal Theorem

Consider two solutions of (1) through (13) denoted, respectively,
by (\', u!, ¢') and (\"”, u!’, ¢'"). The two solutions could be, for example,
those associated with two different sets of forcing parameters at dif-
ferent frequencies.

From (1) we have

[ pN "l dB + f wTi, dB = 0, (20)
v B B
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and from (2)
[ eprias =0, (21)
B

where B is volume of the body exclusive of the electrodes. Using the
divergence theorem, (20) may be written

f Nl dB — fs T dB + f WTin, dA =0,  (22)
A
and (21)
~ [ oDy aB + [ ¢Dyn a4 =o. 23)
B A

Subtracting (23) from (22), and substituting for the surface condi-
tions given by equations (10) through (13) we have

[ vt aB + Zf N dA — 3 BQY

=1 =1
= f (T84 — E'DY)dB.  (24)
B

Equation (24) is still valid when the primed and double-primed quan-
tities are interchanged. Using this fact, we have

' — m[ f pulady dB + Z L aulul d ] E(cb; 1 — BQL

= [ (wus, — BDY) - (1,8% — BUD) B, (25)
B
The quantity on the right-hand side is zero by virtue of the con-

stitutive equations (3) and (4).
Equation (25) then becomes

N
W = M)Vl = 2 (804 — ®,'Q), (26)
p=1
where
Vet = [ putul? dB + > [ pututrd @7)
p=1 Y4,

Equation (26) is a special case of the reciprocal theorem given by
Lewis' and discussed by Love® for the purely elastic case.
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3.2 Orthogonality of the Eigensolutions

Consider two eigensolutions, A\, u{, ¢™) and (\”, u{™, ¢™)
of the same homogeneous boundary problem. That is, ™ = 0 if
P = 0and Q'™ = 0if @™ = 0. Thus, for two solutions of the same
eigenset

N
(q)lr;anrr)n) _ (I);R)Q;m)) =0, (28)
p=1

and from (26)
Vui™u™) = 0, A= A (29)

Thus, two solutions of the same ecigenset satisfy the orthogonality
condition (29). Also we have from (24), the Rayleigh quotient for the
eigenvalue A'™

2 [ Hu, o) dB
v B

- V(i u™) ’ 30)

=

AN =

where
H(ui lé) = %(Ti:‘Sd - EiDl)- (31)

3.3 Expansion in Terms of Eigensolulions

The solution to the inhomogeneous boundary value problem in-
dicated by Fig. 1 can be expanded in terms of any of the sets of eigen-
solutions. These expansions are very important when electrical behavior
is of prime interest. We will show here how the forced vibrational
solution (A, u;, ¢) may be expressed in terms of two of the possible
expansions, namely: (7) the eigensolutions (\*™, uf™, ¢*™) which
correspond to the normal modes of vibration of the resonator with all
its electrodes connected to the reference point, and (77) the eigen-
solutions (A%, 42 ™) for the normal modes with all the electrodes
open circuited.

For expansion (z) we set

)

w = ui + 2 a™ui™ (32)
and

¢ = ¢,ta) + Z a(n)¢5(n); (33)
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and for expansion (%)

Uy = uf") + E b“”u?"” (34)
n=1
and
¢ = qb(a) + Z b(ﬂ)¢0(n)r (35)
n=1

where (u(”, ¢‘) is the solution to the boundary value problem of
(1) through (13), as A — 0.

Since we have not specified the means by which the electrodes are
connected to the external electric circuit we will allow the parameters
&, and @, to be of the general form

®, = &, exp (jwl), Q, = Q5 exp (jwl), (36)
&, = | &,” | exp (j8,), =1 Q7 | exp (). (37

Although it is immaterial how the charges @, and potentials ®, are
set up in relation to the external cireuit, @, and ®, are of course not
independent.

The coefficients ™ in the first expansion can be found by noting
that the equations of motion (1) and boundary conditions (12) require

I

p-)\u‘(_o) = p E (AS("] _ ?\)a(ﬂ)uf(n)’ in B (38)
n=1
and
pul” = p, 20 (A — NaPui ", on A, . (39)

n=1

On multiplying (38) and (39) by ;™ and carrying out the indicated
integrations and adding we have:

N
f phuul ™ dB + Zf poutul ™ dA,
B Ap

p=1

0 N
— E a(n)O\S(n) _ R)l:f pu?(n)uf(m) dB + E f p“uf(n)uf(m) dA,]'
n=1 B p=1 YA,
(40)
We note from (27) that (40) may be written

?\V(u,g"’uf(”')) — Ea(n)()\stn) _ )\) V(uf""uf('")). (41)
n=1
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From the orthogonality condition (29), all terms on the right are zero
except the term in ™, giving

o™ A V(i uf

= x3('1'!) _ A I’y(ﬂ.frm,uf("”)

By a similar argument we have for the coefficients in the second ex-
pansion

(42)

pom A Vuiui™)
(N7 = N) V? ™u? ™)

Remembering the definition of »{” , 4 and u?'™ we have the follow-
ing as a consequence of the reciprocal theorem (26):

(43)

N
}\S(m)'[,r(u:a!u?'{m)) — Z q)’fa)Qf(ml’ (44)
p=1
and
N
M) = = 2 Qe (45)
p=1
since

3™ =0 and Q™ =0,

Using (44) and (45) with (42) and (43)

N
Y q)ra) :‘(m}
o = E i (46)
(AS(M) _ R)RS(MV(R}S{M)H;-S[MJ)

A 2 Qe
o™ = (A )\:)’)\L(""V(u?('")u?("”). (47)
From (46), we see immediately that the contribution of the S(m)th
mode (eigensolution) in the expansion (32) and (33) is dominant when
A = A if ®(7 is held constant with frequency. We also note that
the amplitude of a™ depends on the charge on the electrodes when
the resonator is executing free vibrations corresponding to the S(m)th
mode (i.e., with all electrodes short-circuited).

Equation (47) shows similarly that the contribution of the O(m)th
mode is dominant in the expansion of (34) and (35) when A — A9™
if Q" is held constant. Also the amplitude b depends on the po-
tentials on the electrodes when they are open circuit with the resonator
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executing free vibrations corresponding to the O(m)th mode. When
applying the expansions (z) and (¢%) it should be realized that assump-
tions have been made concerning the completeness of the eigensets.

IV. THE ELECTRICAL ADMITTANCE AND IMPEDANCE MATRICES

4.1 General Considerations
The admittance matrix y,, for the N-electrode piezoelectric resonator
is defined by

N

Ip = 2 YpaPo - (48)

e=1

Similarly z,, , the impedance matrix, is here defined by

N
®, = Z 2, + R, (49)
e=1
where
I, = @, (50)

and R is a constant depending on the external circuit configuration.
The relationships (48) and (49) are postulated on the basis that the
equations of the resonator are linear and that their use is restricted to

steady vibrations.
We will now derive various properties of y,, and z,, . First we note

from (13c) and the divergence theorem that

~ N
>, - MZQ, —;wZ;fA D,-n,-dA,,=—ijD,,,.dB=
(51)

Equation (51) is simply Kirchhoff’s current law, for the conservation
of charge. We note from (48) and (51) that

2 EJPQ P, =0, (52)

p=1 g=
and since &, is arbitrary, the sum of each column of the y,, matrix is
zero, i.e.,

N
E Ype = 0. (53)

We will now use the reciprocal theorem to show that both y,, and z,,
are symmetric. Consider the solutions for two sets of potentials &;
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and ®;’ having the same frequency. Then from (26)

N
> (®QL — ®'QL) = 0. (54)
Using (48) and (54)
Z Z U DL, — Ypa®L'®L) = 0, (55)

and (49) and (54)
o X X Q) — Q) HR X @ @) = 0. (O

Since @/ and @’ are arbitrary in (55) we must have
Ypa = Yap - (57)

¥
In (56) Q. and @} are arbitrary and 52Q,=0,s0
p=1

Zpa = Zop - (58)
As a consequence of (57) and (53)

N

2 U = 0. (59)

It has been shown in this section that the impedance and admittance
matrices of an N-electrode piezoelectric resonator have properties
similar in many ways to those of an N-terminal passive electrical
network.”

4.2 Expansions for the Electrical Paramelers

We may now make use of the eigensolution expansions of (32)-(33)
and (34)—(35) to inquire into the admissible forms for y,, and z,, as
functions of frequency.

For expansion (a)

@=Q" + 2 amQ"™ (60)

0

d, = &+ D a™e)™ = &L, all &5 being zero.  (61)

m=1

Then using (46) and (60)

N = (m) (o)
. ACyq
Qn - t ) Z; mz ( S(m) _ R) ! (62)
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where

8§ (m) N8 (m)
S(M?p gfn) 8 (m) ’ (63)
R V(u| U; )

o =
For expansion (b)

Q, = Q7 + 3 b™Qe™ = @, all Q0 being zero,  (64)

m=1

®, = ® + > bl ™, (65)

m=1

So using (47) and (65)

(o) N 0 AF(M) (o)
_ o) __ _Mpa ¥a
(I’p - ‘I)n q; g (Aa(m) _ h) 1 (66)
where
CIJO(”')@O(,")
» a
Aﬂlm) V(uﬂ(m)uo (ml) '

We now define the charge-potential relations for the solution of the
static boundary value problem (A = 0) as follows:

Fp = (67)

N
o= 3 oL (68)
and
(I):;nl — E F(o) ;u) +R. (69)

It is assumed, from now on, that the static parameters such as C},
are such that quadratic forms like C;®,®, are positive definite. Proof
of this depends on energetic considerations.

We now put
?\O(ﬂl) — wim B'nd RS(“‘} — w;m , (70)
and define
O = Gl — 0. (71)
m=1

We obtain from (62) and (71) the admittance matrix of (48) in the
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form

D PR We }.
Ypa = .T‘-’-’{Cm + ng (wi’ﬂm — wEJ (72)
From (66) and (69) the impedance matrix of (49) is of the form

) 2f(m)
%=l%w~z ““}- (73)

Je at (@im — @)

Restricting our interest for the moment to an element y,, of the
admittance matrix, we observe that the form of (72) is analogous in
form to the admittance of the electrical network in Fig. 2. However,
from (59), which is wvalid for all frequencies, we require

N
>t =o, (74)
but from (63)
cm s, (75)
S0
N
> o <o. (76)

Therefore, several elements of C?” may be negative.

The form of an element of the impedance matrix (72) suggests an
analogy with the circuit of Fig. 3 but, in view of the proceeding dis-
cussion, it is again probable that several of the elements F{™ are negative.
It should be noted, however, that F>’ > 0.

4.3 Driving Point Functions

From (49) the driving point impedance Z”, at the two terminals

p-q, when all other terminals are left open-circuit is given by

I oI 1 "

G Cz Cm

O

1
|

=

W, wa @m
FOR Ypq,Co=CPq,Cm= CE,"&] AND @ = Wi

TFig. 2 — Electrical network for admittance representation.
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Cy Ca Cm
Co
— Lot
Z—> el @ @m =
—_ —d

FOR Zpq, Co = 1/FR), Cm=1/FSY AN 0 = @

o

Fig. 3 — Electrical network for impedance representation.

Z.D

((I)z: - q:a)/fp (77)
= Zpp T 22,0 + Zeq

In terms of the expansions for z,, given by (73), we have from (77)

where
o (;1?;’"“’ — &™) 79)
S (T T
and

F© = P = 282 + FL). (80)

So, clearly F™ > 0 and therefore, the analogue cireuit of Fig. 3 is
“physical” for Z,, .

At first sight, it would appear that one could easily derive a driving
point admittance for the p-g port when all other terminals are shorted.
In fact, it must be found by appropriate manipulation of either y,,
or z,, and, in general, the expression includes many elements of either
matrix. We can, however, define a driving point admittance for the
p-terminal, when all other terminals are connected to the reference
point, i.e.,

Yy = Y - (81)

The analogue electrical circuit for y,, , namely Fig. 2, is again physical.

4.4 “Black Boz" Matrices for a Two-Port

Before calculating any ‘‘black box™ transfer matrices it is convenient
to define a transformed admittance matrix valid for the resonator and
its external circuit. In Fig. 4, the terminals of the resonator are all



ELECTRICAL BEHAVIOR OF A PIEZOELECTRIC RESONATOR 1895

interconnected, there being a physical component with admittance
Y. connected between terminals p and q. The currents flowing into
the N-terminal network and resonator as a whole are

N
I = 2 v (82)
q=1
where
y;m = Ype — y:; ) (83)
and
N
yfp = - _12 yfn . (84)

Upe 18 defined by (48) and y,% = 7 , as can be seen from Fig. 4. We
may now form two-port networks. For the purposes of further dis-
cussion, any connections made externally to the two-port will be as-
sumed to be consistent with

Ii=—I,, Il=—=I, V,=®, —®,, V,=&,— & . (85

4.5 Eleclrically Symmetric Two-Port Resonator

Further discussion, with all 3,7 finite for the N-terminal resonator,
will not be continued. The reduction of a N-terminal network to a
2-port is discussed by Weinberg.”

4.5.1 Two-Port With N-2 Terminals Shorted

We will now consider a simple case where all terminals except p
and ¢ are connected directly to s, and an admittance y,2 is connected

I I,

N

Fig. 4 — External electrical connections to the resonator.
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between p and g as shown in Fig. 5. We will also assume that the con-
struction of the resonator is such that it is electrically symmetric
with respect to the ports. We have under these circumstances

I =y, V, + yVe (86)

I = Ve + ynVe, (87)
where

Yro = Yo + Vne (88)
and

Yoa = Yoo — Yne - (89)

We now consider the electrical lattice network of Fig. 6 as an analogue
of transfer characteristics of (86) and (87). The analogue (Fig. 6) is
physical if ¥, and ¥, are realizable with physical components.

Now

Y,, Yo — Ypa (90)

and
Yb = Ypp + Ypa » (91)

Using (72) and (63), ¥, and ¥, can be expressed in terms of the eigen-
solution expansion as follows:

o0 S(m)S(m) __ §(m) S (m)
Y'n — jm[(C’,(,;) _ C;;)) + ; (?n Qp Qp Qq )] : (92)

7\5‘(“) _ ?\) V(u:‘_i‘(m)uf(m))

) . o0 QS(m)QS(m) + QS(M)QS(M))
Y, = 1: C( ) C]En) ( ] ] » ] . 03
b j(.vJ ( P + q) + ”g (RS(m) _ ?\)V(u;'“m)uf("”) ( )
r gE r
ciID p Pq q Iq .
o of
(e T y r ©
Ip S r Iq

Fig. 5 — Two-port system for N-2 electrodes short-circuited.
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2Y5q

245

Fig. 6 — Electrical analogue of Fig. 5.

Also since we have taken y,, = y,,, then from (63), either

Stmy _ _ St o Somy _ S0m)

» q P

1897

(94)

It therefore follows that the S(m)th eigensolution may only contribute
to one of ¥, and Y, , depending on sign of @)™ /Q; ™. We also see
that the electric circuit of Fig. 2 is a physical analogue for both Y,

and Y, .

4.5.2 Two-Port With (N-4) Terminals Open Circuit

The symmetrical resonator with (N-4) terminals open circuit is
shown in Fig. 7. We now use the z,, matrix of (49), (67), and (73) to
derive the impedance matrix of this two-port, again subject to the
restrictions of (85). We find that

where

and

= Zm:Iv + Z:IWIU

= ZP‘JIRJ + ZPPIG r

Zw = 2y t+ 200 — 23:0-

Zw = Zpe F Zar — Zpr — Zuq -

TFrom (82) and (67)

1 S NG
z=Llow - £ 2@ ]
2 .

Jo g ()\O(m)
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Ip P q Iq
e )
tvo Vol
Oty e
I, s r Tq

Fig. 7— Two-port system for N4 electrodes open-circuited,

where
Gl = FY + F — 2F)7, (100)
= _ (@O(MJ _ @?(m))2
Gpp = )\a(:a)v(uqtm)u_ocm)) ' (101)
O(m) __ 0(m) O(m) __ 0 (m)
g = &7 2@ 9T (102)
NVl "l ™)
e e e (103)
Also since the resonator has been taken to be symmetrical, i.e.,
ZT’I‘ = ZUG ! (104)
it follows, from 67, that
((I);J(m} _ q:.?(m)) — i(rpg(m) _ @?(m))l (105)

If we represent the transfer equations (95) and (96) in terms of the
lattice analogue of Fig. 8, subject to the restrictions of (85), we have

Z, =1 [(G.ﬁ:’ — G
Jw

© \ (’:I)O(m) _ ¢O(m))(¢)0(m] — oM _ GO + cI)r;h:m)):l
Ao A — N V@ ™ud ™)
(106)

z, =+ [(G;:’ + G
e

© A (qjﬂ(m) _ ¢O(m))(¢)0(m) — o™ + o™ _ (pﬂtm))
P 8 yi 8 '] r
g kﬂ(m: O\OEM) _ )\) I;(u?(m)u;?(m)) ’

(107)
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Za
o— 1 o
Zp Zp
O ,I o}
Z,

Fig. 8 — Electrical analogue of Fig. 7.

We note by virtue of (105) that the O(m)th eigensolution only
contributes to one of Z, and Z, depending on the sign of (®2™ — &2™)
/(@2 — @2 Tt also follows that each of Z, and Z, have the circuit
of I'ig. 3 as a physical analogue.

V. DISCUSSION AND CONCLUSIONS

It has been shown how the electrical behavior of a piezoelectric
resonator with N electrodes, represented by an admittance or im-
pedance matrix, can be determined from the eigensolutions for free
vibrations of the resonator. The results for the admittance obtained
by Lewis' are contained here as the special case N = 2 in (72). The
impedance of the two-eclectrode resonator is deseribed by (73). This
result was not given by Lewis? since he did not consider the alternative
expansion of the open circuit eigensolutions. It could be argued that
since impedance is simply the reciprocal of admittance, residues of
one could be found from the other. This would, however, involve
rather cumbersome ecaleulations. Furthermore, if an approximate
theory is used to generate the eigensolutions, the expansions may only
be valid in a small frequeney range, thus making the calculation of,
say, the residues of the impedance from the admittance expansion
impossible.

Returning to the general case of the N-electrode resonator, the elec-
trical behavior can be predicted in terms of the admittance or im-
pedance matrices of (72) and (82). If external electrical components
are to be connected between the N electrodes, and a two-port com-
posite network is to be formed, its transfer characteristics can be
deduced from either matrix. In the particular case of the symmetric
resonator with N-2 of its electrodes connected together, the admittance
matrix provides simple results, whereas the impedance matrix is use-
ful for the case of N-4 open-circuited electrodes.

Before concluding, it might well be asked what reasons there are
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for preferring a motional parameter representation of the electrical
characteristics over the direct method of determining the impedance
or admittance matrices from the solution to the inhomogeneous bound-
ary value problem. These are essentially twofold. Firstly, if a two-
port N-electrode reasonator is to be designed to realize some transfer
function or driving impedance, or so on, an appropriate synthesis
procedure will usually automatically yield these motional parameters,
leaving only the task of physically realizing a resonator with these
parameters! Secondly, if the inhomogeneous boundary value prob-
lem is being solved, the inevitable numerical caleulations are least
likely to be accurate in just those ranges which are of prime interest,
namely, the poles and zeros of the admittance or impedance matrices.
Furthermore, considerable computing time would be lost, compared
with the motional parameter method, if some transfer characteristic
of the derived two-port were to be obtained for a large number of
frequencies in a narrow band.
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