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A general analysis of stability conditions of pumped nonlinear systems
is presented in this paper. The type of instability investigated for these
systems 1s that which causes spurious tones to appear at any point in the
system in the vicinity of an appropriate harmonic carrier. A set of stability
criteria that assure stabilily for the system has been given in terms of
scaltering parameters of the system. These criteria have then been applied
to investigate the stability of lossless varactor harmonic generalors that
have been shown in this paper to be potentially unstable systems. It is then
tnvestigated for these multipliers how instability arises, and how it can
be avoided by proper terminations. For some simple terminations, which
are usually used in practice, sufficient conditions, that assure total stability
of the multipliers, are explicitly given.

I. INTRODUCTION

One of the principal limitations to efficient wideband harmonic
generation with varactor diodes is the generation of spurious sig-
nals.» % 2 The origin of these signals is usually thought® to be due to a
parametric “pumping up” of some signal in the multiplier passband,
or to a parametric up-conversion process,* or a variation in the average
capacitance of the diode at input frequency.® A multiplier which con-
tains these spurious signals is considered to he unstable,* and it is
this type of instability that is investigated in this paper.

At the present time, much is not known about the stability of har-
monic generators, even though it is a widely-known experimental fact
that this is a serious problem in high-efficiency varactor multipliers.* *
Very little is also known about the conditions imposed by stability on
the available circuit configurations. Consequently, present design
procedures leave the problem to be solved experimentally, and this is
often done at the expense of efficiency. Very often isolators are used

2035



2036 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1067

to connect a chain of multipliers which are individually stable in order
to guarantee stability of the chain.* The isolators used in the chain
always lower the overall efficiency.

A start on this problem of stability in multipliers has been made by
Ref. 4 which considers the stability conditions of multipliers of order
2% with minimum number of idlers. Some simple conditions on the
terminations have been obtained* in order to ensure stability of the
multipliers. This paper extends this analysis to harmonie generators
of arbitrary order and also obtains refinements to the conditions ob-
tained in Ref. 4.

Varactor harmonic generators come under the general class of
pumped nonlinear systems, which are systems driven periodically by
a pump or a local oscillator at a frequency wo.® For such systems, a
general method can be used® to obtain the scattering parameters which
relate the small-signal fluctuations present at various points in the
system. In particular, Ref. 5 obtains these scattering relations for
lossless abrupt-junction varactor multipliers of order 2, 3¢, and 2"3°,
n and s integers, with the least number of idlers.

These scattering relations for pumped systems have been obtained
in Ref. 5 when the difference frequency w is real and small. The concept
of analytic continuation has been used to obtain these scattering para-
meters when this difference frequency is complex, and is still small
in magnitude.

Stability conditions for pumped systems are then expressed in terms
of the scattering matrix of the system and a certain characteristic
equation is obtained which determines the stability of the system. For
the system to be stable it is necessary and sufficient that the roots of
this characteristic equation must lie external to a region R of the
complex frequency plane. Proper terminations that guarantee sta-
bility of the system can he determined for the pumped system from
this equation.

We then discuss AM-to-PM and PM-to-AM conversion properties
of a set of lossless interstage networks usually used with multipliers.

Stability conditions of lossless abrupt-junction varactor multipliers,
most frequently encountered in practice, are then considered. It has
been shown that if the bias circuit is properly designed® so that there
are no currents flowing in the vieinity of de the characteristic equationi
of the multiplier can be expressed as a product of an AM characteristic

1 This condition can be achieved in practice by having a bias source with
infinite internal impedance.
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equation and a PM characteristic equation. If any root of the AM
characteristic equation lies in the closed right-half§ of the complex
plane there will not be a finite upper bound to the AM fluctuations
originating at some point in the system. Such a system is defined to be
unstable with respect to its AM fluctuations. Similarly, the PM fluctu-
ations will be finite if and only if all zeros of the PM characteristic
equation lie in the open left-half plane. For total stability of the
multiplier no zero of its AM and PM characteristic equations should
lie in the closed right-half plane.{

It has been shown for multipliers of order 2 that all roots of the AM
characteristic equation always lie in the left-half plane for arbitrary
values of input, output, and idler terminations.|| It has also been
proved for these multipliers that PM stability is not achievable with
arbitrary terminal impedances.

We then specifically consider PM stability of a 1-2 doubler, 1-2-4
quadrupler, and 1-2-4-8 octupler when their terminations are single-
tuned series circuits.f Simple restrictions to be satisfied by these
terminations are obtained to guarantee PM stability of the multi-
pliers.

Stability of a 1-2-3 tripler for an arbitrary passive idler termination
is the subject of discussion of the next section. We show that a tripler
is potentially unstable for arbitrary input and output terminations.
It has also been proven that a tripler is stable with respect to both
AM and PM fluctuations if its terminations are single-tuned series
circuits.

We next assume that the bias source impedance Z, can be a finite
number. We then show that the stability characterization of a multi-
plier having finite bias source impedance is the same as that of a multi-
plier having infinite bias source impedance.

For a multiplier of any order, a general method of obtaining the
conditions on available circuit configurations imposed by the condi-
tion of stability has also heen presented.

§ The closed right-half of the complex plane is the region of A-plane where Re
}]\:{g 0. The open left-half plane contains all the points of the A-plane for which

e XN <0

 For total stabilily of systems whose characteristic equation F(A) cannot be
expressed as a_product of AM and PM characteristic equations, it is necessary
and sufficient that no zero of #(\) lics in the closed right-half plane.

[| All terminations considered in this paper are assumed to be linear and
passive.

It can be shown that a single-tuned scries circuit is a first-order approxi-
mation to any eircuit usually used in practice, since the average elastance S. of
the varactor diode is almost always nonzero.?



2038 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967
II. SCATTERING RELATIONS IN LOSSLESS VARACTOR FREQUENCY MULTIPLIERS

For a pumped nonlinear system a general method can be used® in
order to obtain the scattering parameters which relate the small-signal
fluctuations present at various points in the system.§ Such a method
has been applied® in order to obtain scattering relations for lossless
abrupt-junction varactor multipliers of order 2"3, n and s integers, with
minimum number of idlers. The scattering matrix § is given by

Mo ! @
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It is assumed that the bias eircuit is properly designed and that
w/we K 1.

In order to discuss the stability of the multipliers it is necessary to
include the effect of the external circuits on the scattering matrix S
of the multiplier. This can easily be done as is shown in the succeeding
sections of this paper. It is also assumed in Ref. 5 that the difference
frequency  is real and small in deriving (2). Since we shall discuss
stability of multipliers in this paper it is convenient to have a complex
value for this difference frequency. The small-signal terminal voltage
v,(f) in the vicinity of the carrier frequency =kw, is represented in
Ref. 5 as

30.(f) = 2Re [V.p exp (fhwo + i)l + Vi exp (—jkwo + jw)i]. (3)

Let the difference frequency have a complex value A = o¢+jo, o and o
real. The terminal hehavior of a pumped nonlinear system can be de-

§ Since the notation used in this paper is identical to that used in Ref. 5, details
of these notations are not given in this paper for the sake of brevity. The assump-
ﬂo?s under which these scattering relations can be obtained are also given In

ef. 5.

€ Only lowest order terms in w/wo are retained in deriving (2). Since frequency
selective circuits are always used in a multiplier and since the average elastance Sy
of the varactor can always be included with these external circuits for purposes of
analysis, (2) is a first-order approximation to S in the vicinity of the carrier.
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seribed® by an equation of the form

V= Za_gl (4)

where V and I are the terminal voltage and current column matrices
and Z is an impedance matrix. We shall now utilize the principle of
analytic continuation® to obtain Z (and other parameters) of the pumped
nonlinear system when the difference frequency is complex. This can
be done by the simple expedient of replacing the variable jw by the
complex variable N = ¢ + jw wherever it occurs® in (4).§ The truth
of this statement, expressing a property of functions known as their
permanence of form, follows directly from the identity theorem, since
Z and its continuation obviously coincide on the jw-axis.®

We can, therefore, obtain scattering parameters of all pumped non-
linear systems (including those of lossless abrupt-junction varactor
multipliers) when the difference frequency A is complex.

III. STABILITY OF PUMPED NONLINEAR SYSTEMS

We shall first begin with a discussion of stability of pumped non-
linear systems in which small-signal fluctuations may be present at
various points in the system. Since lossless varactor harmonic genera-
tors are specific pumped nonlinear systems all these results and re-
marks also apply to these harmonie multipliers.

A small-signal fluctuation originating at some point in the system
is propagated, in general, throughout the system. We shall define a
pumped nonlinear system to be stable if and only if the amplitude of
small-signal fluctuations at any point in the system is finite for a
finite small-signal fluctuation originating at some point in the system.

We shall make use of some of the results obtained in the study of
stability of linear n-port systems.”*®**"**:**'* The stability of a linear
n-port system is usually deseribed by the statement that the roots of a
certain characteristic equation F(A) of the system must be external
to a region K of the complex frequency plane, that is, F(A\) s 0 in
region R, where N = ¢ + jw is the complex frequency variable. Some
set of stability criteria can also be obtained”'*'''*'* for a general
class of linear reciprocal and nonreciprocal n-ports. For a reciprocal
twoport, a well-known result by Gewertz'® states that it is stable under
all passive terminations if and only if it is passive. This theorem has
been generalized by Youla' to the reciprocal n-port. Very little, how-

_ 3 In order that évi(t) is small compared to the carrier at frequency kew, for all
time ¢, it is required that ¢ = 0.
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ever, is known''"* about the stability of linear nonreciprocal n-ports,
when n = 3.

It is shown in Section II that the terminal small-signal behavior of
noise-free pumped nonlinear system can be deseribed byi

V = Zn—ﬂl (“l')

where Z._z is a function of jws and X = ¢ + je.

We shall restrict ourselves in this paper to the consideration of
stability of pumped nonlinear systems having only two (physical)
accessible ports. It can be noted, however, that most of the concepts
developed for the system having two accessible ports can be extended
in a straightforward manner if the system possesses more than two
accessible terminal pairs. This will be evident to the reader when we
discuss stability of a tripler elsewhere in this paper.

Tf lw, and sw, are the input and out put carrier frequencies, it can be
shown® that the AM and PM fluctuations at different points in the
system can be related through a scattering matrix S:

(m). (m);
(m). | { Sua 5} (m. | )
@) LS i Sl (00
(8., (o),

where m and ¢ are the AM and PM indexes of the system, S, is the
AM scattering matrix, ete. We shall write (5) as

b = Sa. (6)

Let the system be terminated in linear passive impedances (see
Fig. 1) z,, 22, 2, and 2z, with reflection coefficients p, , p2, ps, and
ps.§ Let us define a matrix p where

p = dia. [p1, p2, s pal. )

Since z;'s are assumed passive, we have

i Let 4 be an arbitrary matrix. Then 4% A%, 47, and A4 stand for the transpose,
the complex conjugate, the complex conjugate transpose, and the determinant of 4,
respectively. Column vectors are denoted by V, I, ete. A diagonal matrix [p:8;;]
{85 =11 =7; 6;; = 0,4 = j}, is denoted as dia. [u, ps, -+, pal. La is the unit
matrix of order 7.

§ The linear impedances 2, zs, 2, and 2. are normalized with respect to “char-
acteristic impedances” at corresponding carrier frequencies. Characteristic im-
pedance at input port is the “input impedance”” and that at the output port is
the “load impedance”.”
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IIA

lp| =1, 1=i<4, )

for Re A = 0.
From (6), we can show that the system is stable if and only if§

Afl, — Sp} # 0, for Re) = 0. 9

We can, therefore, state that the characteristic equation of the system
is given by

FON) = A{l, — Sp} = 0; (10)

and for stability of the system it is necessary and sufficient that nc
root of F(N) lies in the closed right-half plane.q

(mi)y, (my)g

Z, -— — Zy
(Mr)y (mr)
—_— § -—
(GL)L (BL)S

ZE — I 24
(6r), (6r)g

Fig. 1 —Pumped nonlinear system, in amplitude-phase representation, termi-
nated in linear passive impedances.

Theorem 1: We shall now show' that two systems described by
scattering matrices S, and S, possess identical stability characterizations
if S, and S, possess identical principal minors'® of all order.

The characteristic equation F(\) of a system described by scattering
matrix S for a certain termination described by matrix p is given by
(10). If S is nonsingular, we can write (10) as

A{S™' — p} = 0. (11)

8 The constraints imposed on § for a twoport system may be found in Ref. 14,
These constraints, if satisfied, guarantee stability of the system independent of
the terminations.

1 The reader will recognize that F(A) = 0 gives the natural frequencies of the
system. For stability of a system, simple zeros of F(\) on the jw-axis are usually
allowed, since this just leads to sustained response of finite amplitude. However,
multiple order zeros on the jw-axis lead to instability of the system.
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Now A{S™" — p} can be expanded in terms of the elements of p as
follows:

4 4
A8 = p} = A8 - ; peBi + ; pep:Bi.r (12)
where B, is the principal minor of S™' obtained by striking out the
kth row and column, B,,, is the principal minor obtained by deleting
the kth and rth rows and the kth and rth columns. It, therefore, follows
that two systems described by scattering matrices S, and S, have
identical stability characterizations if S;* and S;' have identical prin-
cipal minors of all order. We know that S;* and S;' possess identical
principal minors of all order if and only if S, and S, possess identical
principal minors of all order. This proves the theorem.

If F(») = 0 for Re A = 0 for all allowable values of p, we shall say
that the pumped system is absolutely stable. If there is only a set of
p which meets this requirement the system will be considered to be
conditionally (or potentially) stable. It can be observed that if one port
of the system is terminated in a linear passive impedance 2, , and if
the real part of the impedance across any other pair of terminals is
negative for Re A = 0, the system cannot be absolutely stable. This
is one of the methods to investigate absolute stability of a system.

Tat lao

IﬂL Iﬁ
o] — oo~ — GO o+
Vai == =S Vao
Vﬂi_ VﬁD
o —_ -

Fig. 2— Typical interstage network used in a multiplier. All series and shunt
arms are resonant at frequency kewo.

IV. SOME PROPERTIES OF A CLASS OF LOSSLESS INTERSTAGE NETWORKS

Frequency separation is obtained in harmonic generators by using
linear bandpass] filters. A typical example of a class of filters most
commonly used in harmonic generators is shown in Fig. 2. This filter
has a passband centered around carrier frequency ==kw, . Such filters
with proper terminations are connected at accessible ports of a multiplier
so as to obtain the desired frequency separations and proper impedance

f This ean be a low-pass filter at the lowest carrier frequency present in the
multiplier and a high-pass filter at the highest carrier frequency.*
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terminations at different carrier frequencies present in the multiplier.§
A multiplier with input frequency w, , output frequency nw, , and
interstage networks N, , N,, --- , N, ---, N, is shown in Fig. 3.9

For such interstage networks it will he shown that the scattering
parameters|| are given by

fs. o
S = _‘Sf"_:_(:)_J (13)
018,
Zg
—— ]
wo Ny Vg
—
I
n
MULTIPLER|  K@o Nk
I W—
I
Nwg Np DZL
.

Fig. 3 — Lossless interstage networks as used in a frequency multiplier.

so that these networks do not produce AM-to-PM or PM-to-AM
conversion,

Since the series arms are resonant at frequency ke,, and the antires-
onant frequency of the shunt arms is also kw,, if w/w, << 1, we can write

Vi z;; 0 25 0O 1.

V,a.' - 0z 0 2z I,a; . (14)
Va0 200 0 200 0 || I
Van 0 z0: 0 2z IﬁO_J

§ For example, this filter should also act as a matching filter at the input
carrier frequency wo.

1 It is assumed that all idler terminations are lossless.

|| Even though N is a two-port network we must obtain 4x4 scattering matrix
of this network since amplitude and phase transmission characteristics of the
pumped nonlinear system with which N. may be used are not necessarily the
same.® See Ref. 5 for the definitions of amplitude and phase transmission charac-
teristics as used in this paper.
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We shall now assume that large signal voltage at carrier frequency
kwo is in phase with the large signal current.f
We can now write
Vai Irz.'; 0 2z, 0 Iu.'_
Vi _ 0 2z 0 zi| 1 l

17"0 Zoi 0 Zoo Oj InnJ
}'pﬁj 0 zy; 0 3’00JL[pu

(15)

Equations (14) and (15) show that the scattering parameters of a
lossless interstage network are given by (13). This shows that if such
interstage networks are used in multipliers which are characterized
by uncoupled§ scattering matrices the resultant scattering matrix is
also uncoupled.

V. STABILITY OF LOSSLESS ABRUPT-JUNCTION VARACTOR MULTIPLIERS

The general analysis of the stability conditions presented in the
earlier sections will be applied to investigate stability of frequency
multipliers of order 23¢, n and s integers, when lossless interstage net-
works of the form discussed in Section IV are used with these multi-
pliers. It will be shown that these multipliers are potentially unstable
and we shall obtain some cireuit configurations which guarantee their
conditional stability.

It has been shown® that a multiplier of order 2"3" with any input,
output, and idler terminations can be considered as a chain of n doublers,
s triplers, and n + 2s + 1 interstage networks (see Fig. 4). All these
interstage networksY will be assumed to be of the form presented in
Seetion IV. A lossless abrupt-junction varactor tripler with an arbitrary
lossless idler termination is shown in Fig. 5. It is assumed that the tripler
is tuned at the idler frequency, Z»(2w,) = 0, and that «/w, < 1. By the
techniques of Ref. 5 we can show that the scattering parameters of a
tripler can be represented as

i This condition usually leads to optimum efficiency of multipliers and is
usually satisfied in practice.” )
s § The scattering matrix is defined by us to be an uncoupled scattering matrix if
Pap = Ppa =

 The average elastance S, of the varactor diode is considered as a part of the
interstage networks usd in the multipliers.
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Nn+2s

Nn +25+1 LOAD

Fig. 4 — Lossless ubrupl-junction varactor multiplier of order 2"3°. N; is an
interstage network of the form shown in Fig, 2.

I 0 £ 172 5
v+ 3/2 ! 0
-1
Y
§=|__ k" .. , (16)
=1 1p—3/2
0 Cet 12 3ut1/2
L 3 0 |
where
Rﬁ‘)
= =7 17
w=ry (17)
_ 318 [
RUQ - 8 J ‘5 ICU(] (18)
For a tripler, we can hence write
0 L= 1/2
S.=| #7132 (19)
1 _11_
p+ 3/2
[ —1  1p—3/2
5 B
§”p=|#+1/-‘ ‘%.‘-‘+1/ (20)
L 3 0
and
Sap = S5 = 0. (21)

Since a doubler,® a tripler, and all interstage networks used in the
multiplier have uncoupled seattering matrices it follows that general
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Zz
2wy
o mm— | S—)
wg X3 3wy
flg Tmmmm—— |——}

Fig. 5— Lossless abrupt-junction varactor tripler with an arbitrary lossless
idler termination Z..

scattering parameters of multipliers of order 273¢ are given by the
following equation:
|
S = {_‘5_““_:_9_]-
018,

If such a multiplier is terminated in passive impedances as shown
in Fig. 6, the characteristic equation of the system according to (10)
can be written as

(22)

FO\) = A{l, — Sp} =0, (23)
where
p= dia. [p,,.l y Pm2 4 P81 962] (24)
|
pm 1 0
=3 ___: —_——
01 ps
(mi), (r:‘L—)z
. Zma
(mr),
xN -—

MULTIPLIER (8),

Tig. 6 — Multiplier of order N. AM and PM ports of the multiplier are
terminated in linear passive impedances.
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From (22) through (24), we can write

FON = All, — Supa}Alls — 8,00} (25)
= F.)F,(\), (26)
where
F.\) = Afl, — Saipn} (27)
and
F,(N) = Afl: — S,,p0} - (28)

For stability of the multiplier it is necessary and sufficient that the
zeros of F,(A) and F,(X) lie in a region external to the closed right-
half plane. F,(A) and F,(A) will be called the AM and PM charac-
teristic equations of the multiplier respectively. It must be borne in
mind that the uncoupled nature of the scattering matrix of the multi-
plier with a properly designed bias circuit enables us to express F(\)
as a produet of F,(A) and F,(A). If this cannot be done we will not
be able to investigate the nature of roots of F(A) hy studying only the
roots of (A} and F,(A).

For multipliers for which we can express F(A) as the product of
F,(A) and F,(A) we can define AM and PM stability independently.
If no zeros of FF,(A) lie in the closed right-half plane we shall say that
the multiplier is AM stable. A multiplier is PM stable if all roots of
F,(\) lie in the open left-half plane. For total stability of the multi-
plier it must be hoth AM and PM stable.

5.1 AM Stability of Multipliers of Order 2"

The AM stability of lossless abrupt-junction varactor multipliers
of order 2" wth minimum number of idlers will be considered in this
scetion. It has been shown?® that a multiplier of order 2* is equivalent to
a cascade of n doublers as shown in Fig. 7. It will be assumed that inter-
stage networks are passive, do not produce AM to PM or PM to AM
conversion, and that the load z, is a linear passive impedance. Since

OSCILLATOR N, . x2 - N» - x2 Nt LgAD
—— — —— n

Fig. 7— Lossless abrupt-junction varactor multiplier of order 2*. Only AM (or
PM) ports of the doubler and interstage networks are shown in the figure.
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No.41 is a passive interstage network it follows that the amplitude
terminal impedance for the nth doubler is also passive.

Let us now assume that the terminal impedanece of the jth doubler is
z; where z; is passive. We shall now show that the input impedance
(2in); of the jth doubler (see Fig. &) is passive, 1 = j = n. Since the
generator impedance is assumed to be passive, no AM instability can
arise in the multiplier.

The AM scattering matrix of a doubler is given by

S.. = [ ‘ﬂ- 29)
1 0

Let the reflection coefficient of z; normalized to some convenient num-
ber be p;. It can be shown?*® that

| p; | =1, for ReX = 0. (30)
From (29), we have,!*
(pin); = 3{1 — p;}. (31)
From (30) and (31}, it follows that
| (pi); | =1, for Rei = 0. (32)

Equation (32) proves the desired result that if z; is passive, (z1); is
also passive.

This shows that if input, output, and all idler terminations of a
multiplier of order 2" are passive, the impedance measured at any ac-
cessible pair of terminals is also passive. This result leads to the con-
clusion?® that a multiplier of order 2" is absolutely stable with respect
to its AM fluctuations.

5.2 PM Stability of Multipliers of Order 2"

The phase terminal behavior of a multiplier of order 2" has also been
shown® to be equivalent to a chain of n doublers as shown in Fig. 7.

PR .
JTH )
(zi.n)j DOUBLER Z;

O——

Fig. 8 —jth doubler.
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The PM scattering matrix of a doubler is given by
Som = LO ‘1}- (33
2 1

If the phase terminal impedance of jth doubler has a reflection coef-
ficient (p,);, we have

—2(py);
Yinls = oli 34
euls = 72025 (34)
For (p,); = %, {(p,)in}; = —2. This shows that the phase input im-

pedance of jth doubler is not necessarily passive if its phase terminal
impedance is passive. A doubler is, therefore, potentially unstable with
respect to its PM fluctuations if its phase port is terminated in an
arbitrary passive impedance. For this reason, we conclude that a
multiplier of order 2", » = 1, can become unstable with respect to its
PM fluctuations for some values of its input, output, and idler termina-
tions.

Fig. 9 — Lossless abrupt-junction varactor doubler. Interstage networks Ni
and . are assumed to be single-tuned series circuits.

The PM stability of a doubler, a quadrupler, and an octupler when
interstage networks are single-tuned series circuits is studied next.
Since the average elastance of a varactor diode is always nonzero,
these circuits are always a first-order approximation to any ecircuits
usually used in practice. For any other set of interstage networks used
in the multiplier recourse can be had to Section V to obtain the con-
straints imposed by the condition of PM stability.

5.3 PM Stability of a Doubler

A lossless abrupt-junction varactor doubler with single-tuned series
circuits for its generator and load impedances is shown in Fig. 9. R,
and R, are the real parts of generator and load impedances of the
multiplier.f These are given® by

1 It is assumed that the generator is matched to the varactor diode at carrier
frequency we.
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RI= S2|

Wy

(35)

and
s ) .
R = 178, T (36)
The bandwidths B;’s for the single-tuned series circuits are defined

as

_ B
B: = L.

IIA

1<i=<2, (37)

IIA

where Ry is the normalizing number for the ith termination. It is as-
sumed for the doubler that

RO:’=R1'| 1=17=2. (38)

From (28), (33), and (37), we can show that the PM characteristic
equation F,(A) of the doubler can be represented as

Fp()\) = 2}2 + BQ}\ + BIBQ = 0. (39)

We can observe from (39) that a doubler is PM stable for any finite
nonzero values of B; and B,. Therefore, it follows that a doubler is
conditionally stable with respect to its AM and PM fluctuations if
single-tuned series circuits are used for its input and output termina-
tions.

5.4 PM Stability of a quadrupler

Before we discuss PM stability of a quadrupler we shall present in
this section a systematic method to obtain the characteristic equation
of a multiplier of any order which is equivalent to a chain of multipliers.’
Let us say that a multiplier of order M, X M, is equivalent] to a
multiplier of order M, cascaded with a multiplier of order M, as shown
in Fig. 10. It is assumed that the 2 X 2 scattering matrices of M, , M, ,
and the linear interstage network N are known. The impedance Z, ,
is assumed to be normalized with respect to its port number.'® The
reflection coefficient py,sr, of the load termination Z,,,, is given by

ZM,M. —1

Paroyr, = ZM,M, _|_ 1' (40)

I The conditions under which this is true are given in Ref. 5.
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N X Mo ZMIME
\

|

Fig. 10 — Multiplier of order M1x M..

Since the scattering matrices of M;, M., and N are known, reflection
coefficient py, can be calculated. If the generator reflection coefficient
py 18 given by

Z,—1
Py = Zp 1 ’ (41)
the characteristic equation of the multiplier is given by
1 — PoPin = 0 (42)

Let us now consider PM stability of a quadrupler. A lossless abrupt-
junction varactor quadrupler is equivalent to a cascade of two dou-
blers. We shall now investigate its PM stability when its input, output,
and idler terminations are single-tuned series eircuits as shown in
Fig. 11. The normalizing impedance for the idler port is assumed to be

S0
AT 43)
It can be noted that Ro, is the “input impedance” of the second
doubler. The bandwidths B;’s are defined as in the earlier section.
We can now show that the PM characteristic equation of a quad-
rupler can be written as

RU'.!

F,(\) = 4" + 2M'(B, — B.) + M2B,B, + B.B,) + B\B,B, = 0. (44)
In order that a quadrupler is PM stable it is necessary and sufficient
that no zero of (44) lies in the closed right-half plane. The Routh-

R, /™

Vg"\-'

Fig. 11 — Lossless abrupt-junction varactor quadrupler. Interstage networks
N1,Na, and N, are single-tuned series circuits.
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Hurwitz!? eriteria can be used to obtain the constraints on the coef-
ficients so that the quadrupler is PM stable. Tt can be shown from this
eriterion that if

B, _ B

B, > 2 Z, +1 (45)
all the zeros of (44) lie in the open left-half plane and the quadrupler
is PM stable. Hence, we conclude that a quadrupler can be made
conditionally stabled if (45) is satisfied.

Let us now assume that

B,
B,
The minimum value of y which guarantees PM stability of the multi-

plier can be obtained from (45). We can show that (45) is satisfied if
and only if

B. 1
=5~ (46)

v > 1.629. (47)

Specifically, we would like to note here that a quadrupler becomes un-
stable with respect to its PM fluctuations if B, — oo.

Also, we note that it is PM stable if simple bandwidth restrictions
given by (45) or (47) are satisfied.

5.5 PM Stability of an Octupler

The AM stability of an octupler has been proved earlier in this
section. The PM characteristic equation of an octupler with single-
tuned series eircuits for its input, output, and idler terminations can
be shown to be given by the following equation:

F,(\) = 8\' 4+ 4\'(Bs — B, — B.)
+ 2\*(2B,B. + 3B.B, — B.,B; + B,By)

+ N(2B,B.By + B.B,Bs — 2B,\B,B,) + B.B,B,B, = 0.  (48)

By is the bandwidth of the multiplier at carrier frequency iwg.

The Routh-Hurwitz criterion can again be used to get the con-
straints on By's so that the octupler is PM stable. These constraints
can be shown to be

1 We have shown earlier in this section that a quadrupler is AM stable for all
passive terminations,
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Bs _ B

B4>B4+1 (49)
B, B, | B,
2t > 1 (50)

B> o

If we can choose By's so that we can satisfy (49) through (51), the
multiplier will be PM stable. Let us now choose

A s (52

and see whether there exists a value of x which satisfies (49) through
(51) simultaneously. The answer is in the affirmative and we can
prove that, if

x> 1.992 (53)

the multiplier is PM stable. This shows that an octupler can be made
conditionally stable by using single-tuned series eircuits which satisfy
certain bandwidth restrictions.

5.6 PM Stability of Multipliers of Order 2"

Methods presented in earlier sections can be used to investigate PM
stability of multipliers of order 2", n = 4. It is our conjecture based
on earlier discussions and results that a multiplier of order 2" with
single-tuned series circuits as interstage networks is PM stable if
bandwidths B,’s, 0 = 7 £ n satisfy the following equation:

B,

132_+ < 1. (54)
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VI. STABILITY OF A TRIPLER

The scattering relations for a tripler are given in (16). Even if the
idler termination for the tripler is lossless it is evident from examin-
ing (19) and (20) that a tripler is not AM or PM stablef for arbitrary
input, and output terminations.

Hence, we shall assume that single-tuned series circuits are used
for input, output, and idler terminations of the tripler as shown in Fig.
12. Bandwidths B; and B; are defined as usual. Bs is defined as

_ B -
B, = 7%, (55)

where Ry is given in (18).

Ry

Vg

Tig. 12 — Lossless abrupt-junction varactor tripler. N1, N1, and N, are single-
tuned series circuits.

We can now obtain 'y (A) and #,(A) for the tripler from (19) and
(20). These can be shown to be given by

F.(\) = 6)\* + \(5B, + 3By)

+ MB.B. + B:B; + 3B,B,) + B.B.B, (56)

and
F,(\) = 6\° + N*(B, + 3B:;) + A\(B\B, + B.B; + B;B,) + B\B;B, 57)
= 0.
i One of the reflection coefficients in S, can be made in magnitude larger than

unity by arbitrarily choosing u. Also S., does not satisfy the criterion given in Ref.
14 for the absolute AM stability of the system.
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By Routh-Hurwitz criterion, it is necessary and sufficient that

5B.(B.B. + 3B,B,) + 3B.(B.B. + 3B.B,) + 2B,B,B, > 0 (58)

so that no zero of F,()A) lies in the closed right-half plane.
Similarly, for PM stability of the tripler, it is necessary and suf-
ficient that

B, B, B, {B. B, i
[ ity —_— =) - 4 __ ¢ |
2+t t\E s z}>o. (59)

Since (B,/B;) 4+ (By/B;) — 2 = 0 for all positive values of B, and
B, it follows that a tripler is both AM and PM stable when single-
tuned series cireuits are used for its terminations. There are no band-
width restrictions imposed by the condition of stability.

This does not mean that a tripler can be connected with another
cireuit (for example a stable doubler) without affecting the total sta-
bility of the system. We can indeed show that a 1-2-4-6 multiplier
which is equivalent to a cascade of a doubler and a tripler imposes
certain bandwidth restrictions on its external circuits so as to be as-
sured of its stability.

VII. BIAS CIRCUIT AND ITS INFLUENCE ON THE STABILITY OF
HARMONIC GENERATORS

It was assumed all along that the bius circuit in lossless abrupt-
junction varactor multipliers is designed properly so that there are no
currents flowing at sideband frequencies +w. We shall now assume that
the varactor harmonie generator has a finite impedance at {requencies
+w so that there are currents flowing at those sideband frequencies.
It will be our purpose in this section to investigate how this assumption
affects the stability of the multiplier. The study of the influence of the
bias ecireuit on the output signal-to-noise ratio of harmonic generators
and other related results are reserved for a future publication in which
we shall diseuss noise performance of harmonie generators.

We shall also restrict ourselves in this section to the consideration
of lossless abrupt-junction varactor harmonic generators which satisfy
the following condition. If we choose the time origin so that ecarrier
current I, is real and positive, all carrier currents I,’s, 2 £ k =< n, of the
nth order harmonic generator are all real. We shall also assume that
the multiplier is tuned at all earrier frequencies so that earrier voltages
are in phase or out of phase with the respective carrier currents.

There are a large number of multipliers which by design satisfy
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these conditions.™*®* We known that the multipliers of order 2"3* dis-
cussed in this paper come under this category. We can also show” that
the 1-2-4-5 quintupler can be designed to satisfy this condition.

Tuning circuits i for the multiplier are considered part of the termina-
tions as shown in Fig. 13. We shall also assume that all idler terminations
are lossless. The small-signal voltages V.. and V. at sideband fre-
quencies +kw, + « can be written as

S"I

_ Si—i k+m P
V“_Zﬂm+mh“*ZWWw+wm+p""mm
. Seie C Siw &
vﬂk - Z j(_lwn _!_ C:J) Ip‘l + Z ](?nw 1 w) .(rm + I(.n ((11)
T . SR I S — (62)
‘ il + @) "¢ i(—mw, + w) "

wo
—_—
Ko Nk Muu)‘clrQ'UER Zo
—e
Nag
— e
Tig. 13 — Lossless abrupt-junction varactor harmonic generator of order .

With the assumption that w/w, < 1, and using amplitude-phase
representation, we can write (60) through (62) as§

Vi = 2.+ ‘5" L+ 2+ ‘ Sisn ' I, (63)
_— S, Siim S, — 8% ]
IMEi‘ L.+ 2+ m{%iﬁif“M(m

i Average elastance S, of the varactor diode is included in these terminations.
§ Note that S¢’s are all pure imaginary because of our assumptions about I/s.
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and

JS’(
lw,

rnn = Zi:z

Let us now assume that all idler and bias terminations are such
that{

I, . (65)

Vo = —Zol a0 (66)

Ve = —Zud. 2<hkh=sn—-1 (67)
and

Ve = —Zol e, 2=<k<n-—1. (68)

From (63) through (68), we can write

I;nl—} Zatat Zaran 0 0
[J'ran “ zmml Zanan 0 0 .

(69)

lpl Zptal Zpran Zpipt Zpipn

I'pn zpnul. zpnﬂn z)‘li’iﬂl znnpn
The scattering parameters of a lossless abrupt-junction varactor
harmonie generator hence ean be described by

.ol
s = [—SQJ (70)
Spa 1 S,

It follows from (62) through (68) that S,, and §,, in (69) are the same
as those that can be obtained by assuming Z, = «. For example, the
seattering matrix of a doubler with finite bias source impedance Z, is
given by"

F—L: 0
s=| L. 2 : 1)

The characteristic equation of a harmonic generator with finite bias
source impedance Z, can, according to (10), be represented as

PO = A{L — Sp} = 0, (10)

 See Section IV,
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where p is defined in Section III. From (10), (24), (25), and (70), we
can write

PO) = AlLs — Supa}dlls — Sppe) (72)

Il

Fa(NF,(0). (73)

Equations (70) and (72) show that stability of a harmonic generator
is not affected by the finite bias source impedance present in the multi-
plier even though it increases the output fluctuations of a harmoniec
generator.® If a harmonic generator is stable for certain generator and
load impedances for Z, = oo, it is also stable when Z, is finite. This is
one of the important results of this paper.

The conclusions arrived at in this section are applicable to harmonic
generators of order 2"3° discussed earlier in this section.

VIII. REMARKS AND CONCLUSIONS

A general method has been presented in this paper to investigate
the stability of pumped nonlinear systems, and to obtain the condi-
tions imposed thereby on the available circuit configurations. The type
of instability investigated is that which causes spurious tones to ap-
pear at any point in the system in the vicinity of a carrier.

It has been shown that the roots of a certain characteristic equation

FO) = A{l, — Sp} = 0 (10)

should lie in the open left-half plane for the system to be stable.

For lossless abrupt-junction varactor multipliers of order 2"3* in
which a certain set of interstage networks are used it has been shown
that there is no AM-to-PM and PM-to-AM conversion and the char-
acteristic equation can he expressed as

FON = A{ly, — Suwpa}A{ls — Sype} (25)

F.NF, (), (26)

and that we can treat separately AM and PM stabilities of the system.
A multiplier of order 2" has been shown to be AM stable for all
passive terminations. However, it is not absolutely stable with respect
to PM fluctuations.
The conditional stability of a 1-2 doubler, 1-2-4 quadrupler, and
1-2-4-8 octupler is investigated next. All these multipliers are shown
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to be PM stable if single-tuned series circuits are used as their termi-
nations, and bandwidths B;’s of these terminations satisfy certain con-
ditions.

The PM characteristic equation of a doubler is given by

F. 0\ =2\ + B\ + BB, = 0. (39)
It is PM stable for any finite B, and B.
A quadrupler has the following PM characteristic equation:
F,(\) = 4X\° + 2\*(B, — B.) + M2B\B, + B.B,) + B,B,B, = 0. (44)
The quadrupler is PM stable if

y > 1.629, (47)
where
By _ B: _
32 - Bl =7 (46)
An octupler has also been shown to be PM stable if
x> 1.992, (53)
where
Bs _ B, _ B _
B.-B "B~ T. (52)

The scattering relations for a tripler when its idler termination is
a passive impedance Z, are obtained. It has been shown that a tripler
is not absolutely stable both with respect to its AM and PM fluctuations.
However, it is stable when the interstage networks used in the tripler
are single-tuned series circuits. The condition of stability does not
impose any bandwidth restrictions.

Finally, it has been shown that the scattering matrix S of a lossless
abrupt-junction varactor harmonie generator with a finite bias source
impedance Z, can be expressed as

1 .
S = [}_ﬂﬂ_:_‘:’_} , (70)
.*Spa : sz
where S.. and S,, are the same as those obtained by assuming Z, = «.
It is then shown that stability characterization of a lossless varactor
harmonic generator is not affected by finite bias source impedance.

The noise analysis of harmonic generators and other related results
will be discussed in a future publication.
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