Some Properties of a Classic
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The numerical integration formula

» P

Yorr = 2 @l +h D2 bis, mZp (1)
k=0 k==—1

can be used to obtain a numerical solution of the system of nonlinear

differential equations

B4 ) =0, 1200 = . &)

In many instances, it is known beforehand that the solution of (2) possesses
a particular property such as boundedness or asymptotic periodicily with
a given period, and it is then of inlerest to analytically determine the range
of values of the step size h such that the sequence {y.} defined by (1) exhibits
(at least) that property. In this paper, we consider problems of this type
[but do not actually use assumptions concerning the character of the solution
of (2)], and we study also the overall effect of solving instead of (1) the
equation

» P
Zon = Doz, +h D bzl +R,, nzZp
k=0

k=—1

which takes into account the effect of local roundoff errors and errors in
the starting values. We consider explicitly only the case in which x(t) s
scalar valued.

I. INTRODUCTION

In this paper, we present some theorems concerning properties of
the classic numerical integration formula’'

k==1

2061

P P
Yne1 = Z A Y-k + h Z bky:‘i“k ) n g Y4 (1)
k=0
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a formula which can be used to obtain a numerical solution of the set
of first-order nonlinear differential equations

i+ f@, ) =0, =0 [z0) = ). 2

In (1) the y, are approximations to the z, £ z(nh), where h, a positive
number, is the step-size parameter; o , %1 , * -+ , ¥, are starting vectors,
the last p of which are obtained by an independent method; and

y; = _f(yn ,ﬂh)

Specializations of (1) include, for example, Euler’s method:

Ynsr = Yo + Ayl , 3)

and the more useful formula

Ynt1 = Ya + %h(y:l + ?}:m)- (4)

In many instances it is known beforehand that the solution of (2)
possesses a particular property such as boundedness or asymptotic
periodicity with a given period, and it is then of interest to analytically
determine the range (or ranges) of step sizes that will lead to a se-
quence {y,} which exhibits (at least) that property. This is one type of
problem that we consider. For related material concerned with the
overall effect of local truncation errors, see Ref. 2. Our results dealing
with questions of asymptotic periodicity of the y, are restricted to
cases in which the basic period is a multiple of the step size h. How-
ever, it is often reasonable to choose k in this way to reduce program-
ming complexity.

In addition to the fact that the solution of (1) differs from the sam-
ples of the solution of (2) due to truncation effects,™ * the problem of
solving (2) is further complicated by the fact that the numbers ob-
tained from the computer differ from the y, of (1) as a result of round-
off errors. The local roundoff error E, introduced in calculating yn.1
can be taken into account® by replacing (1) by

P bl
Ynsr = LZ(:’ @lfuer + k_Z_:l byt + R, nZp. (5)
If b_, # 0, the error in solving (1) for #,., , caused typically by trunca-
ting an iteration procedure'® after a finite number of steps, can be
accounted for by redefining R, . The second type of problem that we
treat is to bound (from below as well as from above) a measure of the
overall error in solving (5) instead of (1). The problem of estimating
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the &, before the ealeulations are performed is by no means trivial, and
is not considered here. On the other hand, since there exist methods for
bounding R, given y, for (n — p) = k = n (see, for example, Wilkinson®,
for bounds on the effect of roundoff in forming sums, products, ete.),
our results suggest the feasibility of programming the computer to
evaluate overall error bounds as the caleculation of the successive
Ynr1 Proceeds.

We shall explicitly consider only the ease in which x(¢) and the y,
are scalars. Without mueh difficulty, each of the theorems can be ex-
tended to cover the vector case. In this extension, requirements on, for
example, the derivative df (x, t) /dx are replaced by conditions on the
Jacobian matrix of f(x, t) (see Ref. 2).

For reasons that will become clear to the reader, our theorems are
quite naturally characterized as “frequency-domain” results. Some of
these theorems are close relatives of earlier results concerned with the
input-output stability of nonlinear feedback systems®* (see Ref. 5
and the difference-equation theorems stated without proof of Ref. 6).
To the writer's knowledge, the only even remotely related material
concerning (1) in the numerical-analysis literature, with the exception
of Ref. 2, is Hamming’s transfer-function approach.?

1. RESULTST

We begin by introducing some definitions and assumptions. We as-
sume throughout this section that y, and f(y,, nh) are real-valued
scalars,

Let « and 8 be two real constants, let a_, £ 0, and let

FO 21— 3 [a — Ha+ HRbE ©)

k==1

for all complex z = 0.

Assumption 1: It is assumed throughout that 1 + %(a 4 B)Ab_, # 0,
and that F(z) = 0 forall |z | = 1.

This assumption implies that the sequence of approximations defined
by (1) is bounded and approaches zero as n — o for all sets of starting
values when f(z, {) = 3o + 8.

*The usual frequency-domain nonlinear system stability results such as
Popov's criterion? are not directly related because they do not deal with systems
subjected to external inputs.

T The proofs of the theorems stated here are given in Section III.
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Definitions
> beexp [—i(k + Do)
(i) p 2 4B — @h max | = P |
(11)* [‘3 é {{Su} Z Is" F < 0:}

Lo = {{s.) | sup |5, | < ]

({ii)* Let K be a positive integer, and let

= HSHE |Sn = u+}\+lf01 n = O :El :|:2

i by e.\'])[ 1”‘1 +1 jl ‘
(i) px = 3(B — @)h max | = S |

T e )]

inwhich® £ {0,1,2, ---, K}.

2.1 Properties of (1)
Theorem 1: If

Yuir = 2 Qlfumi — b Z bif[ti , (0 — )R], n=p
k=0

k=—1

if p < 1, and if
f(u, k) — 1(0, nh)

a =
- u

= B, n

v
=

for all veal w # 0, then

(i) {f(0, nh)} €1, implies that {y.} €L,
(71) {f(0, nh)} e l,, implies that {y,} el .

Remarks:
The condition that p < 1 is satisfied if and only if the locus of
> a, exp (the) — exp (—iw)

0w & H—sj
> by exp (ika)

k=-1

* We consider only real sequences.
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for 0 = w = 27 lies outside the “critical circle” C of radius (8 — a)h
centered in the complex plane at [3(e + )4, 0] (see Fig. 1).

Tor Euler’s formula (3), we have F(2) = 1 — [1 — 3(a + B)hlz™", s0
that F(z) # 0 for | z | 2 1 if and only if 0 < 3(a + 8)h < 2. For this
formula the locus of © is the circle shown in Fig. 2, since @(w) = 1 —
e ™. If ah > 0 and Bh < 2, then the critical disk (Fig. 2) is not in-
tersected by the locus of ©, the condition that 0 < %(a + B)h < 2 is
satisfied, and p < 1. Concerning the necessity of the condition p < 1,
we note that if eh > 0, but gh > 2, then for even the special case in
which f(z, t) = Bz, we have ¥, ¥, ¥=, --- unbounded (assuming
merely that y, # 0).

For the formula (4):

F@ =1+ i+ Bk — [1 — ia+ Hh™, and
1 —e ' . w
BOw) = m = 27 tan (5)

We have 1 + }(a + B)h # 0 and F(z) # 0 for | z| = 1 if and only
if (@ + Bk > 0. The locus of @ lies entirely on the imaginary axis of
the complex plane,

P B + o ]
and obviously p < 1 if @ > 0. On the other hand, if « < 0, then for
even the special case f(z, {) = ar : ¥, ¥1, --- is unbounded provided

that y, # 0.
The following theorem is concerned with conditions under which

Fig. 1 — Location of the critical cirele C.
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ah Bh

Fig. 2 — The locus of @(w) For Euler’s method, and the critical circle C'.

asymptotically periodic f(0, nk) in (1) implies that {y,} is asymptotically
periodic with the same period as that of f(0, nh).

Theorem 2: If

Yne1 = Z Qplfn—r — h E bkf[yn-k 1 (n - k)h]l n g. P
k=0

if p < 1, if [f(u, nh) — f(0, nh)] = [f(u, (n + K + 1)) — f(0, (n +
K + D)) for all real w and n = 0, if

af (u, nh) <
T

1A
v

3, n 0

[4

for all real u, and if there exists a y* ¢ K such that [f(0, nh) — %] ey , then
there exists a y*% & & such that

(@) —yh)eh
(i1) y* is independent of [f(0, nh) — y*].

Remarks:

In many cases of interest [f(u, nh) — (0, nh)] is independent of =,
and hence certainly satisfies the periodicity requirement.

Theorem 3, below, provides a condition under which the sequence
{y.) of (1) cannot approach a ‘“‘self sustained” limit cycle with period

(K + 1).
Theorem 3: 1f

Yns1 = g Qilfnor — N *_zl fu-s , (n — E)A], nzp
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if [f(u, k) — 10, k] = [f(u, (n + K + DAY — fO, (n + K + D)) for
all real w and n = 0, if

< af(u, nh)

< >
Au =8 nz0

for all real u, if f(0, nh) — 0 as n — =, and if there exists a y* e K dif-
ferent from the zero element of X such that (y, — y*) = 0 asn — o=,
then px = 1.
Remark:

For px = 1, at least one of the complex numbers

: 2#9) _
O(K—}-l ¢=012"--,K

must lie on or within the circle C of Fig. 1.

2.2 Results Concerning the Effect of R, and Errors in the Starting Values

Theorem 4, below, is essentially the same as a result concerning the
effect of local roundoff and truncation errors proved in Ref. 2. The proof
of Theorem 4 given in Section III is considerably more direct than the
corresponding argument of Ref. 2.

Definition:

ot (Fr e )

for all N = 0 and every sequence {s,}.
Theorem 4: If

Ynir = 2 @lfus — h Z bifltos , (n — B)R], mn=p
k=0

k=—1

Zasi = 2 @za — h E bif[za-s , (n — K)R] + R, , n=p
k=0

k=—1

< f(u, nh)
- Ju

for all real u, then for all N = 0

(@) =2z A+ min [FE) [ (W,

OSws2r
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and
(1) if p < 1,
(=2 s (=97 max | FE) [ @y
n which
Yo=—Row, nzp@+1
= (Yo — 2) — ; i (Ynoir — Znoi1)
+ h :Z_ bt fltfami—r (’ﬂ — k= Dh] — flzi—i- y(m—k — 1)h]},

n=Ole2l L, P
with Y, = {(y., nh) = 2, = f(z., nh) = 0 forn < 0.

Remarks:
Ref. 2 considers two simple examples concerning the evaluation of
the numbers

(14 p 7 min | FE™“) |7 and (1 — p)”" max | F(e™) [

Since
p = (B — a)h{min | O@) — ¥+ Hh [},

we see that p is the ratio of the radius of the circle C' of Fig. 1 to the
distance between ¢ and 8, where ¢ is the center of C and 6 is a point

nearest ¢ on the locus of ©(w).
The following corollary provides asymptotic bounds on the difference
between the solutions of (1) and (5) when the solution {y.} of (1) is,

for example, asymptotically periodic.

Corollary to Theorem 4: If
Yo = 2 @k = b 2 biflyes (0 — WAL, m Zp
=0 —

with

af(u, nh)
u

IIA

@ =8
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for all real w and n = 0, if there exists a sequenice ij such that (y, — §.) — 0

as n — «, and if

P

Zoor = 2 @zap — h Z biflzas , (n — DRl + R, , n=p.

k=0 k==1

Then
(4)
G—iwz0+p" mm | Fe™) |7 (¥ — | qn |

with gy = 0as N — o,

and
(17) if p < 1,
—gw=@1-p" max [ Fe™) |7" (¥)w + |7 |
withry = 0as N — o«
in which
Vv.=R.., nz{p@+1
=0, n=0,12 - ,p.

Remark:

Note that the lower bound is valid under quite weak assumptions.

IIT. PROOFS

We first prove the following lemma which plays a role in the proofs
of all of the theorems

Lemma 1: If
Vi = L awer = h 3 bflys 0= DR A+R, 02y
then
= 3 sl B + 3 wanfO.H) + X, n 20
in which {w,} and {v,} are the inverse z-transforms of

_h Z bkz—(k+1}
W) £ 5 kol
1 — X (o — e + B)hbJ ™"

k=—1
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and
Ve & _ ! ,
1 — X [ar — 3+ BhbJ"
k=—=1

respectively;

Dlw| <o, 2| <o,

n=0 n=0

o , kh) £ f(ye , kh) — f0, kR) — %(e + By ,

and

@qun—ll ng(p—'_l)

Il

Yn — E Ynr—1 T h kz bif[Yn-i=1 , (n — k — 1)h],
k=0

=—1

with y, = f(y,,nh) = 0forn < 0.

Proof of Lemma 1:

From

Yur1 = g Qs — b knE_I bif(yos , (0 — DRl +R,, n=Z0p

we have
P
Yn = E A lYn—r—1
k=0

—h 2 bflyasr s (= k= DRI+ Boes,  mZ (4D

and, with the ¢, as defined in the lemma,

Yn = i [ar — 3a + Bhbi]ysr — E bibuoio1 + @, n=0

k==1 k=—=1

where
8 = f(ye , kh) — 3@ + By: .
Let M > 0. Theny, = g, forn = 0,1, --- , M, in which

Gn = 2 lae — 3o + BOhbiluss — b 2 bbuses + 6., n

k==1 k=—1

v
e
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where
b,=26, for n =M
=0 for n>M,
G = ¢, for n =M
=0 for n> M,
and

T = f(@. ,mh) = 0 for n <O0.

It is clear that {&,}, {#.), and {§,} are z-transformable. Let

W) & f‘;sa..z‘“, AR & i 8.7,

n=0 n=10

and
Y2 £ i Uz .
Then
[1 - kz;l [ar — 3(a + B)hb,,]z““”]y(z)
= —h X b “VAR + ¢(@).
k=—1
Therefore,
_h i bkz-(kﬂu
l'(z) — k=-=1 - A{z)
L= 20 [a — Yo + Bkl
k=—1
s e )
I - Z [ai - %(ﬂt + ﬁ)hbk]z"'“‘“’

k=-1

and, with {w,} and {v,} the inverse z-transform of W(z) and V(z),
respectively,* we have

n n
U, = Z Wy—p. 0 + Z VntBr nz0
k=0 k=0

‘ ;Vl'{ecull that W (z) and V(z) arc defined in Lemma 1.
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with (in view of Assumption 1)

>lw | <e, and 2 |o|<e=. ®
n=10 n=10
Thus,
Yn = kz Wk b + kZ Un—ix (9)
=0 =0

forn = 0,1,2 ---, M. Since M is arbitrary, (9) is satisfied for all
n = 0. Finally, with

g(ys , kh) = f(yi , k) — 10, kh) — 3@ + By,
Yn = ,,Z; warg (W, kh) + kZED w,-f(0, kh) + ; Varpr , 1= 0.

We now prove a lemma which is used in the proofs of most of the
theorems. We repeat the

Definition:
a 1 N ) %
(S)N=(N+]_Z|Sﬂ|)

n="0
for all N = 0 and every sequence {s,}.

Lemma 2: If
Yo = 2o waBy + by nZ0
k=0

and if —3(8 — a) < a(k) < 38 — a) for all k = 0, then
(@) Wy = (1 + ) @)y for N = 0,
and
(1) if p < 1, then {y)y = (1 — p)""(b)y for N = 0.
Proof of Lemma 2:
Let

4%
o

@ E D waa®y., n

k=0
By Minkowski's inequality,
v = (v + (O)y (10)
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and

(b>,\‘ = (.’/).\' + ('7).\' . (11)

»

Lemma 2 follows from (10), (11), and the inequality
("[)x = o)y -
3.1 Proof of Theorem 1:
By Lemma 1, we have
Yo = 2o wansg(u  kh) 4+ 2w i f 0, k) + 2 v, nZ 0
k=0 k=0 k=0

with (because R, = Oforalln = p) ¢, = Oforalln = (p + 1).
Let

by = 3 wif O, kB) + D vaser, n = 0.
k=0

k=0

Since both {w,} and {v,} belong to {, [i.e., since (8) is satisfied], b ¢ I,
if {£(0, kh)} e Lo and b el if {f(0, kR)} e L, .
Suppose that b e [, , and let

a(l) = 9, 1) , for oy =0
Y
=0, for . = 0.

The function a(k) satisfies the bounds of Lemma 2, and

n

Yo = 2 wema(R)ye + by n 20 (12)
k=1
Therefore, by Lemma 2,

):Lyﬂl‘"’é(l—p)*”Z[b..rg(l—p-ﬂgm,,f

n="0 =0

for all N = 0, from which it is clear that y e I, .
If bel,, then {y,} satisfies (12) with b £ [, . According to the first
conclusion of the following lemma, this implies that y e ., .

Lemma 3: If
yo = 2 waa@ye + by w20
k=0

withbel, ,ffp < 1l,andif —3(8 — a) £ a(k) £ (B — a) forallk = 0,
then
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(@) yels
(#7) there exists a conslant ¢, , which depends on only the a, , the b, a,

and B such that

SUp | ¥a | = cosup | by |.
nz0 nz0

Proof of Lemma 3:

The proof is essentially the same as that of the second part of Theorem
2 of Ref. 2. The details are omitted.*
3.2 Proof of Theorem 2

Definitions: Let & denote the set of all real sequences {s,} such

that s, = S,.x.1 for all n =0, 1, &2, ---, and let & 4 40,1,
2, ..., K}.

Lemma 4: Let g*(z, nh) be defined for all real x and all n = 0, %1,
+2, .-, such that: g*(x, nh) = g*z, (n + K + 1)h] for all x and n, and

3B — o) £ @) g

dx -

for all x and n. If p e X and if px < 1, then X contains exactly one element
y* such that

yE = 2 waig* (e, kh) + pa

k=—0m

forn =0, £1, £2, -+ .

Proof of Lemma 4:
With the norm
K ¥
s (2 ar),

the set X is a Banach space. The operator WG defined on X by

(WGS), = 2 wasg*(s. , kh), seX

k=—m

maps X into itself. By the contraction-mapping fixed-point theorem,
it suffices to show that WG is a contraction when px < 1. It is clear that

|| WGs. — WGs, || < [| W [|-]| Gs. — Gsu ||
38 —a) [| Wl s. — s |

A TIA

for all s, ¢ & and all s, ¢ K.
* See also Ref. 6.
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If s ¢ X, then
s —Z"—’ ex (H“FHL) for k=0, £, £2, -
k et { p I 4_ 1 ' ¥ -

in which

127in )
= (K +1)" gse\p( K+ 1
and
X
Z |s, |° = (K +
Thus, if

Z: wy— S for m =0, =1, &2, --.

k==e
with s ¢ &, we find that

E~W]A
U, = E Wy — ke Z 8 exp (I + ])

k=—w

K
Z § Z Woaep €XP (llﬂflzl) (w, = 0,n < 0)

L=0 k=—0g

2mln ) ( 12mwin )
E S C\p( Z w, exp K + 1

n=1f)

K [ _ (fm wl )] “)(mhz)_
= + 1/ PR 1

Therefore, since

i 0 |
(]l = 1| Ws | = max n'[exp (AI;I)] | II's 1,

qrit

| .
. ax | . i _IQTI'Q )J i
[| W ]| £ max | I |:o.\p (K 1

and || Wlis, — WGs, || = px || 5. — s || for all s, £ & and all s, £ X.
This completes the proof of Lemma 4.
By Lemma 1,

Il

[
—
—_

~
D
P
=

we have

IA

v
o

= Z Wk g, FR) + Z w,-if(0, k) + Z Un— kP n
k=0 k=0 k=0
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with ¢, = 0 for k = (p + 1). Here, since both {w,} and {v,} belong to
[,, we have

kE w,iJO, kh) + D vees =pat e, n=0
=0

k=0

with p e & and ¢ ¢ I, . In fact, with y* as defined in Theorem 2,

pn = Z wn—ky:lkk ] n = 0: :':11 :|:2: .

k=—w
Let g*(z, nh) be defined by the conditions: g*(z, nh) = ¢*[z, (n +
K + Dh] forall z and n = 0, &1, 2, -+, and ¢*(z, nh) = g(x, nh)
forallzandn = 0, 1, --- , K. Then, since px < p < 1, by Lemma

4 there exists a y% & & such that

yu‘?r‘- = E wn—kg*(ybt' ' kh) + p"

k=—o

for n = 0. Therefore,

yn - ?Jbt = Z wn—k[g*(yk 1 kh) - Q*(U!ﬁ l’l:h’)] + dn ’ n ; 0

k=0

in which

v
o

-1
d, = c. — 2. warg* (i, kh), n

k=—o

But

-1 -1
2o wag* ik kh) | < sup | g* (it nh) | kz | W |
nz0 =—00

k==—0p

and, using the fact that there exist constants » > Oand { > 0 such that
| w, | = nexp (—¢n) forn = 0,
k‘}:‘—_l’,, | Waes | = m(Z:” | wn | < nexp =i+ 1] ,,.i: exp (—{m).
We see that
ki,, w,g*(k  kh) e Ly,

and consequently d € [, .
Let

g* (e , kh) — g*(nk keh)
Yr — yb"i !

=0 ’ Ve = Yok «

a(k) =
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Then —3(8 — a) = a(k) = 3(8 — «), and
Yo =yt = 2 weaWe — v +d.,  n =0,
k=0

By Lemma 2, we have (y — y*) ¢ I, , and since it is clear that »% depends
on y* , but not on [f(0, nh) — y*], this completes the proof of Theorem 2.

3.3 Proof of Theorem 3
We need the following lemma.

Lemma 5: If y, = y* + g, with y* e X and 9, = 0 asn — o=, if
a(x, kh) = glx, (k + K 4+ 1)A] for all k = 0 and all x, if there exists a
positive constant ¢ such that | g(u, , kb) — g(us, kh) | = ¢ | u, — . | for
all real u, and u, and all k = 0, and if

Un = 22 wosg(ye kD) +p.+ 6, nZ0
k=0
with pe X and §, — 0 asn — =, then

yE = 2 wg*E kb + p.

k=—o
forall n = 0, £1, £2, -+, in which g*(x, kh) is defined by the con-
ditions:

g* (v, kh) = g*[x, (k + K + 1]

for all k and all z, and
g*(x, kh) = g(x, kh)

Joralzand kb =0,1,2, -+ | K.
Proof of Lemma 5:

Forn = 0:

yr 4+ . = ?: gyt + ne . kh] 4+ p. + 8,

2 waesg(yt , kh) + ; wo-lgQE + me Kh) — g(yE , Fh) ]

k=0

+ p“ + 5?3
52 W (KN 4 22w g(yE + me , kR) — gQyE | TR)]
A——, k=0

-1
— 2 wakg*yE KR + pa 4 b, .

k=—wm



2078 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

Therefore,

> g @t KD — pa = —m

k==

u
+ 2wyt + me KD = g, kR)]

-1
— > wag*E kR + 6., n=0.
k=—o
Since {w,] €1, , both sums on the right-side approach zero asn — .
Thus, the left side also approaches zero as n — . But the values of
the left side are periodic. Therefore,

yE — 2 weag*(yE kD) —p. =0 (13)
k=—c0
foralln = 0, and since * £ X and p £ X, (13) holds for all n. This proves
Lemma 5.
By Lemma 1,

yu = Z wﬂ—kg(!)'k 1 ]‘h) + Z wﬂ—kf(or kh) + Z Vn—iPrk n é 0
k=0 k=0 k=0

in which ¢(y, , kh) is defined in Lemma 1, and ¢, = 0 for k = (p + 1).
Since {w,} and {v,} ¢, , and f(0, kh) — 0 as k — =, we have

n

3w, f(0, kh) + > vy —0 as n— =,
k=0

k=0

By Lemma 5 and the hypotheses of Theorem 3,

yr = 20 w.g*(yk , kh)
k=—o0
forn = 0, =1, £2, --- , with y* ¢ K. If px were less than unity, it
would follow from Lemma 4 (in particular the uniqueness property
of y* of Lemma 4) that y%* = 0 for all n, since g*(0, kk) = 0 for all
k = 0. Therefore, px = 1, which completes the proof of Theorem 3.

3.4 Proof of Theorem j:
According to Lemma 1,

v
[=]

=0

b= n = 3wl W) — g D]+ Doepe,
=0

Therefore, with
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n
by = D tuib, n=0
k=0

we have, by Lemma 2,
y—2)vz 0+ P)q(b),\'
and if p < 1,
(y—2aw =0 —=p) by .
Since®
(Byy = max | Fe'™) [7" (Y)v ,

Osws?x
it remains only to prove the following lemma.t

Lemma 6: If

d, = i Vool n

=20
then
(yy = min | FE*) |7 )y .
Proof:

Let {e,} be the inverse z-transform of V '(z). Clearly, {e.} £, . We
have

n n m
D lumly = D Cm 2 Umilr = for m = 0.
m=0 m=0 k=0

Thus,’

(v = max | V™) | {d)y

Osws?r

and, since F(z) = V7'(2),
(d)y

I

(n max | F(e™) )7 (c)y

Sws?r

v

min | Fe') |7 {c)y

Osws2r
which proves Lemma 6, and completes the proof of Theorem 4.
3.5 Proof of the Corollary to Theorem 4
Minkowski’s inequality.

i Lemma 6 is proved in Ref. 2. The proof given here is simpler
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