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Suppose that
P, =10 logm [107"-/10 R 10.?./1()]'

where {X,}| 7s a sequence of independent random variables. The main
result of this paper shows that under very general conditions on the sequence
{X.}, the power sums P, will be asymptotically normally distributed.
Thus result supports a commonly used normal approximation, and shows
why many physical quantities obtained by power addition of random variables
tend to be normally distributed in dB.

I. INTRODUCTION

In many areas of transmission engineering, logarithms of sums of
powers are considered in the form

P, = 10 log,, [104\'./10 L 103\'»/101’

where Xy, ..., X, are random variables. Specifically, if Xy, ..., X,
are power levels in dB such that

‘Yi =10 loglﬂ (wj/wu) J = 1: 2: T, Ny

where w, , w,, --- , w, are powers (e.g., expressed in watts), then the
power level in dB of the sum w = w, + --- 4+ w, is given by the so-
called “‘power sum,”

P, = 10 log,, (w/w,) = 10 log,, [10%** 4+ -+ + 10%"].

Quite often Xy, +++ , X, are taken to be mutually independent, random
variables with specified distributions, and it is of interest to determine
properties of their power sum P,.

A major difficulty encountered in working with power sums is that
the distribution and moments of such a sum usually cannot be ex-

2081



2082 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

pressed in simple closed form. This includes, for example, the im-
portant case when X;, - -- , X, are mutually independent and each has
a truncated normal distribution. Even in the simpler case when X,
-+« , X, are mutually independent, identically distributed, and X, is
normal, the problem is intractable. The difficulty and importance of
the general problem, in turn, has led to a number of methods for ap-
proximating the distribution of a power sum.®® % 4 8¢ 7. 89

In the present paper, the asymptotic distribution of a power sum
is studied. The main result is a limit theorem which shows that under
very general conditions on the components X;, X5, + -+, the correspond-
ing power sums P, will be asymptotically normal as n —> eo. The par-
ticular form of the result is as follows: Given a sequence {X,} of
mutually independent random variables satisfying certain conditions,
there exist sequences of constants {¢,} and {d,} such that

lim P{[(P, — ¢)/d,] < 2} = [1/V/2x] f exp [—£/2]dt. (1)

n—0

The conditions for (1) to hold are the central concern of this paper,
but the implications of the results are equally important. In particular,
one of the oldest and most useful approximations to the distribution
of a power sum is a normal approximation. This approximation was
first used at Bell Telephone Laboratories in 1934 by R. I. Wilkinson,*
and is based on the faet that many observed power sum distributions
are “nearly normal.” This includes power sum distributions obtained
by numerical convolution; and empirical distributions of physical
quantities such as noise levels on trunks and connections where the
resultant noise (on a dB scale) can be viewed as an approximate power
sum.'® 11 The limit theorem proved in this paper thus provides mathe-
matical support for a normal approximation, and substantially explains
why many physical quantities obtained by power addition of random
variables tend to be normally distributed in dB.

II. A NORMAL LIMIT THEOREM FOR POWER SUMS

2.1 Discussion

Before stating the main results, it is instructive to show informally
why one would expect power sums to be asymptotically normal. To
take a simple case, suppose that {X,} is a sequence of mutually inde-
pendent, identically distributed random variables such that

* = Var [10%/"]



NORMAL LIMIT THEOREM 2083

is finite. Let 8 = E10™"" and put
’g" — 10.\-|/Iﬁ + R + 10.("/10_

Then by the law of large numbers, one expects that for large n,

S
ng ™ .

Next, note that if x & 1, then log, * =~ x — 1 so for large n

S, _S.—mné
“ng " né
Multiplication by (8 v/n )/7 then gives

6v/'n

log

S S, — ne
log, '~ —"—=- 2
g g n (2)
But, by the central limit theorem, the right-hand side of (2) is asymp-
totically normal with mean 0 and variance 1. Thus, it is strongly sug-
gested that

lim P{i:/n [log, S, — log, (n6)] = .1'}

noeon

= [1/4/27] f exp [— /2] dt.
This, and more, is indeed true as will be shown.

2.2 The Main Result

The normal limit theorem for power sums is a consequence of the
following result which will first be proved:

Lemma 1: Let {S,} be a sequence of positive random variables. Sup-
pose there exist sequences of positive real numbers {a,} and {b,}, and
a distribution I such that

(7) At each point of continuity of F,

lim P{S—"b;a" = .l'} = F(x)

nos

(27) lim (b,/a,) = 0.
Then at each point of continuity of F,
lim P{(a,/b,) log. (S,/a,) = x| = F(x).

n—o
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Proof: Let = be a continuity point of F, and let ¢ > 0 be given. Because
F has at most a countable number of discontinuities, there isa § > 0
such that F is continuous at x + & and

Flz + 8 — Flx) < e 3
Next, define
U.= (S, — a)/b. and V, = (a./b,) log. (S./a.).
Then
| P{V, <z} — F) |
< |P{V.<z} —P{U, 22} |+ |PlU, £z} — F() |.
By assumption (i) therefore,

lim | P{V, £ 2z} — F(2)| < lim |P{V, £ 2} — P{U. S 2 |.

n—u n—+o0

Let
A@) = | PV, £z} — P{U,

To complete the proof it suffices to show that

I\

z} |.

Tim A,(z) = 0.

n—0

To prove this note first from the inequality log, v £ « — 1,z > 0, that
V., £ U, for all n. Thus,

A(x) = P[{V. =z} N {U. > )]
= Pi{z < U, = (a./b,)[exp (ba/a,) — 1]}.
Using the inequality e’ — 1 < ye’, — <y < =, it follows that
0 < Afz) £ Plz < U, £z exp (bx/a,)}.

By assumption, (b,/a,) > 0 for all n and lim,.. (b,/a,) = 0. Thus,
there exists a natural number N such that » = N implies

z < z exp (bz/a,) =z + 0.
Soifn = N,
0 <A@ =Pz <U,=z+ 5.

Because x and = + & are continuity points of F, it follows by assump-
tion (1) and inequality (3) that
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0 < lim A2) < Flz + 8 — F@) < e

Since e > 0 was arbitrary, the proof 1z complete.

The importance of Lemma 1 is that it gives a sufficient condition to
go from limit theorems for sums of random variables to limit theorems
for logarithms of sums. In the important case of power sums of in-
dependent random variables, general conditions for asymptotic nor-
mality ean thus be obtained from eclassical central limit theory as
shown in the next result.

Theorem 1: Let {X,) be a sequence of mutually independent random
variables and suppose that

r; = Var [10%]
is finite for every j. Let 0, = E10™""" and put .
M,=20,, s=2 1.
i=1 i=1
Denole the distribution of 10%7'° by H,(x), and let

P" =10 10gw [10""“0 _|_ + 10.\',./10]-
If the following conditions are satisfied.

(i) The Lindeberg Condition: For every « > 0,

lim L 3 f (x — 6,)* dH,(z) = 0,
n =1 in

noe S 4
where
A, =iz —0;] = es,)
) ,l.ll: (s./0,) = 0
it will follow that
lim P{(\M,/s,)[P, — 10 logy, M,] < x} = ®(x) 4

where X = (log,10) /10 and

®(z) = [1/V/27] f _exp [—#/2] dt.

Proof: Let,
S — 10.\'|/l“ + - + IOXnI'IO-
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Then condition (7) implies that

lim P{S—EL < 3'} = &)

(cf. Feller,** p. 256). With the identifications a, = M, and b, = s, it
follows from condition (it) and Lemma 1 that
lim P{(M,/s,) log. (8,/M,) = z} = ®(x).

The assertion of the theorem then follows by changing to logarithms

with base 10.
An interesting thing to note is that if the conditions of Theorem 1

are satisfied then the sum of powers

S, = 105 4 ... 4 10™"°

and the power sum in dB, P, = 10 log;¢S,, will both be asymptotically
normal. Thus, not only will normality be observed on a “power scale”
but on a “dB scale” as well.

2.3 Identically Distributed Components

The preceding result implies the asymptotic normality of P, when
the components are identically distributed. To show this, suppose that
{X,} is a sequence of mutually independent, identically distributed
random variables with H(z) = P{10"/"* = z}. Let

7% = Var [10%/]

and 8 = E10%/"°. If 7° is finite, condition (77) of Theorem 1 is clearly
satisfied since

S _ T
M, 6vn

Condition (7) is also satisfied because if ¢ > 0,

8 & L,“(‘”—e)dﬁ’(@ ‘/;“(z"ﬁ)de(x)—*Oasnam,

where 4, = {v:]a — 8| = e V/n }. It thus follows that

{ 8V/n

lim P4\

hence, P, is asymptotically normal with mean 10 log,o(n#) and vari-
ance 7%/ (nr%6°%).

[P, — 10 log,, (n8)] = :t:} = \}; ’ exp [—1%/2] dt,
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2.4  Bounded Components
Suppose next that {.X,} is a sequence of mutually independent ran-
dom variables and that the following conditions are satisfied:

(1) There exist constants b and B such that

0<b=10"" <Bforallj
(74) s — w as n— o,
The conditions of Theorem 1 are easily shown to be satisfied in this
case, and it follows that P, will be asymptotically normal. Note that
condition (i) will be satisfied whenever 107" represents power from

a physical source. Condition (¢i), on the other hand, will be satisfied
if 72 = ¢ > 0 for some fixed ¢ and an infinite number of indices j.

III. THE NORMAL LIMIT THEOREM AND WILKINSON'S
NORMAL APPROXIMATION
One of the most useful approximations to the distribution and mo-
ments of a power sum is based on a normal approximation as men-
tioned in the introduction. The method consists of approximating the
distribution of P, by a normal distribution so that
P|P, < 2} ~ Plat + 8 < 1},
where ¢ is normal with mean 0 and variance 1. Writing as before,
M, = E10"" and s = Var [10""],
the parameters « and 3 are chosen so that
M, = E[105P71
and
s = Var [10°527)

whieh is equivalent to equating means and variances on a “power
scale.”” If ¢ is normal with mean 0 and variance 1 then

FUO(..EH:IJAU] _ e,\ﬂe}(:\a)-
; =
and
ak aM[ 2Pl A
Var [10°52710 = V0" — M7,
where

A = (log, 10)/10.
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Solving the above equations for « and g, the approximation then as-
serts that P, is normal with

E(P,) = B = 10 log,, M, — 5 log,, [1 + (s./M,)*] )

and

Var (P,) = o* = 1%’ logyo [1 + (/M) ©)

In light of the normal limit theorem, it is quite natural to assume
that P, is approximately normal, provided the conditions of the
theorem are satisfied, and n is large. On the other hand, the estimates
given by (5) and (6) are different from those based on (4):

EP,) = 10 log,e M, (M

Var (P,) = s,/(\M,)". (8)
The difference, however, is easily resolved once it is realized that if
condition (i) of Theorem 1 is satisfied then (5) and (6) are asymptot-
ically equivalent to (7) and (8). In fact, it is a simple matter to
show (cf. Feller,'? p. 246) that if the conditions of Theorem 1 are
satisfied then

lim P{[(P, — w)/ Vo] 2} = % [ epi-t/2a, O

n—

where

u, = 10 log,, M, — 5 logy, [1 + (s./M.)’]

and

0n = 2 loguy [1 + (s1/ ML)

In numerieal applications, the normal approximation based on (9)
is to be favored over that based on (4). In the first place, when
X,, -++, X, are mutually independent, identically distributed, and X,
has a truncated normal distribution, Monte Carlo studies by I. Nésell®
have shown that the mean and variance estimates given by (5) and (6)
are better than those given by (7) and (8) (although for large n and
small variance of X, there is hardly any difference). Secondly, the nor-
malizing factors in (9) were obtained quite naturally by equating mo-
ments on a power scale. This is analogous to the situation in classical
central limit theory when the sequence (S,—M,) /s, converges in dis-
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tribution to the standard normal. The normalizing factors M, and s,
are not the only ones that give this result, but they are chosen in a
natural way to insure that for every =, the mean and variance of
(S,—M,) /s, agrees with its asymptotic distribution.

Iv.
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