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The power sum of P, n components X, , Xy, --- , X, is defined by
the relation

P, = 10 log,, [10"7"" ++ ... 4 10¥%).

The distributions of such power sums are studied both analytically and by
Monte Carlo simulation techniques for the case where the components are
independent, identically distributed, truncated normal random variables.
Resulls are given in terms of distributions and moments of P, . The num-
ber of components varies from 2 to 256, and the standard deviation of the
component variables before lruncation ranges from 1 to 10 dB. The de-
pendence of the results on the choice of lruncation point is also investigated.

I. INTRODUCTION

It is common practice in communications engineering to express
signal and noise powers on a logarithmie seale. As is well known, such
a scale serves hoth to narrow the numerical range between large and
small powers and to simplify some computations by replacing multi-
plication by addition. The decibel scale is most commonly used. Em-
ploying this scale, the power level x of a power w is defined by

w
x = 10 log,, v’ (1)

where wy is a reference power, and x is expressed in decibels (dB) over
the reference power wy. Note from (1) that w/w, = 10%/19,

In the situation where a number of uncorrelated signal sources feed
into the same load, the power level p, of a sum of POWETS Wy, . .., w, 1S
given hy

po = 10 log,, [10™"" + -+ 4 1077, (2)
2091
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where z; is the power level of w;. Examples of such sums arise in cross-
talk computations, overload theory for multichannel amplifiers, noise
calculations on carrier systems and multihop radio systems, and in the
evaluations of noise distributions on built-up connections between
telephone subscribers. Here, however, the power levels are in many
situations random rather than deterministic variables. Thus, in analogy
with (2), one is faced with the random variable

P, = 10 log,, [10™/"" + -+« 4 107", 3)

where each X; is a random variable with knewn distribution. The clas-
sical power sum problem consists of finding the distribution funetion
and the moments of the power sum P, defined in (3). This problem
does not, however, possess a simple closed-form mathematical solu-
tion. As a result, the task of finding approximate solutions has re-
ceived extensive attention, beginning at least 35 years ago and persist-
ing till this date.

Among earlier contributions to the problem, we can distinguish
those that give specific methods for numerical evaluation of the power
sum distribution without introducing any other approximations than
those that are directly related to the numerical technique that is being
used. ® %56 Another approach is based on approximating the power
sum with a normally distributed random variable.> ” This approach,
due to R. I. Wilkinson,? is quite appealing, since it leads to simple
evaluation formulas. Moreover, it has now been put on a firm mathe-
matical foundation with the development of a limit theorem by N. A.
Marlow. In a companion paper,® he proves that power sums are asymp-
totically normally distributed, provided some mild conditions on the
component variables are satisfied.

The present paper considers power sums of independent, identically
distributed, truncated normal random variables, since this is a situa-
tion of considerable practical importance in transmission engineering
work. Two approaches are being used. In the first one, asymptotic ex-
pressions are developed for the mean and variance of P,. The second
approach is based on Monte Carlo simulation.® This method has a
number of distinet advantages over other numerical methods in that

(1) it can aceept any number of component variables with arbitrarily
specified distribution functions,

(i7) independence among the component variables is not required,

(#i7) computation errors do not cumulate as more than two variables
are added, and
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(iv) accuracy can be determined through the evaluation of con-
fidence limits.

Our main results are numerical estimates of moments of P, and
selected graphs of its distribution function. A wide range of component
distributions is covered with n ranging from 2 to 256. Most of the results
are based on a nominal symmetric truncation of the component variables
at 43.5 standard deviations from the mean. In addition, the effect on
P, of choosing other truncation points is discussed, and some general
trends are developed.

II. ANALYTICAL RESULTS

Consider first the case where the X; are independent, identically
distributed random variables. Assume that the expectation

o = E[107/"]
and the central moments
r; = E[10%"" — g)’,

exist and are finite for a sufficiently large range of j. We require —1 <
j = 8 to derive the results for the mean of P,, —2 = j < 12 for the
variance and wider ranges for higher-order moments,

Rewrite the power sum P, of X, , X,, ---, X, , as

P, =10 log,, S, , (4)

where

S, = 10%:7% 4+t 1019

Now expand (4) in a finite Taylor series about the mean, né, of S,.
This gives

1 S, —né 18, —ne\’
P»—x[log("“—ﬁr—'( o )+

(=n"* (-i»:ﬂ)"’ (5_—"2)] -
+ m ne + R no ! (5)

1
A= 10 logee

and log stands for log,. The remainder term in (5) ean be expressed in
integral form as

LS

where

0.23026
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Yo dt
N = — m_m+1 . _ )
R.(x) = (—1)"x j; T 20 x> —1, (6)
or, alternatively, as
N o (=D" (_-“v'_)'"“ o
Bu@) = ii\it e » 270 @™

where 0 < § < 1.
With R,,(z) given by (7), one obtains

R(u) =0 for modd,
ne
so that from (5) we get our first result

EPP,) = LAP,, ®)

where

LAP, = 10 log,, (n8) = % log (n6) (9

is the level of average power.
To derive asymptotic expressions for the moments of P,, we apply
the Lemma in Appendix A and (6) to get

of (St (e (5520)) ] = oty o

Next, to derive an asymptotic expression for E (P,), we take the ex-
pected value of both sides of (5) with m = 3. An application of (10)
then gives

ﬁg% 4+ 0(1/n*) as n— . (11)
Here the independence of the component variables has been used to
express the variance of S, as nrs, and the third central moment of S,
as nry. The term containing =3 is of order 1/n%.

To arrive at an asymptotic expression for the variance o*(P,), we
use (5) with m = 2 and (11) to get

S, —no 1 (Sn — ne)z

1
N nf 2\ \ b

E(P,) = LAP, —

P, — E(P,) =

+ Rz(%ﬁ)drou/n) as n—w. (12)

1
A
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Squaring (12), taking the expected value of both sides, and applying
(10) to four of the resulting terms gives

71 + 0(/n°) as n— =, (13)

a'(P,,) = x_laz n

A similar approach can be used to derive asymptotic expressions for
higher-order moments. The measures of skewness and excess, denoted
by y1(P.) and y2(P,), respectively, are defined by

E(P, — EP.)’

v(P.) = "70:1(13)
and
kP, — EP,)!
2y — \ =
) =",y TR
They are found to satisfy the expressions
§
(P = [-; - %] Ly oa/m) as n— e (14)
T2 9 n’

and

27, 207,
yo(P,) = [I% _ 2n ) 207 3} Lyoamy as now. (5
T 07, ) n

The asymptotie results given in (11), (13), (14), and (15) are all
consistent with Marlow’s normal limit theorem.® The main virtue of
the asymptotic results above is that they indicate the rate of convergence
of the four quantities considered. This is of practical interest since
engineering applications often involve a finite and fairly small number
of component variables.

In the particular case where the X; are truncated normal with mean
0 dB, standard deviation before trunecation of ¢ dB, and symmetric
truneation at 4cs dB, the results contained in Appendix B can be
used to express (11), (13), (14), and (15) in terms of ¢, ¢, and n. For
the mean and the variance we get, respectively,

exp (Ne®)U.(a) — 1
2 n

w(P,) = LAP, — + 0(1/n%) (16)
and

aA(P,) = EX_P_.(N,U:\}‘_;&L(E)_“_I + 0(1/?12), (17)
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where the truncation factor U, (o) is defined by

Uc(a') = ?i((i;) ]
with
_ ®(c — \o) — ®(—c — No)
1) = a0 = a(=9
and
B(r) = \}é} f_ exp (—12/2) di.

Derivation of the Wilkinson estimates for the mean and variance of
the power sum P, is given in Appendix B. This derivation uses the same
ideas employed by R. I. Wilkinson in 1934.” Thus, P, is approximated
by a normally distributed random variable P,, . As above, the com-
ponents are independent, identically distributed truncated normal
with mean 0 dB, standard deviation before truncation of ¢ dB, and
truncation at 4+cs dB. From Appendix B we then have

exp (W)U, (o) — 1] (18)

n

p(Pou) = LAP, — 5 logu [1 +

exp (N'a")Uu(o) — 1] (19)

10
UZ(PHW) = T IOgm [1 + n

The first terms in the asymptotic expansion of (18) and (19), re-
spectively, agree exactly with the results in (16) and (17). This agree-
ment establishes the important result that expressions (18) and (19)
are asymptotically correct to the order of n included in (16) and (17).
Finally, we note that the actual result due to Wilkinson is contained
in (18) and (19); the case with nontruncated component variables is
obtained by putting the truncation factor U.(¢) = 1.

III. MONTE CARLO RESULTS FOR C = 3.5

Having established analytical estimates for the mean and variance
of power sums of truncated normal random variables, let us now turn
to estimation using the Monte Carlo technique. The power sum problem
is basically solved by estimating the distribution function of P, . Using
the Monte Carlo method, one obtains an estimate of this function by
random sampling. Each sample of the power sum is obtained by selecting
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n independent samples, one from each of the component distributions on
the dB scale. The corresponding sample value of the power sum is then
directly computed from (2). For the results presented here, the com-
ponent samples have been selected via computer generation of so-called
pseudo-random numbers. These have approximately a uniform distribu-
tion over the unit interval. Using the inverse error function together with
nominal truncation at +3.5¢ gave a random variable with truncated
normal distribution. Because of requirements of computing speed, this
transformation has been achieved via a table look-up scheme with
values of the transformation stored in the computer memory.

Table I summarizes Monte Carlo results in terms of estimates of
the mean p(P,), the standard deviation «(P,), and the measures of
skewness and excess y,(P,) and y.(P,). Monte Carlo estimates of
these quantities are denoted by the corresponding latin letters m(P,),
s(P,), g1(P,), and g.(P,). The standard deviation and the measures
of skewness and excess are estimated directly by the corresponding
characteristics of the sample distribution. The mean is estimated
through the formula

T”‘(Pn) = L.AP" - (LAPM'C - Tngu'c). (20)

The value of LAP, is computed exactly from relation (9), while
LAPye and mye arve the LAP and the mean, respectively, of the sam-
ple distribution. The mean u(P,) could also be estimated by mye.
However, m(P,) from (20) is preferred over mye because the Monte
Carlo results show that it has a smaller sampling variance.

An indication of the accuracy of the results in Table T is given by
the number of decimals included. The half-width of the 99 percent,
confidence interval that represents the sampling uncertainty is between
one and five times the unit in the least significant digit. For the mean,
the confidence interval width has, however, been computed for mye
instead of for m(P,). The computation of these confidence intervals
has been based on the asymptotic normality of the corresponding sta-
tisties.

Table I shows that the mean of the power sum inereases hy some-
what more than 3 dB when the number of component variables is
doubled for a fixed o. This effect is illustrated in Fig. 1, where the
mean is plotted as a function of the number of components n. This
figure shows that the inerease in the mean is substantially more than
3 dB for a doubling of the number of components n in case n is small
and ¢ is large. On the other hand, Fig. 1 indicates that the slope of the
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Fig. 1— Monte Carlo estimates of u(P,). The components are truncated normal;
p = 0, truncation at =43.50.

graph of the mean levels off at approximately 3 dB for each doubling
of the number of components at all values of ¢ for n large enough.

It is illuminating to compare these properties of the mean with the
properties of LAP, . According to relation (9), LAP, increases by
10 log,, 2 ~ 3 dB for each doubling of the number of components n,
similar to the inerease of the mean noted above. Furthermore, rela-
tions (8) and (11) imply that LAP, — wp(P,) is nonnegative and ap-
proaches 0 as n increases toward infinity. The rate of deerease of
LAP, — u(P,) is illustrated by the Monte Carlo results plotted in Fig. 2.

Table I also shows that the standard deviation of the power sum
decreases as the number of component variables is inereased for fixed
o. This is illustrated in Fig. 3, where Monte Carlo estimates of o(P,)
are plotted as a funetion of the number of components n.

The measures of skewness and excess in Table I can be taken as an
indication of the deviation from normality of the distribution of the
power sum. These measures are zero for the normal distribution and
they have low values for distributions that deviate only slightly from
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Fig. 2— Monte Carlo estimates of LAP,u(P.). The components are truncated
normal; p = 0, truncation at =3.50.
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Fig. 3—Monte Carlo estimates of ¢(P,). The components are truncated normal;
p = 0, truncation at +3.5q.
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normality. The table shows that g; and g» are very small for a-values
up to four over the range of n-values considered. The table also shows
that g, is, in general, positive. This indicates that the power sum dis-
tribution is positively skewed. Moreover, g, considered as a function
of the number of components n has definite maxima around n = 32
for all sufficiently large values of ¢. In particular, this means that the
magnitude of ¢, decreases as n becomes large enough. This behavior
is consistent with the asymptotic behavior of the measure of skew-
ness as expressed by relation (14).

The results of the previous section show that both LAP, — n(P,)
and o(P,) converge to 0 as n becomes infinite. From these two facts it
follows that the distribution of P, — LAP, converges to a distribution
degenerate at 0. Fig. 4 illustrates this convergence by plots of the
Monte Carlo estimates of the distribution function of P, for n = 1, 4,
16, 64, and 256. This convergence is also illustrated in Fig. 5 where the
1 percent and 99 percent points of the distribution function of P, are
plotted in addition to the mean m(P,) and the level of average power
LAP,, for o = 10. It is seen that the slope of the 1 percent point with
a doubling of the number of components can be considerably larger
than 3 dB, while the 99 percent point changes by somewhat less than
3 dB whenever the number of components is doubled. LAP, does not
represent a fixed percentage point on the distribution function as
n is changing. It is, therefore, seen that the plots in Fig. 5 of some

7]
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=)
>
"\
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Fig. 4 — Monte Carlo estimates of distribution function of P,. The components
are truncated normal; g = 0, ¢ = 10, truncation at +3.50.
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percentage points would actually cross their asymptote LAP, from
below before approaching it asymptotically from above. This is true
for all percentage points of the component distribution that lie be-
tween 0 and LAP;. In other words, the fact that all percentage points
approach LAP, asymptotically does not imply that the approach is
monotone.

IV. COMPARISON BETWEEN ANALYTICAL AND
MONTE CARLO RESULTS

At this point it is natural to examine the relative agreement be-
tween the various analytical approximations and the Monte Carlo
estimates. Figs. 6 and 7 contain plots of the asymptote (16), the
Wilkinson approximation (18), and the Monte Carlo estimates of
LAP, — n(P,) for ¢ = 6 and 10, respectively. Both figures show the
asymptote as an upper bound for LAP, — wu(P,). The plots also in-
dicate that the Wilkinson expression gives a better agreement with the
Monte Carlo results than the asymptote, and they illustrate the de-
gree of agreement between the Monte Carlo results and the analytical
expressions for various values of n. Finally, a comparison between the
two figures shows that the analytical approximations are better for
low values of o than for high values. Figs. 8 and 9 present similar
comparisons between Monte Carlo results and analytical approxima-
tions for «(N,). The figures contain plots of the asymptotic expression
(17), the Wilkinson expression (19), and the Monte Carlo estimate

40
-
| — =
20 o —

ﬂ( ,//’/,/
/

20—

DECIBELS
S
5\
o
‘\1

1 2 B 10 20 50 100 200 500

_Fig. 5—LAP, .ancl Monte Carlo estimates of u(P,) and of two points on the
distribution function of P,. The components are truncated normal; p = 0, ¢ = 10,
truncation at =%3.5q.
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Fig. 6 —Comparison between three estimates for LAP,-u(P,). The components

are truncated normal; g = 0, ¢ = 6, truncation at +3.5q.
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Fig. 7— Comparison between three estimates for LAP,-u(P,). The components
are truneated normal; g = 0, ¢ = 10, truncation at £3.50.
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Fig. S— Comparison between three estimates for o(P,). The components are
truncated normal; g = 0, ¢ = 6, truneation at +3.50.

of o(P,) for ¢ = 6 and 10, respectively. The figures serve as a basis
for conjecturing that the asymptote provides an upper bound for o (P,).
Furthermore, the figures indicate as above the degree of agreement
between the analytic approximations and the Monte Carlo results,
and they show that the analytical approximations are better for low
than for high values of o.

V. INFLUENCE OF TAILS

The results discussed thus far are all based on a truncation of the
component distributions at +4-3.5¢. Truncations at other points can
easily be studied with the tools used. Thus, Table II summarizes results

50 1
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\‘&,WILMN‘SON
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% \
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o (Pp) IN DECIBELS
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n

Fig. 9— Comparison between three estimates for o(P,). The components are
truncated normal; p = 0, ¢ = 10, truncation at £3.50.
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of Monte Carlo evaluations for symmetric truncations at 42¢, 2.5,
and 43¢ for ¢ = 1, 6, and 10 dB, respectively, and with the same range
of n-values as considered previously. A study of the table reveals that
the truncation point can have a considerable influence on the distribu-
tion of the resulting power sum. To exemplify this, Fig. 10 shows plots
of the standard deviation of the power sum of 256 components as a func-
tion of the truncation point ¢. The plots cover a wider range of ¢-values
and o-values than found in Tables I and II. The extensions are based
on the Wilkinson approximation.

The plots in Fig. 10 exhibit the important trend that the influence
of the truncation point increases with an inerease of the component
standard deviation o. The same conclusion can be drawn from a study
of the c-dependence of the mean u(P,) or of the quantity LAP, —
pl(Py).

Table II contains several cases of negative skewness of P,. Hence,
the earlier observation that P, is in general positively skewed does not
apply for e-values below 3.5.

VI. CONCLUDING REMARKS

The extension of the results given here to an even larger number of
components (n > 256) is straightforward, but the computer time
needed can easily become excessive. The agreement betweent asymp-
totic expressions and Monte Carlo results for large enough n does, how-
ever, indicate that the Monte Carlo technique is not necessary for

5 1

5 3.0 3.5 4.0 4.5 5.0 5.5
c

0.05

T \\\‘R\
|

Fig. 10— Estimates of o(Pz). The components are truncated normal; p = 0,
truncation at =co.
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power sum evaluations beyond a certain n-value, namely, the one
where the asymptotic expressions become sufficiently accurate.

Finally, we note that the problem of evaluating the distribution of
the power sum of nontruncated normal components has not been
brought closer to its solution by the results presented here. This prob-
lem is certainly of mathematical interest even though it represents a
physically unrealistic situation. Some Monte Carlo studies with larger
values for the truncation points have indicated that the convergence
of the power sum to normality is much less rapid in this case, and that
considerably larger values of the measures of skewness and excess can
occur than those contained in Table I.
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APPENDIX A

Let X,, X,, -+, X, be independent identically distributed random
variables. Put
S — 10X,/10 + - + 10‘\'.1/11')

and let § = E[10™/"]. In order to prove the asymptotic results in the
main body of the paper, we need the following.

Lemma: Suppose

_ ‘t”df-]" ,
Q(x)_'bl:ol-l—a:t’ r> —1

where 1, j, m are nonnegative integers. If E10°"™""" and E10~™/'° are

bounded, then
E[Q(S"—_n_a)] = O(n_uﬂ) as n— «©
ne ’

Proof: Let

1 t'ﬂ
I.(2) —fo 1+:5tdt’ x> —1.
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Then Q(z) = a'[I,,(x) ], and it follows from the Cauchy-Schwarz in-
equality that

o5 =t 5 5]

The asymptotic behavior of the central moment of S, of order 21 is
found from Cramér.'® Hence,

8. — nﬂ)] L [ (S,, — na)]”
E[Q(Mng =0m )E| I. YR as n— .,
To complete the proof, it suffices to show that
25
E[Im(iﬁﬁg)] —0(1) as n— o,
To show this, we again apply the Cauchy-Schwarz inequality. Thus,

1 1 dt 1 1
2 2m — .

: S, — no\ |* 0 "*(ﬁ)f
E[I"'( né )il = (2?;1. -+ I)E S/

Consider now the function u(z) = 1/2’, which is convex on (0, =) for

i = 0. By Jensen’s inequality it follows that if @, , *++ , @, Y1,y ** 5 Y

are non-negative real numbers such that ey + +++ + o, = 1, then
wagh + -+ eya) S auly) + -0 ey

In particular,

(n/S.)

Hence,

U(Sn/ﬂ) = (I/n)[u(IO""““) 4 e 4 u(lo.\'nnn)]
(1/??:)[107’.“;'“0 + -+ lo—ih'nflll].

Il

Hence,
E(n/Sn)f é E[lo—i‘\'A/IO]'

The right-hand side of this inequality is finite by assumption, so the
proof is complete.

APPENDIX B
Derivation of the Wilkinson Results for Truncated Normal
Components

As in Appendix A, let Xy, X5, . .., X, be independent, identically
distributed random variables, and assume further that they all have a
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truncated normal distribution. The density function of X is then

0, r < u — co, x> u+ co

) = L (=
glx) = Plc) — P(—¢) vVor o exp( 2¢° ) !

p—co =x =u+co

where ® stands for the standardized normal distribution function.
Now let 17; be the nonnegative random variable that expresses the
power corresponding to X, i.e.,
IIY- — 101’.’/[0

The density function of 1 1s

f(’l(‘) — JU, w < ]O(.ufrq;,:lrl' w > lOr;nml/lll

10(u+co‘)/lﬂ

1 - (‘\'p( (log w — ) )
Be) — (=) Voronw 2\'o’
O(u ca) /10 S w s

The moments of W, are therefore,

= [ W) dw = exp (s + HENG)T, (ko)
Ja
where
B(c — o) — B(—c — \o)
d(c) — ®(—c)

accounts for the effect of the truncation. We note that T.(¢) — 1 as
c—> o0.
The mean and variance of 1, are found to be

T.(s) =

0 = EW, = exp (\u + INe")T.(0) (21)
and

2 = Var (1)) = exp (2ag + M) T (o)[exp (No*)U.(0) — 1], (22)

where

Now let P, be the power sum of X, , X,, ---, X, and take p = 0.
Furthermore, let P, be approximated by a normally distributed random
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variable P,, . The independence of the X,’s then allows us to establish
two equations by adding the means and variances of the W.’s to get
the mean and variance, respectively, of

S“w — 10}’.-/10 — W‘ _I_ . + W'n .

Relations (21) and (22) allow mean and variance of S,, to be ex-
pressed in terms of mean and variance of P,,,. Hence, we get

n exp GNe)T.(¢) = exp Au(Pow) + N (Pou)]

and

n exp (\'o") (o) [exp \'o*) U.(o) — 1]

= exp [2A\uP,.) + V& (P..)][exp Mo (P,.) — 1].

Solving these two equations for p(Py,) and ¢*(Py,) we find

exp (\2e?)U.(¢) — 1]

1
“(in)_LAPﬂ_'Q-_)\‘]-Og[]-—" n

and

a.z(th) = ilﬁ log [1 + exp ()\ o )nUc(o-) —_— 1] ,

where

LAP, = %logn + B’ + % log T'.(a).
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