Random Packings and Coverings of
the Unit n-Sphere

By A. D. WYNER
(Manusecript received July 13, 1967)

It 7s well known that the quantity M,(n, 6), the maximum number
of nonoverlapping spherical caps of half angle 8 (a ‘“‘packing’) which
can be placed on the surface of a unit sphere in Euclidean n-space is not
less than exp [—n log sin 20 + o(n)] (8 < w/4). In this paper we give a
new proof of this fact by a ‘“‘random coding” argument, the central part of
which is a theorem which asserts that if a set of roughly exp (—n log sin 26)
caps 1s chosen at random, that on the average only a very small fraction of
the caps will overlap (when n is large).

A related problem is the determination of M .(n, 8), the mintmum num-
ber of caps of half angle 8 required to cover the unit Euclidean n-sphere.
We show that M.(n, 8) = exp [—n log sin 8 + o(n)]. The central part
of the proof is also a random coding argument which asserts that if a set
roughly exp (—n log sin 0) caps is chosen at random, that on the average
only a very small fraction of the surface of the n-sphere will remain un-
covered (when n is large).

I. INTRODUCTION

A problem in coding theory for the Gaussian channel is the deter-
mination of M,(n, 8), the maximum number of points which may be
placed on the surface of a unit n-sphere such that the spherical caps
with centers at these points and half angle 8 are disjoint (the “pack-
ing” problem). This quantity, though unknown, has been estimated
by upper and lower bounds.® In this paper, we give a proof of the
known lower bound by a “random coding” argument. It is felt that
this new method is of interest in itself.

A related problem is the “covering” problem, the determination of
M,(n, 6), the minimum number of caps of half angle 6 required to
cover the surface of a unit n-sphere. This problem is of interest when
one wants to quantize an n-dimensional Gaussian vector with inde-
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pendent ecomponents (which with very high probability lies near the
surface of an n-sphere). In this paper, M,(n, 6) is estimated with upper
and lower bounds which are “exponentially” tight. The upper bound
is also proved by a “random coding” argument.

The random coding arguments owe much to Shannon.* * The ran-
dom covering theorem in particular is similar to his approximation
theorem in the latter reference. R. Graham has called my attention to
the work of Rogers,™ 2 who has considered the problem of covering a
large n-dimensional cube with spheres of a unit radius. Rogers’ meth-
ods and result parallel those given here.

Let z, y with and without subscripts denote points on 8, , the surface
of a unit sphere in n-dimensional Euclidean space. Let a(z, y) be the
angle* between z and y, and note that a(z, y) satisfies the axioms of
a metric. For 0 £ 6 < m, let €(z, §) = {y : a(z, y) < 8}, the open
spherical cap of half angle 8 centered at z. A set § C 8, is said to be a
f-covering (0 < 0 < =) if U..s @ (z, 6) covers §,, and S C 8, is said
to be a 6-packing if €(z, 8) M €C(y, 6) is empty for =, y £ S, z = y.
Let M.(n, 8) be the minimum number of points which can constitute
a 0-covering of 8, and let M ,(n, 6) be the maximum number of points
which can constitute a 8-packing. These quantities are related by

Lemma 1: M, (n, 26) = M,(n, 6).

Proof: Wesay that S C 8,is a maximal 6-packing if S is a 6-packing, and
forall y ¢ S, the union {y} \U Sis not a 6-packing. We establish Lemma 1
by showing that every maximal §-packing is a 26-covering. Let S be a
maximal 6-packing. If S is not a 20-covering then there exists a y such
that a(z, y) = 20 for all z & S. Thus, from the triangle inequality for
a, Cx, 0) N C(y, §) = dforallze S, and {y} \J Sisa 6-packing con-
tradicting the maximality of S. Hence, the lemma.{

The quantity M,(n, 6) is well studied.” In particular, it is known that
(for 6 < w/4)

exp [nPL(0)(1 + B.(0))] = M,(n, 6) < exp [nPy(6)(1 + v.(6))], (1a)
where g,,y, —> 0 as n— 0 and
P.(6) = —logsin 26, (1b)

* The angle is defined as follows. Say that the center of the unit sphere is the
origin of coordinates in n-space. Then = and ¥ may be thought of a unit vectors.
The angle a(z, i) between them is defined by cos & = inner product of z and y,
where0 = a = .

+ The fact that it does not seem possible to obtain a reverse inequality relat-
ing M, and M, may lead one to suspect that covering and packing are, in fact,
not dual problems. This may account for the fact that random coding appears
“better” for covering than for packing.
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and

Pu(6) = —log V/2sin 6. (1¢)
Thus, roughly speaking M,(n, §) increases exponentially in n (as n
— o) with exponent between Py and P.

In Section III we give another proof of the lower bound in (1). The
central part of this proof is a theorem that asserts that if a packing
with roughly exp [nP.(8)] points is chosen at random, that on the
average only a very small fraction of the eaps will overlap (Theorem
1). The lower bound of (1) is a corollary to this theorem. It is felt that
Theorem 1 is of interest in itself.

Now consider M.(n, ). We will show that it too increases roughly
exponentially in n (as n — o). But here we can find the exponent
exactly, viz., (for 8 < #/2)

M.(n, 8) = exp [nR.(0)(1 + ()], (2a)
where ¢, — 0 as n — « and
R.(8) = —logsin 0. (2b)

The central part of the proof of the existence of a covering satisfying
(2) is a theorem which asserts that if a covering with roughly exp [nR.(8)]
points is chosen at random, that on the average only a very small frac-
tion of 8, will remain uncovered.

II. THEOREMS

In this section we give precise statements of our theorems, leaving
the proofs for Section II1I. We begin with some definitions.

Assign the usual “area’” measure to §,. If A C 8, is measurable, let
u(A) be its measure. In particular, let

(‘H. o l)ﬂ_(n—ll.fz a -

Cula) = p(C(z, @)= Tl + /3] J, ST e de (3a)
be the area (measure) of a cap of half-angle «, and let
nn_n/! .
@ = T+ 272] )
be the area of 8, . It is easy to show that (for a < #/2)
C,( 1
a (Z; = exp {n log (sm—a) + a(n)}- (4)

asn — «w,



2114 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

In connection with the packing problem, let S8 = {z:}il, & 8.,
and consider {@(z;, 6)}X, the corresponding caps of half-angle 6.
Define

1 M
F, (8, 8) = 5 Z g8, 0), (5a)
M =
where g; (i = 1, 2, --- , M) is defined by
g‘-(S, e) — {1: (3(:5.- ] 0) M G(z,- ’ 9) =& all ] #= 2, (Sb)
0, otherwise.

Thus, F,(S, ) is the fraction of the caps which do not overlap. Notice
that S is a #-packing if and only if F,(S, §) = 1. We now state

Theorem 1: (Random Packing) Consider a random experiment in which
the M members of S are chosen independently with uniform distribution
on 8, . F,(S, 6) is then a random variable. Let 6 be fired and let M increase
as n — o, then

i M %%@ S, BFJS, 6 —0 (6a)
and
i M %g)@ 0,  EFS, 6 —1, (6b)

where E denotes expectation.

Thus, in particular, if M = ¢ (p fixed), we have from (4) that
EF,(S, ) — 1 or 0 according as p < —logsin 26 = P,(0) or p > P.(6).
Further, since there must be a set S such that F,(S, §) = EF,, we
conclude that for any p < P.(6) and any e > 0 there exists an n suffi-
ciently large and a set S C §, with M/ = ¢’ members such that

Fi(8,6) 21— @

If we delete the (eM) members of S with overlapping caps we obtain
a f-packing with M = €”(1 — ¢) ‘points. This is equivalent to the lower
bound of (1).

Let us now turn to the covering problem. We can easily establish a
lower bound on M,(n, 6) as follows. Let S = {z;}!Z, € 8, be a 6-
covering, so that \_J!L, €.(z;, 6) covers 8, . Hence,

Ar

Oum) = u(s) = U e, 0 £ 2 uCh, 0) =MC0). @

i=1 i=1
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Thus, we have proved
Lemma 2: M.(n, 6) = C.(r)/C.(6).

In the light of (4), Lemma 2 implies that A/, is not less than the right
member of (2a) for § < x/2.
Let 8 > 0 and S C 8, be given. Define the set

B(S,8) = lyes8,:y¢e(z,pB) forallze S}, (9a)
Then
F.(S, B) = u(B(8, B)/C.(m) (9b)

represents that fraction of S, not covered by the caps €(z, 8), z ¢ S.
We now state

Theorem 2: (Random Covering) Consider a random experiment in which
the M members of a set S are chosen independently with uniform distribu-
tion on 8, . Then F (S, B) is a random variable. Let 8 < = be fized and let
M increase as n — o, then

i M %:% S @, EF)—0, (10a)
and
g oM %% -0,  EF)—1. (10b)
Purther,
E(F) < exp {—M %%} (11)

In particular, if M = ¢ (p fixed) and 8 < /2, we have from (10)
and (4) that E(F,) — 0 or 1 according as p > —log sin 8 = R,(8) or
p < E.(8). F'urther, since there must be at least one set S for which
F.(8, B) £ EF., we conclude from (11) and (4) that for any 8 < /2

and any p > R.(8) there exists for each n = 1,2, -.. a set § C s,
with M = ¢” members such that
B(8S
U s e (—ew (b~ ROWA+ @), (2

where A(8) — 0 as n — «. The following corollary (also proved in
Section IIT) follows from (12).

Corollary: Let 6(0 < 6 < /2) be arbitrary and let p > R,(6). Then for
n sufficiently large there exists at 6-covering of S, with M = ¢"™ points.
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Tt remains to show that 37, is not more than the right member of (2a).
For 8 < n/2let

p*(0) = hmsup = log M (n, 6).
Say p* > R.(0). Let o' = (R(0) + p*(6))/2 < p'. We conclude that
there is an infinite sequence of n’s such that any set of €’ ™ points in
8, cannot be a -covering. But since p’ > R.(6), application of the above
corollary yields a contradiction. Thus, p* = R,(6). This taken together
with Lemma 2 gives

llm . log M(n, 6) = R.(0),

n—+0

from which (2) follows.

III. PROOFS
Proof of Theorem 1: Let the points z, , &2, -+ , T € 8, be chosen in-
dependently with a uniform distribution on 8,. The random variables
g: @ =1,2, -+, M) defined in (5b) may be rewritten
o) = P g
gi(xl T, e T 6) — {1; Ci(-rn ;-'L:) = 23, ¥) 7= 1, (13)
0, otherwise.
Thus, the random variable F, of (5a) has expectation
EF, = EEQ- = ZP: tg: = 1}. (14)
]l[ i=1 i=1
Let 7 be fixed. If z; = z then g; = 1 if and only if the (M — 1) inde-
pendent choices of z, , -+, Zioy , Tis1, -+ +, Zar do not belong to C(z,26).
Since the z; are uniformly distributed on 8, we have
B _ _ _ C,.(26))M_l
Prigi=1|z; =2} = (1 Cum) ,
independent of z. Thus, from (14)
. : B C"(QH))M—E 3 ( B _.]:-)ﬂnl(l‘f—lfﬂﬂ)] .
L(Fp) - (1 C,.(‘rr) = |1 o ’ (10)

where g, = C,(r)/C.(26). Our result follows on noting that asn — e,

(1 — 1/u)* — ¢! and (M — 1)/u, =& MC,(260)/C.(r).
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Proof of Theorem 2: Let the points x, , 75, -+ , 5 ¢ 8, be chosen in-
dependently with a uniform distribution on §,. The random variable
F. may be written

1
Fr: = Cﬂ('.'l') 5 h(y: &y , T2 y " !xﬂf) d,u(y), (16)
where

1, if az;,,y) =0, 1=i=M

h(y, Lyy mrry, J:M) ={

0, otherwise.

Since h = 0 we may interchange the expectation and integration opera-
tions and obtain

. 1 ’
BF. = oo [ @B, o, o,
where as indicated Eh is computed with y held fixed. Now

M
Eh(yl Ty, e :xﬂf) = Pr {h = 1} = Pr n {a(xf ) y) P 0]

B C.(0\" -
= (1 — C',.(?r)) < exp [—MC,(0)/C, ()],

from which (10) and (11) follow.

Proof of Corollary to Theorem 2: Tet p > R.(6) be given. Let v be
defined by R.(y) = p. Since p > R.(6) a decreasing function, we have
v < 0. We will apply Theorem 2 with 8 = (8 + v)/2, so that p > R(B).
Let S, (n = 1, 2, --+) be the sets which satisfy (12), By (4) and (12),
C.J0 — v)/21/C.(x) decreases much more slowly (as n — ) than
[w(B(S,, BN)/C.(r) & &,, so that we can find an N sufficiently large
such that forn = N,
(L0 — 7)/2)

b < Culm) .
We claim that for n > N, the sets S, are #-coverings of 8,. To show
this observe that if y ¢\, ..s, €(z:, 0), then a(z;,y) = 0, allz, ¢ S,.
Thus,

G(y, b= T) N (?(.r,- , f’f—“’) — @forallz,eS,,

2
& =~
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which in turn implies

Thus,

Ao, 20} eln 52 eft5)
ow  ET aw Gl

a contradiction. Thus, there is no such y and the corollary follows.

0, =
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