Slope Overload Noise in
Differential Pulse Code
Modulation Systems

By E. N, PROTONOTARIOS

(Manuseript received June 12, 1967)

In differential pulse code modulation (DPCM) systems, often referred
to as predictive quantizing systems, the quantizing noise manifests itself
in two forms, granular noise and slope overload noise. The study of overload
noise in DPCM may be abstracted to the following stochastic processes
problem. Let the input to the system be a Gaussian stochastic process
{z(t)} with a bandlimited (0, fo) spectrum F(f). Denote the output of the
system by y(f). Most of the time y(f) vs equal to z(1). During time intervals
of this kind, the absolute value of the derivative 2'(t) = dx(t)/dt s less
than a given positive constant x,. (In a DPCM system, x}, = kf, where
k is the maximum level of the quantizer and f, is the sampling frequency.)
There are time intervals, I,(t;" , ;") (i = 0, =1, 42, --+), for which
y(t) # x(t). These time intervals begin al time instants 1" such that
| @'(ty") | increases through the value x}. For t e I, y(t) = z(t\") +
(t — t,")af . The interval ends at ¢ , when x(f) and y(t) become equal
again. The overload noise in the DPCM system is defined to be n(t) =
x(t) — y(t). The problem is to study the random process {n(t)}. In the
present paper, we will give an upper bound to the average noise power
(n*() )as which at the same time is a very good approximation to the noise
power itself.

Two previous aftempts have been made to find (n®(t)).. . One, due to Rice
and O'Neal, involves an approvimation valid only for very large x .
Another approach lo the problem, due to Zelterberg, includes an ingenious
way of avoiding the determination of t," . A new approach is given here
that combines the best features of the two methods. The present result is a
beller approximation for slope overload noise than has been previously
oblained. The result differs from previous results bul is asymptotically
equal to that given by Rice and O'Neal for x} — w. In the region where
overload noise is tmportant, the present result is in very good agreement
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with computer simulation and experiment. The lechnique used could be
applied jor the delerminalion of other slalistical characteristics of the
error random process.

I. INTRODUCTION

This paper is concerned with the slope overload noise in Differential
Pulse Code Modulation (DPCM) systems, often referred to as predictive
quantizing systems. Delta Modulation (AM), the simplest member
of the DPCM family, is a European invention of the mid-forties."
DPCM was first revealed in a Phillips Company patent” in 1951 and
as a predictive quantizing system in a patent by C. C. Cutler® of the
Bell Telephone Laboratories in 1952. AM and DPCM are receiving
renewed attention due to the present trend toward digital communica-
tions and general efforts aimed at redundancy reduction® in picture
transmission. The present work was motwated to a large extent, by
the application of DPCM to Plcturephone signal transmission.

Work on AM and DPCM was reported in the early and mid-fifties.
Most representative are the papers by (3) DeJager® on AM, mainly
of introductory and descriptive nature, (27} Van de Weg® on uniform
DPCM—we will refer to it in the sequel, and (i) Zetterberg’ whose
long paper on AM is the most detailed study of the subject to date.
Recent publications note the beginning of a ‘renaissance” period for
AM and DPCM.®*-1%*

In DPCM systems the quantization noise manifests itself in two
forms, the granular noise and the slope overload noise. The granular
noise is essentially uncorrelated with the input signal and has a more
or less flat power spectrum and an approximately uniform amplitude
probability distribution, resembling the granular noise in standard
PCM. The granular noise for single integration DPCM systems with
a uniform quantizer has been studied by Van de Weg.*

In contrast with a straight PCM system, which overloads in ampli-
tude, a differential PCM system overloads in slope. Consider a DPCM
system (Fig. 1) with a single integrator in the feedback path and a
symmetric quantizer which is not necessarily uniform. Practical DPCM
systems have leaky integrators. For simplicity, we are considering only
perfect integrators here. Let k be the maximum level of the quantizer
and f, the sampling frequency. Then the maximum slope that the system
can follow is z} = Fkf., corresponding to the emission of a string of
impulses of strength k by the quantizer of Fig. 1. For a fixed value of
z} = kf, and for k — 0 the granular noise tends to zero, and the total
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Fig. 1 — Single integration DPCM with a symmetric quantizer.

noise is due to slope overload alone. In this paper, we concentrate on
certain statistics of the overload noise defined precisely in Section III.

II. SUMMARY OF RESULTS AND COMPARISON WITH PREVIOUS WORK

There exist two previous papers concerning overload noise in DPCM
systems. Approximate results are given for the slope overload noise
N, in terms of the slope capability x} of the DPCM system and the
power spectrum of the input signal, assumed to be Gaussian. The
result due to Zetterberg” (with some corrections) is as follows

44/2 (1)?)(3?}%)5 ( :c.i?)
T — — — —— A —_
Noz = s i \ar ) AW exp (—5-)

where b, and b, are the variances of the first and second derivatives
of the input signal, respectively, and they are given in terms of the
spectrum in (1) of the following section. The quantity A and the func-
tion A(N) are defined in (31) and (32), respectively. The second result
is due to Rice and O’Neal.® Their basic approximations are: () a trunca-
tion of the Taylor series for z(t), around a transition point, including
terms through the third derivative; and (7i) the assumption that the
third derivative of x(¢) at the transition points has, as a random variable,
a very small variance compared to its mean value. Therefore, the third
derivative is taken to be a deterministic constant with value equal to
its mean. With these assumptions, (22) of Ref. 8 results in

L () o ()
Nn,n~4\/§r (bg X exp 2b,

There are two points that we want to make here:

(7) When the formula above together with an expression for the
granular noise given in Ref. 8 are used to compute S/N we see that the
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agreement with computer simulation is not very satisfactory in the
region of severe slope overload. This formula does, however, identify
the peak of the S/N ratio quite successfully (see Fig. 11).

(72) When we compare Zetterberg’s and Rice’s results by considering
the ratio Ny z/No r we get

Noz 32 1
Nor 357 AN = 57 AN
Nz =

10 log, = —5.36 + 10 log,, A(M) dB.
No.r

Thus, we see that the two results differ substantially.

Hence, the question of the average slope overload noise power cannot
be considered settled since the two results above are different and they
both differ from computer simulation and experiment. The present
paper sheds further light on the question of the slope overload noise. Our
principle result is the approximation

J = 2L 2= 3 [ U
N 0 4‘\/2’"_ (:‘[‘3 ."L':, exp zbl A(}(),

where the quantity x and the function A(x) are defined in (64) and
(66), respectively. This expression, like the previous ones, is a function
of only two things—the maximum slope capability z} of the DPCM
system and the power spectrum of the input signal. Indeed all the varia-
bles appearing in this formula are calculated directly from these two
quantities only [see (1) and (64)]. The present formula gives better
agreement with computer simulation than the one by Rice and O’Neal,
when used to compute 8/N (see Fig. 11).

We might also point out here that the present work applies to any
system which is slope limited, not just to DPCM or digital encoding
systems.

III. PROBLEM DEFINITION

With reference to Fig. 1 let the input {x(f)} be a stationary band-
limited Gaussian random process. Let ¢(r) be the autocorrelation func-
tion of z(¢) and F(f} the one-sided power spectrum. Let f, be the band-
width of z(f) and F, = f,/fo the normalized sampling frequency. The
random process {z(f)} is assumed to be zero mean. Let b, be the variance
of the nth derivative of 2(t) (n = 1, 2, -+ -). These numbers (b,) will be
extensively used in the sequel. They are given by the relation
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fo
b, = ©2nf)"F(f) df. (1)
0
The output signal () follows the input signal z(¢) during certain time
intervals. Within these time intervals

20

.
! < Tp .

The rest of the time y(¢) follows segments of straight lines having slope
zy or —zx} . If {; is a time instant at which a transition from the input
signal to the straight line segment takes place, we have

2 l) = d{}f—l — 2l () >0

or
z'(t) = —af z'(ty) < 0. (2)
For
a'(ly) = 3)
y(l) = a(lo) + (1 — lo)j te(lo, )
and for ' (t) = —
y() = x(te) — (t = t)xy  Le (b, ), )
where {, is the smallest time ¢, > {, for which
w(h) = ylh) = a(t) + (L — l)a'(k). ()
Since the overload noise is defined to be
n() = z() — y(), (6)

the problem boils down to the study of the random process [n(f)}.
We will concentrate on the derivation of an upper bound to the average
noise power (n’(t)),, which at the same time is a very good approxima-
tion to the noise power itself. Other statistical properties of n(f) can
be obtained, but we will only mention them at the conclusion of the
paper.

In contrast with straight PCM the evaluation of the overload noise
in DPCM systems is not easy. The beginning of a slope overload burst
can be defined statistically in a clear manner. Difficulties arise in
defining a valid tractable procedure for determining the duration of
the burst and its end point (¢,).
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As pointed out before two previous attempts have been made to
find (n*(t)),, .”"® One, due to Rice and O’Neal,® involves a Taylor series
approximation for determining the end point ¢, of the burst valid only
for very large x}, i.e., in a region where slope overload noise is not
dominant since it is over-shadowed by the granular part of the quantiza-
tion error. Another approach to the problem is due to Zetterberg.” His
approach includes an ingenious way of avoiding the determination of
t, . Unfortunately, his work contains a conceptual error in the averaging
procedure. The error resides in his interpretation of continuous con-
ditional probability density functions in the vertical window sense.

A new approach is given here that combines the best features of the
two methods. The result is asymptotically equal to that given by
Rice and O’Neal for x; — . In the region where overload noise is
important, the present result is in very good agreement with computer
simulation and experiment. As noted above, the technique can also
be applied to the determination of other statistical properties of the
error random process.

In Section IV, we give a critique of Zetterberg’s work. It must be
emphasized that Zetterberg’s valuable work contains concepts and
techniques on which our improved results are based. The wedding of
the best in the methods of Rice and Zetterberg is accomplished in our
Section V. Theoretical results are compared with computer simulation
in Section VI and agreement is seen to be excellent.* Finally, in Section
VII we indicate how other statistical properties of n(f) may be obtained
by utilizing some of the approaches developed herein.

IV. CRITIQUE OF ZETTERBERG'S APPROACH

Using an argument based on the ergodicity of the random process
{x({)} Zetterberg’ states that

WD) = WD) = s*( [ wt+9 ds>*. @)
where
s=1—1 ®)
8 = t. - to

and S,., is the average number of points of transition per second. In
what follows, we summarize his procedure deviating slightly from his
notation and arguments to clarify a few points. Consider the ensemble

* Comparison with experiments will be given in another paper.11
1 ¢ ) denotes ensemble average and { ). time average,
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of the sequences [{;(0)}, 71 = 0, &1, £2, -+ | of time instants such
that 2/(4:(0), &) = af and 2" (¢), ©) > 0 or 2'(6:(), §) = —=a5 and
({0, ) £ 0fore = 0, £1, £2, --- . Zetterberg avoids the definition
of the end point of the burst by defining a sequence of random processes
{m:(s, ©)} (see Fig. 2), with index corresponding to the above time
instants, in the following way:

mi(s, §) = [2(t() + 5, ) — 2(0(8), O — xis]-ul)
w(@(l(9) 5,0 — 2(tl0), §) —xs) (9)

|
I
i Ilﬂﬂﬂﬂmm‘lm
| I Lot

Tig. 2— An overload noise “burst’” n;(s) and the approximating function m(s).

for
((6), ) = b and 2(1(D), §) > 0,
and
m(s, &) = [c(ti + 5,8 — a(ts, §) + aislu(s)
cu(—alt; + 8,0 + 2, 8 — 2ls) (10)
for
(L, 8 = —al, (L, ) <0,
(u(s) is the unit step.)

T For clarity we show in this paragraph the input random process as generated
by an experiment with outcome §.
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For brevity, we drop the index 7 and the argument {. We denote, as
before, the beginning of a burst by f, , the end by ¢, and by s, its duration,
such that for a “positive burst,” i.e., z'(f,) > 0 we have

m(s) = [z(ty + 8) — 2(t) — xislu@ulz(l + ) — x(t) — x4s]. (11)

In general, as shown in Fig. 2, m(s) contains not only noise burst cor-
responding to the transition point ¢, but also some additional ‘“‘bursts”
cut from the function z(f) by the straight line starting at the point
(to , z(to)) and having slope x} . This makes

[m m*(s) ds = f n’(ty + s) ds (12)

<0

<j:° m*(s) ds> = <jo n’(ty + 8) ds>' (13)

For sufficiently large values of z///b,, (b, is the variance of z’(t)),
however, the probability is small that the situation depicted in Fig. 2
will occur. Also, generally the additional sections in m(s) occur in
reduced amplitude and the squaring reduces the introduced error still
further. Denote by R.., the average number of points for which

a’(t) = xf () >0

and

or
a'(t) = —af, a"(t) <0.

It is seen from Fig. 3 that R,., = 8,.., since a burst cannot start when
another is taking place even if the conditions on the first and second
derivative are satisfied. But again, for sufficiently large x5/ Vb, R,
is a good estimate of S,.,. It follows from the discussion above that
the quantity

SLOPE Xp—__

Fig. 3—K;, K, C R., whereas K, C 8., but K» C 8., .
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R< [ m ds> (14)

is an upper bound and actually under certain conditions a good estimate
of (n*(t))a, -
When one defines

Q.. = <[ m’(s) ds> = f {(m*(s)) ds, (15)
where the equality above holds provided that the integrals exist, then
NO = R:’..Q.t’.. (16)

is Zetterberg’s upper bound to the overload noise.
At this point Zetterberg takes the ensemble average (m’(s)) in the
following way:

(m*(s)) = [ [ (v, — a, — wos)’plr, , 22 | 3, = af ;8) da, d,

Vreitrian

+ [ [ ' (s — 1 + ) ’ple, , 20 | & = —af ;) doa doy , (17)

where p(z,, 23 | & ; §) is the conditional joint probability density
function of the random variables X, = 2(t,) X, = 2z, + s) given the
value of the random variable X, = dz(t,)/df, understood in the vectical
window sense. It turns out that the averaging procedure as_described
by (17) is wrong for two reasons:

(7) The joint probability density of X, and X, should be subject
not only to the condition X, = dx(t,)/dt = = =z}, but also to the
condition X, = d’z(t,)/dt’ = 0. If we do not impose the above con-
dition on the second derivative at the beginning of the burst, then an
m(s) of the form depicted in Fig. 4 would erroneously add to the ap-
proximation of the average slope overload noise power per burst.

(#) It is known'’ that conditional probability densities must be
treated with great caution. M. IKac and D. Slepian in Ref. 12 have il-
lustrated with examples how different the expression for conditional
probability densities might be, depending on the way we understand
them. From the ensemble viewpoint quantities like the conditional
joint probability density for the rv X, = z(t) and X, = z(ty + s) given
that X, = dx(t,)/dt = =z are not clearly defined since the set of sample
functions with dx(f,)/dt = =z} has probability zero. We can of course
give meaning to the conditional densities by means of limiting proce-
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to z'(to) = xh x"(tg)< 0
Fig. 4 — Consequences of not requiring z”(4) to be positive.

dures. As Kae and Slepian point out, a condition like dx(t,)/dt = x{
would be replaced by a condition, 4, with nonzero probability, depend-
ing on parameters, such that when these parameters tend to limiting
values A becomes the condition dx(t,)/dt = =z} . It turns out that, in
general, the resulting conditional probability density function depends
on the manner in which A approaches the condition dx(f,)/dé = zj .
Two window conditions are considered below.
(i) A vertical window condition is a condition of the form

da(ty)

0 < i+ . (18)

xh <
Then, with reference to I'ig. 5(a),

Py, @ | &) = 20 ;8w
r'o+d

(22, & ;8) di P
. e, ple, , @y, 2l ;8
=1 e (1)

im o (19)

PR
o f }U(i'l) di,

where p(z, , @2, &, ; 8) is the joint probability density function of the
random variables X; = z(ty) Xs = z(lo + ) and X, = da,(t)/dt and
p(&,) is the probability density function of the derivative X, = da(t,)/dt.
Note that the time argument of the density functions above are written
taking into account the stationarity of the input process {z(®)}.

(i) A horizontal window condition is a condition of the form dx(t)/dt =
2! for some ¢ such that

b =t =1, + 8.
Then,

plxy , 22 [3«"’({‘0) =2 ; D
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'

ple, , z2, 21,21 ;8) d:v{}
{[ dﬂ"’f

p(l , ) df
'g—x"" 30

xrfo—x'*, 8 -1
[ plat , 21 (I.v{}
Joo,

o0
[ | 2" | play , 20, @), !’ 8) day’
V-

j pla, , xa, 20, 2l ;8 daf

0
0
+ dat’
-0

. , (20)
[Vt 1t dat?

to
0 TIME,L —>
(a)
| -swope <0
SLOPE Y- _ /-\

EN é// - \\\\
I —m}/"/ \\/__/"\
) T s ]

El+ [
o° I \_dax(t)
dt
e~ § —
x>0 Ti<0
o
(¢] tn tQ +8 [¢] to to +8
TIME,L —>
(b)
Tig. 5—(a) A “vertical window” condition. (b) A
condition.

“horizontal window"”
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where p(z,, %2, 2|, x}’; s) is the joint probability density function
of the random variables X, = z(t,), X» = z(t, + §), X| = dz(l,)/dt and
X" = d’z(t,)/dt* and p(z], z{’) the joint probability density of the
random variables X/ and X!’ . Equation (20) follows from the fact
that the “horizontal window” condition is equivalent (within first
order in small quantities and for a given second derivative, say z{’ > 0)
to zf — z!' 8 < da(t,)/dt = x}. For z}’ < 0 condition A is satisfied
only if 2} < dx(t)/dt = zj — x{’ & [see Fig. 5(b)].

Consider now according to Kac and Slepian an “empirical or time
derived joint probability density for x, and z, given that z'(f) = =¢”
resulting from taking one sample function of the process and observing
the values of z(f) and z(¢ + s) at each value of ¢ for which dz(t)/dt = x
(s is of course a given number). It turns out that the empirical or time
derived density thus obtained is equal to the conditional density defined
in the horizontal window sense.

Note that if we impose the additional condition 2" (¢,) > 0 we have

Py, x| 2'(l) = ab, @'’ (l)) > 0; 8)hw
f xiplxy , xp , 2, xf ;8) del’
== " . (20a)
f x'p(xh , xt') day’
1]

It will become clearer in a later section where the averaging is done
carefully that one should interpret the conditional probability densities
in the horizontal window sense.

Zetterberg defines the conditional densities in the integrals of (17)
in the vertical window sense; this follows from the way that he computes
them.

But let us overlook for a moment these shortcomings of Ref. 7 and
continue with the approach presented there. For a Gaussian input
process {x(tf)} Zetterberg derives the following expression for Q..,.

Qo= A2 [ [ ko exp [~ + o)) aus, @)

where
1 Jdy@)\
KO = 2000 — v9) — 1 {249} 22)
w8 1 dy@\.
g(s) = \%{1 + b ds } (23)
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b.(n = 1,2, ---) is defined in (1) and
= ¥(0).

The following asymptotic expressions are valid (noted in Ref. 7).
For

§—0

k(s) ~ b'st‘ (24)
Vb
g(s) ~ xis T (25)
For

§—

k(s) ~ 2y, (26)
IIS

g(s) ~ \/24’0 N (27)

(Note the meaning of the symbol =~ as used here:
x(s) ~ y(s) for s— s
if

(s)
.lf.r: y(s) -1
An approximate calculation of the integral for @.., as given by (21)
is based by Zetterberg on the following simplifications. He uses the
asymptotic formula for g(s) for small s. This is a justificable approxima-
tion since the smaller values of g(s) are more important in the evaluation
of the integral (21) and in any case the slopes of g(s) fors > 0and s — =«
do not differ drastically.
For k(s) he sets
bos' .
EE for s <s,
k(s) = (28)
2y, , for s> s,

where s, is determined such that

th

—_ =9
1 2¥
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5 = 4 [ (20)

The evaluation of the integrals (21) for @.., are not correct as reported
in Ref. 7.* In Appendix A the evaluation of the integral is made and
the result is [see (90)]

1.e.,

2 4 b¥ (307
PR CIE UG LU DT (0
m o0 U K 0
where
_ 2! \l«.
N=37 (31)
and
AQ) = 1 4+ PNe ™ — QD) (32)
with
gl — E 0 % 1 )_\i «
PO = 5 +3A—2—1 (33)
QM) = ;_i y -|— — (34)
B(\) — f 7 do, (35)
A

For the number R,., both Rice and Zetterberg agree since the formula
comes from one of Rice’s classic papers;'’ namely

_1 !J__) (%L)

Therefore, the overload noise according to Zetterberg is

oo~ RO s o ()

35m* To

V. OVERLOAD NOISE—THE NEW APPROACHT

In this section we will determine the overload noise using an approach
which combines the more accurate model of Zetterberg with the correct
averaging procedure given by Rice.

* Zetterberg’s expression corresponding to the A(X\) given in (32) was not posi-

tive for all values of A — clearly a nonphysical situation.
+In the present section we assume, without loss of generality, ¢(0) = ¢ = 1.
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This formulation proceeds as follows:

(7) The average noise energy per burst is approximated by
ave {[° m*(s) ds], as per Zetterberg. This approach avoids Rice’s ap-
proximation of n(f) during a burst with a third-order polynomial and
does not refer to the end point of the burst. On the other hand it yields
clearly an upper bound on the overload noise, whereas in Rice’s ap-
proach the sense of approximation is not clear.

(77) The averaging process is done the “correct’” physical way in the
following paragraph. This paragraph is a paraphrasing of the lucid
lecture given to us by Rice.

Consider a very long record of the input signal (Fig. 6) of time duration
NT, where N is a very large positive integer and T is an extremely long
time interval compared with the time unit. Mark on this time record
of the input signal all points for which a positive burst begins—all
points for which the derivative dx(f)/dl increases through 2} . Mark on
the record of the signal all time instants s time units following the
beginnings of the bursts and measure the value of m(s). Let K be the
average number of “positive’” bursts per unit time. Then the total
number of ‘“positive’” bursts in the time interval NT' will be: NTK.
The average value of m*(s) over all these positive bursts will be
NTE
> (mi)

NTE
Now break up the total signal record into N equal records of duration
T and imagine them placed one below the other such that their begin-
nings lie on the same vertical line as shown in Fig. 6. Divide the time
interval into T/At equal small time intervals of length Af and imagine
vertical lines drawn at the dividing points. Consider a vertical strip
of width At around time ¢ and sum up the values of m’(s) over all
members of the ensemble that have a “positive’” burst which began in
the time interval of duration At and around the time point ¢t — s = t,,
i.e, s time units before ¢. This sum is independent of the vertical strip
we consider and it is denoted by Z ae M(8).

If follows that

ave {m°(s)} = (38)

NTK T

mi(s) = = m*(s). (39)
i=1

When a member z(f) is picked at random from the ensemble of the

N z(t)'s we denote by p the chance that the following three things

happen:
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(7) A “positive” burst begins in the interval ({ — s, t — s + Af)
or equivalently the derivative dz(f)/d¢ increases through zj during
it — st — s+ Al

(72) The slope of dx(f)/dt at t, = ¢t — s lies between z{” and z;’ + dz|’.

(#%) In the time interval (¢, ¢ + At), m(s) lies between m(s) and
m(s) + d(m(s)). Since m(s) = z(t) — x({ — s) — /s, this is equivalent
to asking that X, = z(t — s) lie between z, and x, 4+ dz, where z, is
any real number and X, = () lie between x, and x, + dx, where
Za e (2, + w8, ).

Then we have
p = aiplx, ,x.,ah, 2l ;8) du, dx, dxl’ Al
where
plx, , xa, xb,z!’ ;9)
is the joint probability density function of the random variables

- mg(s]

praul (s)
i I 1'1'14(5)\
L it |
ti tits ‘ta+s tay tats \t4+s \
- -——— e e — —— — ———— NT--——————————————————— —— e
/ (,fm(s)
i
to-7 | [S-tgts N/
At-»| o= AL
«tt—t+t——————————- T e e — = -

C
(

\;9
¥
;

Fig. 6 — Illustration of the averaging procedure.
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X, = a(t — 8 = a(l)

X, = 2()
., _ dx(t)
Xi="a
P 0]
X = ae® |-, "

2135

(40)

For an extremely large number N of members of the ensemble of
x(¢)’s the number of members satisfying the three conditions above

will be

pN = (NAQxi"p(x, , 2o, af , 21 5 8) du. dx, day’

and therefore,

; m(s) = j:o [: j:l“'! (x2 — 2, — ) (NAD2Y

plx, , &, xb, 2l 8) dr, dr, dal’ .

Consequently,

ave {m’(s)} =

LN
= = (x2 — 2, — 249)%2]’
K v —o0 Yry+zo'a

Ty, 2y, b, 2l 8) dr, da, dal’ .
Make the change of variables
Ta = 2, + xis + u.

Then

ave {m°(s)} = %fn [ﬂ f_ a}up(a, , v + als 4w, ab, af

«dx, dr]’ du.

Remark:

Note that*

K = j 2 "p(xh , a’') da'’,
]

(41)

(42)

(43)

;)

(44)

(45)
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where p(z’, ') is the joint probability density function of the random
variables X’ = dz(t)/dt and X" = d°z(t)/dt’. Using (20a), therefore,
and substituting into (44) we can write

ave |m*(s)}
= f f Whh(Ty , T+ xls + uw | 2'(L) = xb , 2”'(L) > 0;59)

dz, du. (46)

Hence, the present “physical’” averaging procedure amounts to taking
conditional densities in the horizontal window sense.

»_IL_L(QE)* . {__}
K="5"=5:\1,) P72, (“7)
On the other hand,

1 P
ply , o + s +u, 2l , 2l 58 = G [T exp {—ix'M 'x}, (48)

where
K

x, + whs + u

4

xy’
and x' is the transposed vector. M is the 4 X 4 cross-correlation matrix:
{u:}, 4,7 = 1,2, 3, 4 and it is given in Appendix B. | M | is the deter-
minant of M.
After some very lengthy algebraic manipulations which are summarized
in Appendix B we find [see (137)]

wo {9} = 2 [72" exp (=@ Y5 o0 d (40

where k,(s), ¢.(s), and A\(s) are complicated functions of s, expressed
in terms of the signal autocorrelation function and its derivatives. They
are given in Appendix B, (138), (135), and (128), respectively. Note
that they do not coincide with Zetterberg’s k(s) and g(s) as given by
(22} and (23). Other symbols in (49) are defined below.

A(s)
V1 = \s)

£ =
B

=+ 9.() (50)
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o) = ¢V 4 EB(—D) (51)
with
o) = [ -
Consequently,
Q... = ave {fm m’(s) ds}
== fmf ()fw *exp [—1(+0.()7] AAEING ) dz ds. (53)
= v ), b(9) | 2 exp [—3Gto X @ G

Up to this point we have made no approximations beyond those in-
herent in the initial model. In the following, additional approximations
are required to evaluate (53). In Appendix C it is seen that at s = 0,
z=10

b Th
E=§ = —F/——g— — o4
T biby — b3 Vb, 54
and for s and z large
E =y + 8us,

where v, and 8, are positive constants defined in Appendix C. The
funetion (&) is plotted in Fig. 7. It is easily seen that, for £ > 0

_EH
o®) et
or & £V 2

F(£)

n w B n [+ ﬂ
T T T T )
: B

Tig. 7— The function ¢ ().
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For £ > 0 we have
g D) < 1
and for £ large
2 1 1
1 — &7 =—(1 -3 )
Hence, for & large

o) e ( _1 )
Vot Y Tevaa\TET

The derivative of ¢(£) is very close to v/2r for large £. Namely,

'® _, _ *@_
\/ﬂ \/21r
Note also that

oD o yog @ yg0s, 2B ~ 10002

V2r 2V 3vVer
Hence, for ¢ = 2 the approximation
o) =X EV2r (55)

is very good (error less than 1 percent). The approximations hold good
even for £ somewhat larger than 1, as seen in the calculations above.
So that if & > 1, as given by (54), it is justifiable, for the sake of sim-
plicity, to substitute ¢ V/2x for ¢(£) in the integral (53).

Another interesting comment here is that &, as given in (54), is
equal to the ratio of the absolute value of the mean of the third deriva-
tive of the input process z(f) over its standard deviation. Indeed, the
mean of ' (t,), where f, is the beginning of a positive burst, is —b,z4/b,
and the standard deviation \/®/b, , where

® = Vbb, — bi

[see Rice’s comments above (18) of Ref. 8]. Rice assumed that this
ratio is large compared to unity. Here the approximation is good even
with £, close to 1. With the approximation introduced in (55) and using

(50) we get

ML g =6+ 00 Var
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and consequently,

Q.. = .[ao ke (s) ‘[‘w 2@z + g.(s) exp [—3(z + g.(s)°] dzds.  (56)

Integrating in the inside integral by parts we get the simplified expres-
sion

Q=2 [ 16 [ cew (—3e+ 0@ dds. @)

5.1 Approximate Evaluation of the Noise Energy per Burst

The following asymptotic expressions for k,(s) and g,(s) are found in
Appendix C, for s small

bys'

ki(s) = = (58)
g:(s) = \S/E xls (59)
and for large s
kus) =~ k. = b_i/\g—f (60)
06 ~ 2 (61)

The function g(s) has an approximately linear variation for small
and large values of s.

To calculate Q.., according to (57) we will use essentially the same
approach used by Zetterberg; namely, use the asymptotic expression
for ¢,(s) near 0 [see (59)] and for k(s) the expression (58) when s = s,
and (60) when s = s, . Here, s, is the value of s for which the two ex-
pressions are equal; namely,

4 4#: _ 25/5(){/1

8= |0 = TpEa (62)
and
¢:(8) = as,
where
a = Vb, x4 (63)
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sel

S

The nature of approximation of the functions k,(s) and g,(s) by their
values for large and small s is indicated in the Figs. 8 and 9.

The evaluation of the integral (57) for Q.., is done in Appendix D and
the result is

Q.. = f’—‘” (‘”’) b A(x), (65)
where
A) =1 - \/ PG + \/ (66)
Plx) = (IGX + 3 3X +x)
Qlx) = 2(% X+ x' = 1) (67)

D(x) =f e de.
X

The average overload noise power is obtained by multiplying Q.., by
the average number of bursts per unit time, given approximately in (36).
The average overload noise is, therefore,

e e
"= a2 bz ) TP\ T o,

)aco, (08)

——

o
o

S
S —

Fig. 8 —ky(s) and the approximation used for the evaluation of Q..
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-9,(8)
~ 7w XS
Il 4 R
vz P -
//
- VbZ a
T \ 3b, T
? o APPROXIMATE
-0
o |8

S —

Fig. 9— Approximation to g.(s) used for the evaluation of Q. .

where ¥ and A(x) are given in (64) and (66), respectively. This result
is equal to Rice's result [see (22), Ref. 8] times A(x). For x large com-
pared to unity A(x) is very close to 1 and thus, in this case (equivalent
to @ being large compared to 1/b,) the two results are identical. This is
very interesting when we note that the route taken in the two approaches
differ markedly.

The factor A(x), for x > 0 is a positive monotonically increasing
function of x varying between 0 and 1. The function A(x) is studied
in Appendix T and —10 log,,4 (x) is plotted in Fig. 10.

VI. COMPARISON WITH COMPUTER SIMULATION AND EXPERIMENTS

The new formula for the average slope overload noise power gives
results for both, flat low-pass Gaussian, and band-limited RC Gaussian
input signals, that agree in a very satisfactory manner with O’Neal’s®
computer simulation. For flat low-pass Gaussian input signals we have

(2rf0)*
3

(Q'i'i',f..)4 )

5

b, =

b, =

Using (64) we get, in this case,

_ @0
TG

so that for kFF, = 2, 4, and S we have, respectively,

(1F) =2 0.153(kF.)
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30

n
[
I

n
o
T

-10L0G A(x) IN DECIBELS
5 @
T

w
T

o

(=]
n
w

Fig. 10 — The function —10 logwe A (x).

x; = 0.306 x2 = 0.612 x; = 1.224
Alx) =53 X 107" A(x) = 495 X 107°  A(xs) =2 0.270
and the corresponding corrections in O’Neal’s curves (Fig. 4 of Ref.
8) would be
—10 log,, A(x;) == 23 dB

—10 logw A(Xz) ~ 13dB
—10 logio A(xs) = 5.7 dB.

With these significant corrections the present analytical points pass
through the computer simulation points, as seen in Fig. 11. Note that
the slope overload noise as defined depends only on (kF,) and not F, .

Excellent agreement with computer simulation also occurs for RC
shaped bandlimited input signals. For RC-shaped signals with spectrum
given by (6) of Ref. 8 we have

b o— 2rfoce 3
= — T —«a
tan~' (2—7‘-&)
a
b, = 2rfo)’a — ﬁ'n'foaﬂ + o

3tan™ (2—7@)
(41

go that for @ = 0.25f,(=1/RC)
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by == 0.94f;
by =2 13.2f5 .
And from (64)
x = 0.744(kF,)

so that for kF, = 1 and 2 we have, respectively, x, = 0.744 and x, =
1.488 yielding a correction to Rice’s’result of about 10.6 and 4.2 dB,
respectively. A comparison with Fig. 5 of Ref. 8, reveals the agreement
with computer simulation.

For RC-shaped signals (Gaussian and bandlimited) with « = 0.068
[corresponding roughly to the envelope of a black and white entertain-
ment, TV signal (FCC standard)]

by = 0.267f
b, = 3.57f}
x = 1.62(kF.)

so that for kF, = 1, %, and 1 the corrections are, respectively, 18.6,
9.7, and 3.4 dB. Good agreement with computer simulation in this
case may be noted by applying these corrections to Fig. 6 of Ref. 8.

30
h GRANULAR
25— 320/; _~ NOISE
il /
201~ NEW
OVERLOAD
NOISE -
FORMUL A
15
S
N
10
4
160
8
7/ _
s /, 32
/,
0_ N
" FORMULA BY
| RICE AND O'NEAL
-5 | [ 1 ! ! ] l
0 2 4 8 16 32 64 128 256

kFsg

Fig. 11 — Flat bandlimited Gaussian signals—comparison of the new results
with previous analytic results and computer simulation.
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‘omparison of the new analytical result with experiment will be
covered elsewhere.

VII. OTHER STATISTICAL CHARACTERISTICS OF THE OVERLOAD NOISE

7.1 Probability Density

The technique used in the present paper, i.e., the substitution of
m(s) for n(t) and the application of the averaging procedure presented
in Section V, can be used for the determination of other statistical
characteristies of the slope overload noise.

For example, let g(m, s, 2}) be the probability density of m(s), where
s is a given number, i.e., a parameter, taking on nonnegative values.
Let us define the following auxiliary probability functions ¢* (m, s, zf) ds,
the conditional probability that z(t) — z(t — s)F =zls lies between
m and m + dm given that the derivative of z(-) increases (decreases)
through z/ between t — s and ¢t — s + ds, where m 2 0 and s > 0.
Clearly,

qg (m,s, x) = ¢ (—m,s, xf) for m <O0.

Also using the same averaging procedure as in Section V and the defini-
tion of conditional probability densities in the horizontal window sense,
we find that [see (20a) and (46)]

q'(m, s, xf)

Il

f Pty 70 =2, F als + m |2’ =2l , 2" > 0)dy

0 o
[ ’- oi'p(r, , 2 = x, + als + m, 2, 2" ;8 dat’ duy
J_w Ju B

o0
f alpal , 21’) dat’
1]
1 -] l- -]
= Ef f ai'pla, , 2. = &, + xis + m, 2, 2 ;5 8) day’ dey .
—oG ]

TFrom (100) and (101) we see that

_ 1
= (———M VT P(m, s).

P(-, ) is defined in (101) and is determined in (116), Appendix B.
It is easy to verify that

q'(m,s, x)
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s, s, 2y = |8 (s, 3, for m >0

lq‘(m, s, a), for m < 0.

Note also that there is a finite probability that m(s) = 0. Hence, the
density ¢(m, s, a}) contains an impulse at m = 0 with strength p(s)

pls) =1 — 2f q'(m, s, x5) dm.
0

The probability density of m, i.e., without specified s, is clearly
Py(m, zf) = [ q(m, s, xf) ds.
Jo

Clearly, Py (m, a!) contains an impulse at m = 0 of strength

/; i p(s) ds.

7.2 Other Statistical Characleristics

Another useful attribute of the noise is its covariance (z({)n(t) )., with
the input random process. This quantity is of interest in comparing
results obtained by a particular measured procedure with those obtained
analytically. This will be discussed further in the paper referred to pre-
viously. The evaluation of {(xn).. has been performed applying the
method presented in Section V. The calculations are even more com-
plicated than the ones employed in the evaluation of (n’(f)}).., and we
will not consider them here. Moments of any order could be worked
out. The expected value of | n(f) | has also been determined. There
are many statistical problems that may be generated by the study of
slope overload noise in DPCM. These problems have their counter-part
in the theory of level-crossings of random processes, but they are even
more complicated.
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APPENDIX A

Correction of Zetterberg’s Q..,

The evaluation of @,., (Q, with the notation in equation 4.26 of
Ref. 7) is not done correctly in Ref. 7 since A(z) in Equation (4.32)
attains negative values. The integral to be evaluated is

Q... = @ f“m f: k(s)u® exp [—3u + 9(s)°] du ds (69)

with
(@) g(s) = as, (70)
where
_ Vb,
= 73,
[see (25) and the following comments] and
4
bfTs , for s =s
D) k(s) = (71)
2¢,, for s> s,
where
4
5= o (72)

Make the change of variable

u + as = o
_l g ® '.u 2 —pas2
Q.. = a\/;j; j; k( a )ue du dv. (73)
Set
X@) = [ k(v - u)uz du = f k(ﬁ)(v — 2)%dz for v £ as, = \* (74)
J0 0
7

i@__ 7 ! N2 _ v .
2%/?\4—}1—./;(?; z)zdz—105 (75)

Then

*\ here corresponds to Zetterberg’s z. (A is introduced to avoid confusion with
the input x(t).)
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Forv = A
X(U)_vgl AN24 gL 4'._2
Z\pn/h‘h}zﬁ./,‘, (v — 272" dz + N /; (v — 2)° dz
___& 7 lz_ 5, 2 6
= 105)\ + 3 AT 4 N, (76)
Hence,

_ 212 fA —erz
Qe = \Ea A [ T

0 4 3
+ fk g‘"’”(ﬁgi — N\ A% — % ;\’) dy]

Consequently,

21 2¢, 1
Q... = \[?E 35";\4 BN + SN

— 35NN + 350,00 — F\NeN)],  (77)

where
B(\) = L ¢ d (78)
and
IV =f e dz (79)
A
A
T.0) = f Lo dz, (80)

Integrating by parts we find the following recursive relations for I,
and J, , respectively,

LM = N7 4 (0 — DL, (81)
Clearly,
LN = ®() (82)
and
L) = e (83)

JuA) = =NV 4+ (n — 1)Ja-a(N) (84)
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with

A
Jo(\) = f ¢ dz = ”22”
0

JA) =1 — M2
Applying these recursive relations we find
LN = A ™7 4 ®(N),
Iy = Ne™7% 4 27

and
J, = 48[1 **"‘( -|- + N o+ 1)]

Substituting in (77) we get

Qe = APLB Y14 p 0 - Qe

Ta3d N
where

P 1()\) = 3 +

Q) = X + 1Y

APPENDIX B
Algebraic Manipulations with the Statistical Paramelers
Denote by
M= {p;}G,j=1, - , 4

the eross-correlation matrix of the random variables

Xl = ﬂ:(tu)

Xz = m(to + s)
, _ da(l)

Xi="

Then we have

Ui = E(Xf) =

(85)

(86)

(87)
(88)

(89)

(90)
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e = p = E(X,X,) = E(x(l, — s)x(l)) = ¢(3)
Hiz = Ha1 = L‘(‘YIAYD =0

pa = pu = E(X,XV) = (—1)° d;}b(f) = b
T r=0

Hzz = ]L'(‘Yg) =1 (91)

. (

Moy = pg = F(X,X]) = _(_'g% = —{(s)

e F(\ ) = (ﬁ]) = 1}!’(3) = ¢(9

Hug = If(‘\';z) = b

Mar = Mya = E(Xf-\rf’) =0

wy = (X)) =D

Therefore,
1 ¥(s) 0 —b

00— b, 0
—b () 0 b

Call | M | the determinant of M.
It turns out that

(M| = (b, — W) [0,(1 — () — ¥(S)} — bigls) + big®)}’.  (93)

Denote by M,;(¢, § = 1, - -+ , 4) the co-factors of the matrix M. Since
M is a symmetric matrix, M " is also symmetric and M,; = M;; and

1yl 1
M7= ), (94)

These co-factors are given in terms of the statisties of the input process
as follows:

My = biby — bif(s) — bai’(s)
My = =bi(boyp(9) + bid(s))
My = =) (bai(s) + 0:9(s)
My = bi(b + (I — ()
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My, = by(b, — D) (95)
Moy = Y()(b, — b)
My = —bi(4(s) + biy(s))
My =1 — $©)(b: = ) — (F6) + by’
My = —y¥@E) () + biy(s)
My = b1 — ¢() — ¥
It is easily seen that

XM 'x = IT;_I (az? + 2bz, + ©), (96)

where
a=a(s) =M, + 2M, + M., (97)
a function of s only
b= (M + M)zl + (M + M) + xis) + (Mas + Mag)zi , (98)
a linear function in !’ and (v + xjs)
¢ = Mzl + 2[M,.(u + x48) + Maai] + Ma(u + wis)’
+ 2Mgzhu + 268) + Masal®  (99)

quadratic in 2{’ and (u 4 2{s).
Integrating with respect to z, in (44) we get

K ave {m*(s)}

= @F-l—\/a_—(?)jjuz j;m;v{’ exp{—z—l—%M—[ (c —b—;)}dx;"du

_ 1 ["
= (27'-); a_(s) j; u P(u, s) du, (100)
where
P(u,s) = fnw z{’ exp {—2 |¥|f | ( - b—a)} dxi’ . (101)

It is seen that

T (0 = &) = a@at” + 286, u, st + o, ), (102
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where

(M., + Mﬂ)”}

a® (103)

Afs) = ﬁ {ﬂ[ 1
is a funetion of s only and
B(s) = Bi(s)(u + z4s) + Ba(s)zh
= Bi(9u + (sBi(s) + Bu(9))a] (104)

is a linear function in %, with

(M. + M)(M,. + Mm)}

a(s)

1
Bi(s) = Tar] {ﬂfw -

1 ﬂ'{].i 24 M 13 M 23
Bu(s) = T{MM _ O+ M a)((s)[ + M )}- (106)

(105)

Further,
Cls, u, 28) = Ciu + 288 + 20w + as) + Ca(s)a®  (107)

is quadratic in u, where

_ 1 (M M

01(3) = | M |{ﬂ122 a(s) } (108)
_ 1 T (M2 + My)(Mis + M)

CQ(S) - ﬂ,{ | {ﬂ 23 a(s) } (109)
1 (M 4 M)\

. ® ' _é( Iz B)o} ’r
j; x! exp{ 5 (@ +A dz]’ . (111)

VA (m, + ﬁ) = . (112)

Then
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() o _ - {_l(,_,zﬂ)} roo ( _ B ),,,,:/2
Pu,s) = A exp =5 C 1 jaNI n VA f dn

A6 exp{—2 (C— 1 e — Vi BNIG dny |-

Il

(113)
Set
_ 78_('“,75) _ _ B,\(s) _ sB,(s) + Bu(s) " )
&= VAG \/T(s)” VIT) ah (114)
and
o)) = ¢ 4 E0(—9), (115)
where
B(z) = fw e dz.
Hence,
Plu, 5) = —Al(—s) exp {—% (0 — %)}¢(g). (116)
Clearly,
Clu, ) = Ci(S) + xb8)° + 20:()(u + als) + Cu(al’
— WV + POV + at] 0 - 28] )
where
* — ot sCy + C,
g*(s) = x§ Vo (118)

and C,, C;, and C; are given in (108), (109), and (110), respectively.
Using these equations and the definition of a(s) in (97) we find

| M | [Cu(s) - 28] — M, — (yl_;s)ﬂ&i

{Moy(Myy + M) — Mi(Mys + Mop)}®
(M My, — Mi2)a(s)

(119)

We also note that
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M, Moy \[’(3)

Ay _ ez WAS) 9
M, M, b, (120)
[use (95)].
IF'rom (119) and (120) it follows easily that
, Ci(ﬂ _ Moy
'ﬂ[ I [C'i(s) - C](S) - Jl[:;.'i - b:lz N
Substituting the expressions for M., and M, from (95) we find
J.lllr:m - 11.[292\[1~ = M—l
by by
Hence,
L Ol 1 )
C;;(S) (T](S - bl (ln-fl)
Set

v =uVC/(s). (122

~

Then we have

.2
To

C=@+ O +3- (123)
and from (114)

___BO_ [ o (s 4 B } .
£ \/_.4(3)01(@{ + \/m( +Bl(s))'l” (124)

Using (120), the definitions of B,(s), B.(s), C(s), and C.(s) in (105),
(106), (108), and (109), respectively, and the relation

M, _ ‘f’(s} o=
Mo = b, (125)
resulting from (95) we find

By(s) _ Cu(s) _ ¥(s) 1
Bi(s) ~ Cis) ~ b, (126)

Hence, (124) becomes
B
= —— = * 9
£ ’\/I A @ + g*(9), (127)

where
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B.(s)

A(s) = —m (128)
and g* is defined in (118). Note also that
@ = VO (s ‘”(f))x{, : (120)
From (123) and (125) we get
¢ - B -0y + o0 + 5 (130)

Using the value of K given in (47) we find for the quantity P as given
in (116) that

f — _2.1_'.:_ (_lll.)% 1 12 * 2

% = 7 o) o (- = N@)e + ¢ @) le®. (13D
Substituting in (100) and using the change of variable as given in
(122) we get

(b./b2)*
ave {m*(s)} = ——
O = Var 40 Vat) (Vo)

[ "0 exp [=301 — N + 05 @)@ do,  (132)

where ¢ and (&) are given in (127) and (115), respectively.
Now make the following change of variables:

V1 — M) = 2 (133)
and set
gFO VI — M) = g5 (134)

so that from (129)

_ VAEC.() — B
gi(s) = b, (bis + ¥(s)) VAG (135)
Then
\/i@h—( G+ 0) (136)
and
lI\tl(s) 2 V l - R%

ave {m’(s)} = Vor do 2 exp [—3@ + 91(8))']Tw(£) dz,
(137)
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where

)* —B,()VAE) (138)

b
Ia(s) = (—1 .
@ =13, VA(s) {A@EC(S) — BX®))?
Finally, the average energy per burst becomes

Q.. = \/127; [ e f "2 exp [=3e + 0®)] ——‘w@@ dz ds.

(139)

APPENDIX C

Asymptotic Behavior of Several Functions of s for s — 0 and s — «

Assume that f*#(f) is integrable for n less than or equal to 8. For
bandlimited signals, the usual case ‘in practice, this requirement is
automatically satisfied.

For small s the following Taylor expansions hold:

2 4 [} 8
W) =1 = bigy + by — b gy + gy ¥(09),

where 6 is a number such that 0 < 8 < 1 and ¢’ (8s) is the 8th deriva-
tive of ¥(s) evaluated at 8s.
For a signal bandlimited to the band (0, f,) we have

i '}’{B)(BS) l =b = (27"10)21)3 .

Therefore, the absolute value of the remainder term satisfies the fol-
lowing inequality:

iu . (2mfas)®

8
8
g1 ¥ (69 6! 56

= by

so that this term will be negligible if (27fos)® << 56, i.e., if fos K 1.2,
In the expansion for the first and second derivatives of ¢(s) the first
three terms are included and the remainder terms may be disregarded
for the same values of s.

Consequently, we have

3 5 ki
¥(s) = —bis + by % — b, % + % v (8,9)

1
§

2 G
W) = —b by — b + (—, ¥ (6:9)
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with

0 1.

1A

01;62

1A

We, now, obtain the asymptotic behavior of some expressions -fs
which appear in the functions of s involved in the integral for @Q.., .
Note that

(@ 1= 9@ = bigy = ba gy + bo gy + 06

- 2 2 b'_x bllz 4 blbz 2b:| 6 8
('Lz) 1 — ¢(s) = bs — (Tg— + 71).5‘ - ( 1 —+ -6'1—)8 -+ 0(s)
) s o bbyst 1Dy AR s
(it3) §() = bis® — 33 + (2?;! + (;!)z)s + 0()

. ¥ b2 : 3 * f

() 0o + b= 2 2 o)

bos* _ Dabys®

() + b)* = = 51 T 06

O O+ b = Sl g BT b o)
) GO + by = B2 By (e = DD = D) o
+ 0(s%).

Using these formulas and the formulas of definition of the different
functions of s we find after a considerable amount of algebraic manip-
ulations, the following asymptotic expressions for s — 0. Set

® = bby — b3 .
() a(s) ~ %—(?'s“
(#7) (M|~ (i_,gﬁb—l)m K
(i7d) A ~ (%'2
(@) B~ — o
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©) B = L0 g9 o 80
(1) C) ~ 36b
(vid) Cule) = "L%) Cie) ~ 300
(vii) AECi(s) = B@w—%%
(i) As) = B

VAECs) !

\/l—h(s)wl ®

@) TN T 3Ny
Using the formulas above we find that
Iys) = — b B'(s), A — bs for s—0
b: V() |40 — Big)* 4
and
gi(s) = :Ln( + 8 8) Vi (S)i}:?@; B,(s) ~ a} \3/[1—3 for §—0,
ie.,
g\(s) = as for ssmall
with
_ b
o = 'l(, 3{)1

Tor s — o, ¥(s), ¥(s), and J(s) approach zero.

The following asymptotic expressions are easily derived for s —

(@) a(=») = bi(2b, — b)
(i) [ M| = bi(bs — 1)
(iti) A(w) = %b
(it) By(w) = —5

T 2h, — b}
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(0] By(») =0
) C(=) = 72
(vi) Cu(w) = 0
(i) A()C\() = Bi(=) = 55—
(i2) M) = —2
\V/2b,
V1 — N(w)  V2b, — b
(@) A=) a by )
Using these expressions we find
2

2

ko = lim k(s) = b, ™

and

r
g,'rl(s)mrﬁ for s— o,

V2
Note also that for £ as defined in (50) we have

(?) For z = 0 and s small

b1 , Vb,

— — ____?\_(S)_ ~ 2 e X 2
£=6 1 — M\(s) 9:(s) =3 ® s 3b O
Hence,

_ _bug

b = @b,

(#7) For s large

£ \/2b, — b2 V2b, — b,

o~ als & 8,8,
b, z + b3 08 = Yoz + 808

APPENDIX D
Approximate Evaluation of Q,.,

From (57) we have

@ =2 [ kO [ 2ew 16+ a0 dds

(140)
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where
gi(s) = as D<s <

4
ke (—ﬁ) , for se(0,sy)
ki(s) = : (141)
ko , for se(sy, ).
The symbols «, 8, , and k. are defined in the relations (63), (62), and

(60), respectively.
Make the change of variables

¥y =z + as.
We then have
Q. = gf et [ fcl(y — z)z dz dy.
& Jp Jo

Set

x) = [ (1) de = [ @ — om(2) an

Jo

Then

%)
[ X(e™ " dy.

Fory = x
X(y)ivilﬁ 4 "__ _§)_cf_5 )("?J'2
kw/x4—)2ﬁ30+)€_x(!f ﬂ)dﬂkls xy+2
Consequently,
Qz'u

_ 1 1 4 s 8
Bkm/ax"_go'f“'i‘zxfz x11+15x‘13(x), (142)

where ®(x), I.(x), and J,(x) are defined in (78), (79), and (80), respec-
tively.
Applying the recursive relations (81) and (84), we find
Lix) = e
Lix) = xe* + ()

15 \/ 211' _ "x‘/2(

Js = =

+ 5x" + 15x) — 15%(x).
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Substituting in (142) the values of Jq, I, I, , we get

Q. _ ‘@{1 _xtP(x)-i- \ﬁ‘?(x)Q(x)} (143)

o/ 4
where
Pix) = 28" + X" + %) (144)
and
Rk =21%" +x' — 1), (145)
i.e.,
Qr'n ‘\/d% ]bm l(X)
where
_xlj')
Ax) =1 — \ﬁ P(x) + \/— P()Q(x)- (146)

Using the expressions (63), (64), and (60) for «, x, and k., , respectively,
we get

Q... = £( ) bz A(x) = (Rice’s Results)- A(x). (147)

APPENDIX E

The Function A(x)

The function A(x) as defined in (66) is a monotonically increasing
function of x in the interval (0, =) with 4(0) = 0 and A(=) =

The computation of 4 (x) for different values of x was performed using
the computer and 10 log,, 1/A(x), the correcting factors of Rice’s
result, is shown in Fig. 10.

Expanding into Taylor series we can find that for x small

113 16
A —2\[5 ( )GE‘I—I.G 1.44x%);
00 ~x X+ 120@ X = x'( x + x);

whereas, for x large, using the asymptotic expansion for

\/1% ®(x) = %er'fc (\/Lﬁ) ,
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we get
e 3
A w1 -y 3),
5V 2r X
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