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A pulse modulation system is modeled with M waveforms {s,()}\" , each
of which is amplitude scaled and simultaneously transmaitted over a single
physical channel. An infinite pulse train is assumed with signal interval
T, which is determined by bandwidth consideration of the channel. We
restrict the recetver to be linear with M outputs, one for each signal wave-
form.

At a high signal-to-noise ratio the main sources of inlerference at the
input to the receiver are the intersymbol interference and crosstall; by
crosstallk we mean the interference between the different waveforms. It
18 desirable, therefore, for the recetver to eliminate both types of interference
and to minimize the remaining error due to additive noise in the channel.
This constraint on the intersymbol interference and crosstall; is defined as
the generalized Nyquist criterion.

The receiver which accomplishes the above is determined for a mean
square error criterion. Finally, some examples are presented which de-
monstrate the ease with which the generalized Nyquist criterion can be
used to design waveforms without intersymbol interference or crosstalk.

I. THE MATHEMATICAL MODEL

The mathematical model for a pulse modulation system is shown in
Fig. 1. The M waveforms {s,(f)}), which are assumed linearly in-
dependent and of equal energy, are simultaneously transmitted over
a single physical channel. Information is carried on each waveform by
amplitude scaling the waveforms s,,(f) by the real numbers {a,,}? which
are random variables. An infinite pulse train is assumed with signal
interval 7' so that the resulting transmitted waveform is
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Tig. 1 — Model of the pulse modulation transmission system.

Characterizing the linear time invariant channel by its impulse re-
sponse, h(t), we define r,(t) as the convolution of s,(f) with h(t) so
that the received signal waveform is

el M

2 2 aura(t — 7). @)
n=—o0 m=1
To this the channel adds stationary zero mean noise, 5(f), with cor-
relation function n(r) and spectral density N (f). The received waveform
is processed by a bank of receivers {w,};" whose M outputs are sampled
at times ¢t = nT,n = 0, & 1, £2, -+ - to give b,,, which are the estimates
of the a,, .

If we consider the set {s.(f)})" with our one physical channel as
comprising M different channels then we can refer to the interference
of the waveform due to s,() with that of s,(f) (m # k) as crosstalk.

Restricting our attention to linear time-invariant receivers then we
can characterize the receivers {w;}¥ by impulse response {w,(t)}}" so
that the output of the receivers can be expressed as

() = 3 D tponlt — D) + [ a@uwlt =D dz, @)

p=—ow m=1

where

V() = f ) we(t — 2)r,(2) da. (4)

The sampled outputs are designated by b ,
bu = bu(nT). ()
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At high signal-to-noise ratio (S/N) where

M

> 02, (0)

8/N = 57—t : (6)
> [ [ = du@u) dedy

the main sources of interference at the input to the receivers are inter-
symbol interference and crosstalk. It is desirable, therefore, for the
receiver to process its input so that the output eliminates intersymbol
interference and crosstalk; i.e., that

L] A1

> 2 apanT) = a. (7

p=—w m=1

for all possible sequences of the a,,. This is equivalent to requiring
that

mk=1,---, M
n =20, 1, £2, ---,

0,T) = 6 600 (8)

where the §; are Kronecker delta functions. Further justification for
imposing this constraint at high 8/N is provided in the Appendix.

We use as our error criterion the mean square error averaged over
the receiver outputs

M
Jo= 37 2 B — b)), ©)
M =
where the expectation is with respeet to the random variables a,; and
the noise.

We are now in a position to specify the problem coneisely: to de-
termine the linear receiver which minimizes the mean square error
under the constraint that there be no intersymbol interference or
crosstalk.

II. A GENERALIZED NYQUIST CRITERION

A waveform v(#) is said to satisfy the Nyquist criterion® for the
signal interval 7', if

v(nT) = 8,0 n=20,21, £2, -, (10)

Denoting the Fourier transform of v(t) by V(f) (upper case letters
will be used throughout to denote the Fourier transforms of the func-
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tions represented by lower case letters), we can state that (10) is true,
if and only if,

1 ¥ 7( _E) -
T ﬂ!Z_wY f 7) = 1. (11
This is easily shown using Poisson’s sum formula (Papoulis)?
P> ‘I’(f - %) = 2 (). (12)

If we associate ¢(t) with v(t) then (10) implies and is implied by
(11).

Our constraint that the v,.(f) satisfy (8) requires not only that the
Umm(t) satisfy (10) but also that the M (M — 1) waveforms Vme(t) (m #= k)
be zero at ¢ = nT. We refer to (8) as the generalized Nyquist criterion.
The equation analogous to (11) is

x ) V,,.,,(f - %) = B . (13)

a=—wm

This will be used interchangeably with (8) in solving the optimiza-
tion problem. Since the {V,.z(f)} can be checked almost by inspection
to see if they satisfy (13), the equation is very simple to use.

III. THE CONSTRAINED OPTIMUM RECEIVER

The object of this section is to determine the linear receiver which,
subject to the constraints of (8), minimizes the error expression (9).
Because of the constraint of (8) we have

b — = [ " @t — 1) da (14)

so that the error becomes

l M £l .
7 =7 = [ waowoNa df (1)

m=1
which is independent of n.
We are now left with the interesting variational problem of mini-
mizing J with respect to all linear receivers Wy (f) such that

7 £l gpnli-7) = o s

i.e., which satisfy the generalized Nyquist constraint. In order to do
this, we vary each W, (f) by an amount e T (f), where the I'x(f) must
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be such that (16) is still valid. We require

52 rl-a)m(-5)+ al-5)]

b Bl Pl e Z ol )

E,bm=1,2 -, M (17)

so that T (f) must satisfy the condition

Z Il’m(f - %)I‘A(]‘ - -%) = 0 m, "‘; = lr 2r Tt !]II' (18)

The error with variations becomes

O = 37 2 [ 7D + i) + o) d

1
M
]ll_ - f_w W.(NWANDN) df

+ 55 2 [T mowio + riow.owe 4

2

+5 3 [ noroNg i (19)
J(0) is minimum if (the w;.(f) are constrained to be real)
[ TOWHON(D df =0 (oreachk = 1--- M), (20)

where I, (f) must satisfy (18).
In order to solve for W, (f) we manipulate (20) as follows:

[ naowsmng o

1/2T+a/T
= z /:1/37.+ L I‘,_(f)”'f(j)‘\f(f) df
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Comparing (21) with (18) it ean be recognized that (21) is satisfied
by a W (f) such that

W) = EI;;(%) Z.H k=1, ,M, (22)

e=1

where the Zy(f) are arbitrary periodic functions of f with period 1/T.
In order to completely specify Wy (f) we must determine the Zg: (f).
Substituting (22) into (16), we obtain

=)

LoDt

= 5,,.;, (23)

m,k=1,2,--+,m
since Z.;.(f) is periodic with period 1/7'. Let

b Sl el )/(-5)

==-n

then (23) becomes

- E LaNZo(f) = e m,k=1,2:--m (25)

c=1

or in matrix form

L(Z(f) = 1, (26)

where

L(f) = [Li(D]
and
Z(f) = [Zn'(.f)]

are M by M matrices.
Thus, we have, if I is nonsingular for all f, that

Z(f) = (LI @7
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so that | L | # 0 is a necessary and sufficient condition for a solution to
exist. W,(f) is now completely specified and a realization of the optimum
constrained receiver is shown in Ifig. 2.

A simple expression for the resulting mean square error is obtained
from a manipulation similar to that of (21):

/2T

Taw =37 2 [ 2t dr. (28)

1/27
1V. EXAMPLES

In this section examples are presented which demonstrate the ease
with which the generalized Nyquist criterion can be used to design
waveforms without intersymbol interference or erosstalk.

4.1 Ezample

We start out by making the simplifying assumption that N(f) = 1.
In addition, if the transmitted waveforms {S,.(f)}¥ are chosen such
that R,(f), where R,.(f) = S,.(/)H(f) satisfy the equation

£ nlr -l - 5) = o oa, @)

@ =—u

then a solution exists since the L matrix becomes a diagonal matrix

o
L=1Id d= L: (30)

d,,

RX*(f) )
N(F) : z) o o——bn,

£ : & bnu

B e V]

IFig. 2 — A realization of the optimum constrained receiver.
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and
[1 /i 0
Z -1 = s (31)
’_ 0 1/d.,
with the resulting error
1 M
—— E (32)
M =

m

Under these conditions the outputs of the matched filters satisfy the
generalized Nyquist constraint except for scale factors and the Zen (f)
functions need only perform the appropriate scaling. We consider next
two cases where (29) is satisfied.

12 Casel

Only the case of M = 2 is presented here in detail although other
values of M can similarly be handled.

First, note that since matched filters are used the actual phases of
the R;(f) are not important since the output depends only on phase
difference between R;(f) and R;(f). We use the phase of R,(f) as a
reference phase.

igs () il
Rl(ﬂ={ce , [f|=1/1

0, |f1>1yT
ilg () +Aa(N)]
Ry(f) = {ce , [f] = l/T
0, [f1> 17
where A¢(f) = Ap(—f) == for | | = 1/7. The sign is chosen so that
|A¢(f) | = =
To simplify matters we can choose
2, >0
Mm={”/ /
—-r/2, f<O0
50
czﬂ-:‘Aa(!l’ | f | I/T

R:(f)R%(ﬂ = {
0, f1>1T
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[—f. 0<f= 1T
= ‘ I ~I/T=f<0
.0, elsewhere.
Therefore,
Soafi- gl -5) - -k -0 tien,
Similarly,
o0 o ‘ @
P R-..(f - T)RT(I - T) =0
and
> ll’(]—%)‘*_t m=1,2
50
9.2 7
L= (-r 0 L =2
LU 2 |
and
1
Z = 57 !
1
J, = 5
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CZ
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*% T /ﬁ £
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[ ——

TIME, b

Fig. 3 — Case I transforms at the output of the matched filter.
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In the time domain we have

s 2t
v2(f) = c‘(cos —,Z,r,—[ - l)/ar!

and it is casily seen that
v(nT) =0 for n =0, %1, £2, ---

43 Case Il
M

Consider a set of band-limited frequency multiplexed signals [R.(f)" .
The bandwidths are (1 4+ ¥n + ¥m_1)/T where the v,(0 = v, = 1)
are parameters associated with the excess rolloff bandwidth, and the
signals are separated in frequency by 1/7" hertz so that the waveforms
overlap the adjacent signals only. As in Case I, the actual phases are
unimportant because of the matched filters so only phase differences
@.(f) from a reference phase ¢(f) will be important.

R.() = | Ra() | exp jl8(f) + &u(D)]
Ru(DRE(D) = | Ru(DRmss(f) | exp jlén(l) — dmir(D]-

We define roll-off characteristics as a real function @, (f) such that

Quf) =0 for |]]> 3%

and

Q) = —Qu(=;  for |]] =35
We can specify the R, (f) as follows:
| ®.(f) |

- "»‘\/""Ct (mT—_m) + Q( I+ ﬁ - ’—}’) - Q,,,.H(—| |- 2_1,1; - %:)
Af) = dulf) — -l

and

Am(f) = Am(_f) ZE m.
With the R, (f) specified it is easily checked that

rli-5)|

o0

z

a=—o00

= C,
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RIH(DRM—I(J‘) f[l)m(f) | !Rm—l(.f) | exp [_JAmU)]

= e...c,,,_l{ﬁ.,.(f — ) exp [jan)

+ Bm(f + = 7 ) exp [—jAm(f)]} ,

where B,,(f) 1s an even real function with bandwidth 2y, /7.

B.(h = VQu( DL = Qu(=| DI

We can speeify A, (f) as

Wiy
—
vV
=]

without really restricting ourselves. The resulting R,R*_, is shown

in Fig. 4. Looking at Fig. 4, we see by inspection that the {2, } )" satisfy
(29).
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/—\ ]Rm{f‘]lal ﬂ
|
A B
R -1 (F)] R
T ) Qm+\ f+m VE)
(m-1)
_imn R
\\ A | -
- f
_(m- 1/2) JRm(FIRm- (f) /( f‘—m '/2
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Fig. 4 — Case IT transforms at the output of the matched filter.
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APPENDIX

The Optimum Mean Square Error Receiver

In this appendix the optimum mean square error receiver is obtained
and it is shown that as S/N — oo this receiver and the optimum con-
strained receiver of Section III converge to the same receiver when the
{a..} are stationary.

The general expression for the mean square error is

1 ¥ ., w A 1
Jo =97 > E{a;m -2 ) ; i (WT — pT')

p=—o0 k=

A 0 A

+ Z Z Z ayka’n‘vkm(ﬂlr - I)T)U.-,,.(TLT — ?'T)

w k=1 r=—om i=1

el

— 20um [ n(x)w,nT — x) dx

] Ar

+2 5 Y auaa? — p1) [ a6l — 2 do

p=—0w b=1

+ f [ T @ wa@T — Dw.aT — ) dv rl;u}
- (33)

1 il . o o . ,
= ﬁ Z: [Pwm — 2 Z: Z pmk”km(n7 — pT)

m=1 p=—oe k=1

0 M

") A
+ 3 3 > X ol — pDvi T — rT)
=—w 1=1

+ [ wow.owio |,
where

p::fk = E{a’mna’ﬂk} . (34)

Since the {a,;} are stationary we can write

Ml

pt = pai (35)
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Defining

o0

M. = > pi exp(—j2rnT), (36)

n=-—o0

then J, ean be written as

VRS 3 PR o R eX Y

+EZ[ TRUYERUE D oo ()

[ womsone o] (31)

which is independent of n so the index has been dropped.
Using variational calculus we obtain as a necessary condition on the
optimum {W,.(f)}} that they satisfy the equations

z R::(ﬂ[g 'k (i - i%)m(f _ g) _ M,M(ﬂ}

+ W.(ON({) =0 E=1,2,---,M. (38)
The solutions for the { W, ()}’ are
W) = E’f\,((g Va) k=12, - M, (30)

where the Y ,.(f) are periodic functions of f with period 1/7. In order
to see that the {W,(f) ]} of (39) satisfly (38) for the appropriate deter-
mination of the {Y_..(f)}, substitute (39) for W.(f) in (38) to obtain

M

2 f)[zw M F R~ @D

' M R[f = (@/T)] — (/T — :I

Z; NIf = (@/T)] Yolf = (/T)] — M..(f)

SRV =0 k=12, M ({0)
or since the Y. (f) are periodic

ZE R:ﬁ(f)[i'm(f) = M..()) + Z; M) Zl L.—.-(f)l'ck(f)] =0

k=1,2---,M, (41)
where Ly, (f) is as defined in (24).
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Defining M (f) and Y (f) as matrices whose elements are, respectively,
M;(f) and Y;;(f) and a column vector R(f) whose elements are I, (f)
(41) can be written as

RO'(Y() = M() + MOLAHY () = 0, (42)

where L(f) is as previously defined. Unless R (f) = 0 we require that
I+ MLY =M (43)

= (I + ML)™'M. (44)

With ¥ so speecified (39) satisfies (38) and the resulting mean square
error is
5~ R.(1) ]
— (0) Y* A5
T = L 5o = 5 [ aomio SR v |- @)

Manipulating as in (21) and using the periodicity of M (f) and Y (f)
we then obtain

y M 1/27T M M
Toe = 37 2 [M,m(f) - 2 X Mu()LE (f)i:.,.(f)] df. (46)

—-1/2T k=1 c=1

Lastly, recognizing that the 1ntegrand is Y*_(f) we get

T =23 [ vr)ar. (47)

Tinally, we wish to show that the optimum and constrained optimum
receivers approach the same limit as S/N — 0.

We define U to be the resulting . matrix when the S/N is unity,
and we write for any other S/N

L = aU, (48)

where @ is proportional to the signal energy. Since both receivers are
of the same form, we need only show that ¥ = Z as a = e0.

= (ML + I)"'M

= (@MU + I)7'M

— (/U M™ — (1/aU MY + 1/ UMY — - 1M
= (1/))U™" + 0(1/a), (49)

where O(1/a?) indicates terms dropping off at least as fast as 1/a.* As
a = o the terms of order 1/a* become negligible with respect to the



PULSE MODULATION SYSTEM 2177
1/a term. Using the fact that L = 1/a U™, we obtain the result

limY =L7" = Z, (50)
a—o0
and the two receivers converge and the constrained optimum is opti-
mum,
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