Minimum Cost Communication Networks

By E. N. GILBERT
(Manuseript received July 21, 1967)

Cities A,, -+, A, in the plane are to be interconnected by two-way
communication channels. N (7, j) channels are to go between A, and A; .
One could install the N (7, ) channels along a straight line, for every pair
1, §. However 1t s usually possible to save money by rerouting channels over
longer paths in order to group channels together. I'n this way, large numbers
of channels share such preliminary expenses as real eslafe, surveying, and
trench digging.

The geometry of the least expensive network will depend on the numbers
of channels N (1, 1) and on the function f(N) which represents the cost per
mile of installing N channels along a common route. If the preliminary
expenses are the only expenses then f(N) is a constant, independent of N.
In that case the best network is obtained by routing channels along lines
of the "' Steiner minimal tree”, a graph which has been studied extensively
and which can be constructed by ruler and compass. In part, this paper
generalizes Steiner minimal trees for the case of an arbitrary function
f(N). One again obtains a ruler and compass construction for a minimizing
tree, which 1s likely to provide a best or good solution when preliminary costs
are a significant part of the total cost. However the minimizing tree need
not be the best solution in general because further cost reductions may now
be possible by using graphs which have cycles. Other properties of Steiner
minimal trees generalize only part way, and some examples illustrate the
new complications.

The remainder of the paper considers funclions [(N) with special prop-
erties. A convexily property

fN+2)=2(N+ 1D+ JN)=0,N=1,2 -

ensures that there s a minimizing solution in which all N(4, j) channels
between A; and A; lake the same path (no split routing). If f(N) is a
linear function (f(N) = a + bN), one can oblain simple bounds on the
minimum cost. The lower bound s fairly accurate.
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I. INTRODUCTION

Let points Ay, --- , A, in the plane represent n cities which require
a communications network. Let N (7, j) denote the number of channels
which the network must supply between A; and A;. The network
sought must provide these channels at minimum cost. In caleulating
costs suppose that a monotone function f(N) represents the cost in
dollars per mile to install N channels together along a common route.

One possible network just connects each pair A;, 4; by N (¢, j) chan-
nels installed along a straight line path. This network will be called
the complete network because the routes used form a complete graph.
Fig. 1(a) is the complete network for a case with n = 4; the numbers
on the lines are the N (%, ).

The complete network makes each channel as short as possible; it
is the cheapest network if f(N) = N. However, most situations have
more complicated functions f(N). In particular, there are usually some
preliminary costs for surveying, obtaining the right-of-way, digging a
trench, etc. These items have a non-zero cost f(0) dollars per mile
regardless of how many channels are to be installed.

In some cases preliminary costs may be so high that a network which
merely minimizes preliminary costs is a reasonable choice. Such a net-
work must minimize the total number of miles of right-of-way. For the
example in Fig. 1(a), the network which minimizes preliminary costs
is Fig. 1(b) [or, more simply, Fig. 1(e) ]. Such networks can be drawn
with a ruler and compass in a finite (possibly large) number of steps
(see Ref. 1, 2).

When f(N) is not constant, the cheapest network is harder to find.
Still the methods which minimize only the preliminary costs generalize
far enough to be useful. Sections IIT and IV develop these generaliza-
tions. In particular, if preliminary costs are a large fraction of the
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Tig. 1 — Networks.
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total cost one has a good chance of constructing the cheapest network
by these methods.

In many problems the cost function is linear, f(N) = a + bDN. A
linear cost function is obtained if the incremental cost f(N) — f(N—1)
of adding an Nth channel to a group of N—1 channels is a fixed amount
b dollars per mile, independent of N. The cost of additional copper
wires, channel filters, or repeaters usually does not depend on N. By
contrast, consider waveguide systems, Each guide can supply thousands
of channels. The incremental cost is small for most values of N but is
large when adding channel N requires adding another guide; f(N)
is a staircase function. Section VI obtains some bounds on the cost of
the cheapest network when f (V) is linear. Section V finds a property of
the minimal cost network when f(N) is merely convex.

II. STEINER MINIMAL TREES

A network may be represented, as in Fig. 1(c), as a set of lines (the
routes or right-of-ways) connecting 4, -- - , 4, and perhaps some other
points where lines join. This representation will be called the graph
of the network. Figs. 1(b) and 1(c) illustrate the distinction between
a network and its graph. A Steiner point is a junction point of the
graph which is not one of Ay, +- -, 4,. Fig. 1(c) has two Steiner points.
The minimal graph is the graph of the cheapest network. A graph is
relatively minimal if its Steiner points are located so that no small
displacement of the Steiner points reduces the cost. If a graph is
relatively minimal there is no guarantee that a more violent perturba-
tion, altering the topology of the graph, may not secure a reduction;
i.e., relatively minimal graphs need not be minimal.

The procedure to be deseribed here finds relatively minimal graphs
which are trees having exactly three lines incident at each Steiner
point. The cheapest of these relatively minimal trees will be called
the Steiner minimal tree for A,, -+ , A,. The procedure in question
1s a modification of one which applies when the cost function is simply
f(N) = 1. In order to have an easy terminology by which one may
compare a given problem against the corresponding problem with f(N)
= 1, I use the adjective ordinary freely to mean “having f(N)= 1",
Thus, “ordinary minimal graph, ordinary relatively minimal graph,
ordinary Steiner minimal tree, - -+’ mean “minimal graph, relatively
minimal graph, Steiner minimal tree, - -+ in the case f(N) = 1".

The ordinary case is a simpler one than the general case because the



2212 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1967

ordinary minimal graph is the ordinary Steiner minimal tree. In gen-
eral, the minimal graph need not be a tree (recall that the complete
graph is minimal if f(N) = N). Moreover, even the cheapest tree need
not be a Steiner minimal tree. For example, consider four cities 4.,
-+ A, at the corners of a unit square as shown in Fig. 2. For the de-
mand matrix N (¢, j) take

0 1 1 1
.o 1 0 1 10
” N(i, j) || =
1 0 1
1 10 1 0O

and let N channels cost f(N) = I+N dollars per mile. Fig. 2(a) shows
the cheapest tree. It is not a Steiner minimal tree because four lines
meet at its Steiner point. Fig. 2(b) shows a typical tree in which three
lines meet at each Steiner point. However, Fig. 2(b) is not relatively
minimal; its cost decreases when the two Steiner points are displaced
toward the center of the square. If one continues to displace these
Steiner points, in hopes of finding a relatively minimal tree, they
finally merge together as in Fig. 2(a).

III. GENERALIZATIONS FROM THE ORDINARY CASE

In Ref. 1 we gave some simple properties of ordinary relatively
minimal trees and ordinary Steiner minimal trees. Some of these
properties generalize directly while others do not. This section will
discuss the simplest generalizations. In some cases the proofs are
omitted because the arguments of Ref. 1 apply with only trivial
changes.

3.1  Mechanics
A graph of a network may be interpreted as a mechanical system

of elastic bands (the lines). Ay, --- , A, are fixed supports for the
Ay Az Ay Az
3 12 3 12
|
12 3 12 3
As As A As
(a) (b)

Fig. 2— Four cities problem.
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bands incident there but the bands at a Steiner point are merely
joined together and left free to move. Let each band have a tension
equal to the cost per mile of the channels in the corresponding line.
Then the mechanical system has a potential function equal to the cost
of the graph; the system is in stable equilibrium if and only if the
graph is relatively minimal,

3.2 Angles at a Steiner point

At a Steiner point S let vectors v, v/, v”, -+ - denote the forces (ten-
sions) exerted by the elastic bands. The condition for mechanical
equilibrium (relatively minimal graph) is v + " +2” + --+ = 0. The
magnitudes |v|, [v’], [¢”], -+ are the costs per mile of the lines at S.
When S has only three lines, the law of cosines determines the angles
between the lines. For instance,

cos (0, 0") = ([v [* = [o" |* = [2” [)/@ |o" | [ 0" ]). (1)
The analogous condition on ordinary relatively minimal trees, which
stated that three lines meet at 120° at S, is an instance of (1) with
[v] = |v/| = |v”|. When four or more lines meet at S the equilibrium
condition does not determine the angles at S.

3.3 Number of Steiner points

Consider any tree joining 4,, +-- , 4, and let s be the number of
Steiner points. It is no restriction to assume that no Steiner point has
less than three lines; for clearly such Steiner points can save no cost.
Then (see Ref. 1, Section 3. 4)

s=n—2

&

with equality holding if and only if each Steiner point has three lines
and each A4; has one line.

34  Uniqueness

Suppose a graph, not necessarily a tree, is given for a network con-
necting Ay, =+, A,. The numbers of channels are also supposed pre-
scribed for each line of the graph. Now perturb the positions of the
Steiner points trying to reach a relative minimum cost for graphs
with the same topology. As illustrated by Fig. 2, it can happen that a
relative minimum may be only approached but not attained. In the
ordinary case, when one does find a relatively minimal graph one can
conclude that there are no others with the same topology.

In the general case, there is no such uniqueness. For example, sup-
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pose Ay, Ay, Ay are at the vertices of an equilateral triangle and sup-
pose N (i, j)= 1 for all pairs (i, j). Let f(N) = 1 + (3'—1) (N—1).
Fig. 3 shows a possible graph and gives the angles, obtained from (1),
which suffice for a relative minimum. These angles do not determine
the locations of the Steiner points. It suffices to put each Steiner point
S; at the same distance from the center O of the triangle and on the
line OA;.

Fig. 4(a) shows that one may encounter non-uniqueness even when
searching for a relatively minimal tree. To perturb S into a position
of minimum cost, place S anywhere on the line segment AsA3. The in-
dividual channels [N (4, j) = 1 for all %, j] appear in Fig. 4(b). Steiner
points, such as S in Fig. 4(b), at which all incident lines meet at
either 180° or 360° have no real interest. Any channel which makes a
180° turn at S can be rerouted away from S over a shorter path using
only existing right-of-ways. After the shortening [Fig. 4(c)] the
Steiner point is gone.

In spite of examples like Figs. 3 and 4, a weak kind of uniqueness
holds even in the general case. Any relatively minimal tree is either
the unique relatively minimal tree with the given topology or else it
has a Steiner point, like S in Fig. 4(b), at which all lines meet at angles
of either 180° or 360°. An outline of the proof follows. As in Ref. 1 the
argument uses an “averaging” operation for graphs. If ¢ and G" are two
graphs with the same topology, the averaged graph pG + G’ (where
p=0,¢g=0,and p + ¢ = 1) has vertices of the form pV + ¢V’ where
V, V' are corresponding vertices, V ¢ G and V' ¢ G'. For each line V,V,
of G (and correspondingly, V{V} of G') pG + ¢G’ has the line joining
pV, + qVitopV, + V4. If Lisaline V,V, of G and L' the correspond-
ing line of @, let pL. + ¢L’ denote the corresponding line of pG + ¢G'.
The lengths | L |, | L' |, | pL + gL’ | of these lines satisfy

Fig. 3 — Example of non-uniqueness.
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Fig. 4 — Non-uniqueness for trees,

|pL + gL' | 2p|L|+q| L] (2)

with equality holding only if the directions of the line segments V,V,
and V!V} are the same.

One can now prove that all relatively minimal graphs with the same
topology have the same cost. For suppose, on the contrary, that graphs
(7, G’ have the same topology and have costs ¢, ¢/ with ¢ < ¢'. Because
of (2) the cost of pG + ¢G' is no greater than pc + ¢c’. Then, taking
p to be small, pG + ¢ is a slight perturbation of G’ and costs less than
¢’. Then @' cannot have been relatively minimal, a contradiction.

If @ and @’ are two different graphs which both attain the relative
minimum cost, then (2) shows that an average graph pG + ¢G’ will
cost even less (a contradiction) unless every line of G’ is parallel to
its corresponding line in G. Note that the graphs obtained from Figs.
3 and 4(b) all had that property. Now suppose G' and G’ are relatively
minimal trees. If ¢ and G’ differ some Steiner point S in G is connected
to vertices V; and V, such that V/ = V,, Vi = V,, but 8’ = 8. For
instance, V, and V, might be two of 4,, --- , A, . But, to avoid the
contradiction noted above, SV, and SV, must be parallel, as must
SV, and S’V,. That can be true when S = S only if S, 8, V1, V.
are colinear, whence 7,8 makes a 360° angle with V,8.

3.5 Number of choices

In Ref. 1 the solution to the ordinary case is found by constructing
a relatively minimal tree, if one exists, for each of the topologically
distinet ways of interconnecting A4,, --- , A,. Because of 3.3 there
are only a finite number of cases to consider. Fors = 0,1, --- ,n — 2,
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the number of cases with s Steiner points turns out to be

2**(8 i 2)(n + s — 2)1/sl.
In the general problem, each of these cases is again a candidate for
the Steiner minimal tree. The total number of cases forn = 3,4, 5,6, 7,

- are 4, 27, 270, 3645, 62370, - - -. Of course the minimal graph may
not be one of these trees; in general, there will be many more cases.

Fortunately, it seems to be easy to guess topologies which, if not ae-
tually best, cost only slightly more than the minimal cost. In Ref. 1, for
example, we were unable to invent a problem in which the minimum
cost was less than 86.6 percent of the cost of the (easily constructed)
best tree having no Steiner points. The four cities in the unit square of
Fig. 2 illustrate the same thing. Again let f(N) = 1 + N and let
[N (i, j)|| be the same as in Section II. Table I compares the cost of
the cheapest graph, Fig. 2(a), with some other simple ones.

These comparisons suggest that one should be willing to accept a
good network (perhaps the best relatively minimal network obtained
for several reasonable topologies) even though it is not proved to have
absolutely minimum cost. There are usually too many cases to find
the best network by exhaustion; also the saving in cost is apt to be
slight,

IV. CONSTRUCTION ALGORITHMS

The ruler and compass construction of relatively minimal trees is
similar to the construction in the ordinary case.

Consider first the case n = 3. Fig. 5(a) shows a typical case with
given points A;, Aa, Az to be joined to a Steiner point S. The costs ¢;
per mile of the three lines S4; are supposed known. The angles «;, as,

Tasre I
Cost
Graph (in dollars)

Fig. 2(a) 24.04
complete graph 26.38
ordinary Steiner min. tree 25.55
13 27 .80

3 3
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ay at which lines meet at S are now determined from the equilibrium
condition,* e.g., by (1). A ruler and compass construction for a;, as,
ag 1s easy because these angles are the exterior angles to a triangle
with sides ¢y, ¢2, c3 [Fig. 5(b) ].

In general, ¢y, ¢s, c3 might have any values, including some which
are not constructable by ruler and compass (e.g., perhaps ¢; = 21/3,
¢s =, ¢35 = €). Then Fig. 5(b) is itself not constructable without first
using the ruler as a “scale” to lay off segments of lengths ¢,, 2, 3. T as-
sume that these segments have already been drawn. Then all other

-R W0
[V

a3
ay

Az

(a) (b)

Tig, 5 — Tirst construction with n = 3.

construetions, such as the one for ay, as, a, can use the ruler and com-
pass in the manner intended by Euelid.

Since angle 4,8S4s = a3, S lies on a circular arc of angle 2r —2a3
through A; and A.. By constructing this are, and a similar are for
AsAy or AzAd;, one constructs S as an intersection of circular ares
[Iig. 5(c¢)]. The same construction appears in Ref. 4.

In Tig. 5(c) consider the line 458 extended to meet the circle through
A, and A, again. Let A, , denote this new point of intersection [Fig.
6(a)]. The point A, ., has interesting properties which are needed for
solving cases with n = 4.

First note [Fig. 6(b)] that the exterior angles of the triangle
A1A2A, » are oy, as, az. Then this triangle is similar to the triangle of

2 2y

Fig. 5(b)and so ean be constructed by ruler and compass (if |44,

*If one of the c; exceeds the sum of the other two, say ¢, 4 ¢: < ¢s, no choice
of angles satisfy the equilibrium condition. The minimal tree consists just of two
lines (A:4; and A.4; in the case cited). In many ecases the function f(N) is convex,
as defined in (3), and then e, + ¢: < ¢z cannot happen.
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=d, then [A;4, o] = dca/c3). The important fact used later on is that
this construction will produce 4,, o from ¢, ¢, c3, 4, and A,, with-
out using As.

Another construction for the case n = 3 proceeds as follows. With
A4, as a base erect a triangle* with sides |4;4,| = d, dco/cs, and
dey/cs to construet 4, 5. Circumseribe this triangle in a cirele Cis.
If Ag lies inside C;» there is no Steiner point (the cheapest solution
consists of two lines A34; and A34d.). If A, lies outside (o draw the
line segment A; »4;. Observe whether this segment crosses the are
A1A4s of Cq2 which does not contain A; ». If there is a crossing point

dca/ca

(a)

Fig. 6 — Construction of A, .

S, then 8 is the desired Steiner point. If not, then there is no relatively
minimal tree with the given topology. The best solution consists of
A1A4. and A; Ay if As and Ay are on opposite sides of the line 414, 2;
use A;Ads and AsAy if Asds o separates A; from Aj. Fig. 7 shows how
the cheapest tree depends on the location of Aj.

When the construction produces a legitimate Steiner point [Fig.
7(d)], Ref. 1 showed, in the ordinary case, that the length |SA,| +
|SA.| + |SAs| of the tree is just |A3d;, »|. The appropriate generaliza-
tion here is that the cost of the tree is the same as that of 434,
miles of cireuit costing ¢, dollars per mile, i.e.,

CIISA]|+62|SA21+63|SA3I=03IA3A1I2 I. (3)

The proof of (3) will follow from a theorem in Ptolemy’s Meydhy
Suvrakic stating that the product of the diagonals of a quadrilateral

*In general, there are two such triangles. Construct the one which places A, s
and A; on opposite sides of the line 4:4..
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(d)

Fig. 7 — Second construction with n = 3.

equals the sum of the products of opposite sides.> When applied to the
quadrilateral 4;S4.4, » in Fig. 6 the theorem becomes

| SA, . |-d = | SA, | dey/es + | SA, | des/es
or
e | SA |+ e | SA, | = | SA,2 |

Add ey | SA4; | to both sides to get (3).

The construction of Fig. 7 may be used iteratively to find relatively
minimal trees with n = 3 when each Steiner point is restricted to have
only three incident lines.

The details are similar to the ordinary case! and so it suffices here
to give an illustrative example. I'ig. 8 shows cities A, -++ , A5 to be

interconnected by a graph having Steiner points S;, S., S3.To locate
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Fig. 8 — A construction with n = 5.

the S; one begins by finding a pair of cities which are to he connected
to a common Steiner point; Az and A4, will serve in Fig. 8. Construet
Ay, 4 as in Fig. 6(b), and draw the circle circumseribing Aj, Ay and
Aj, 4. Ss will be obtained ultimately by intersecting this circle with the
line SoAs, 4 [compare Fig. 7(d)] but at the moment the position of S,
is unknown. Nevertheless, the problem is now reduced to drawing a new
tree for Ay, As, Ag, 4, and A with Steiner points S; and S, (the cost
per mile for the new line SoA3, 4 is taken to be the same as the original
cost per mile of S.S;). Again pick a pair of cities with a common
Steiner point, say A; and Aj 4; draw the triangle with base AsAs 4
to construet a new point As, (s, 4. Now the problem reduces to drawing
a tree for A;, As, and Ajs (3, 4. This is a case with n = 3 which is
solved as described above. The solution locates S,. One can then locate
S, on the line S;A s, 1), 5 and finally, S; on the line SyA s, 4).

In general, one has n cities 4;, -+ , 4, and at most n—2 Steiner
points. By iterating the construction of Fig. 6(b) at most n—2 times
one ultimately reduces the problem to a solvable case. There are three
cautions to observe.

First of all, there are two triangles having a given base A;4; and
given sides. The correct choice of triangle, and hence the correct 4, 5, is
clear if one knows the location of the third point which shares the
Steiner point of A; and A;. If this third point is itself a Steiner point
and not yet located, one may have to try both possibilities for 4, ;.
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However, if one can guess the correct choice of A4; ; and then find a
relatively minimal tree, the uniqueness result of Section IIT shows
that one need not try the other choice.

Secondly, at some stage in the construction, one may find the situ-
ation shown in Fig. 7(a), (b), or (¢) and so be unable to locate a
Steiner point. This can happen cither because no relatively minimal
tree exists with the topology sought or because one of the A; ; was
chosen wrong.

Thirdly, the construction deseribed here produces only trees which
have three lines at each Steiner point. A tree having Steiner points
with four or more lines or a graph which is not a tree may he cheaper
than the Steiner minimal tree in some cases.

V. SPLIT ROUTING

Unlike trees, which provide just one path between each pair of
points, graphs with cycles offer a choice of paths. Then the N (i, j)
channels from 7 to j may be distributed over two or more paths (split
routing). The example in Fig. 9 shows that split routing is sometimes
economical. The three cities are at the corners of a unit equilateral
triangle and the demands are N (1, 2) = 13, N(1,3) = N(2,3) = 1.
The cost per mile for N channels is

J(N) = [(N + 2)/3].

Such a cost function might be encountered if channels are available
only in eables containing 3 channels each; then (1) = f(2) = f(3),
f(4) = f(5) = f(6), ete. In Fig. 9(a) all channels follow direct paths
in the complete graph. In Fig. 9(b) one of the channels from 4; to A»
has been rerouted through Aj;. This reduces the cost of the line 4,4, ;

AB
2
1 1 2 2
2 2
A 13 As 12 12
cosT=7 COST= 6 COosT =5.732
(a) (b) (c)

Fig. 9 — Split routing.
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it increases the number of channels in the other lines but does not in-
crease their cost. Fig. 9(c) shows the minimal graph, which also uses
split routing.

The remainder of this section will show that split routing gains
nothing if f(N) is a convex function, i.e., if

(N+2) —2fN+1)+[N)=0 (4)

for all N. Suppose f(N) is convex and consider a network which uses
split routing. Then one can find two channels, say « and 8, which join
cities A;, A; by different routes. To make cost comparisons easy, sup-
pose that all other channels of the network have been installed and that
the two channels for « and g8 have been installed on those lines of the
graph which belong to both « and 8. Now for n = 0,1,2 let I.(n) be
the incremental cost of installing n channels in each of the remaining
lines of « and let Ig(n) be a similar incremental cost for B. The cost
to finish constructing the network is

cost = I.(1) + Is(1). (5)

However, I,(n) is the sum of incremental costs of adding n channels
to certain existing lines. If the kth line has Ni[«] channels

I.(n) = ,.E (f(Nila] +n) — f(N.[a])}.

Then (4) shows f(N + 2) — f(N) = 2{/(N + 1) — [(N)], so
1.(2) = 2I.(1),

and similarly,
I5(2) = 2I41).

Now (5) shows

311.(2) + 1(2)}

Min {7.(2), I4(2)}.

cost

v

\%

The last inequality shows that it would be as cheap to complete two
copies of one of the channels « or 8 as to complete one of each.

VI. LINEAR COST FUNCTIONS

Suppose f(N) is linear, f(N) = a + bN. Consider any graph. Let
L; denote the length of the ith line of the graph and N; the number of
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channels along that line. The cost of the network is
cost = aL + > N.L:b, (6)

where I = L; + Ly + ... 1s the total length of the graph.

A simple lower bound on the cost of networks which satisfy a given
demand for channels may be obtained by bounding the two terms in
(6) separately. The preliminary cost term aL is at least as large as
aLo, where Lg is the total length of the ordinary Steiner minimal tree
connecting the given cities. The remaining cost in (6) would have been
the cost of building the network if f(N) had been bN. This cost is
minimized by the complete network. Then

cost = alo + b 2, | A:A; | NG, j). (7
i<i

Another way of writing (7) uses two new quantities,

L. = E | 4.4, l,
1<i
(the length of the complete graph) and
v=L" 2| A4, | NG, j)

(the average of the numbers of channels required between pairs of
cities with the distance between cities as a weighting factor}. Then
(7), combined with the observation that the cost of the complete
graph is an upper bound, becomes

al, + bl = cost £ al, + WL, . (8)

The form (8) of (7) is useful when numbers of channels which will
be required between cities can be predicted only relatively but not
absolutely. Then » is a convenient measure of “traffic level”.

The lower bound (8) is an instance of a more general inequality
expressing a convexity property of the minimum cost function ¢(v):

cv) 2 {(ra — vley) + v — v)eWa) | /(s — w1) )

for v, < v £ v, . According to (9) linear interpolation between known
values ¢(v,), ¢(v.) gives a lower bound on ¢(»). In particular, (9) becomes
the left half of (8) in the limiting case v, = 0, va — ».

In the proof of (9) which follows it is convenient to extend the
definition of ¢(v) from a discrete set of v values [at which all N (3, j)
are integers] to all positive real values. Although a line may require
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a nonintegral number N of channels to satisfy traffic level v exactly,
its cost will be computed still at a + bN dollars per mile. Now let
c(G, v) be the cost of providing channels for traffic level v using graph
G. In specifying ' I intend that the location of any Steiner points be
specified and not to depend on ». Then ¢(@, v) is a linear function of
v. Since

e(v) = Min e(G, »), (10)

the region below the curve ¢ = c¢(v) is an intersection of the half-
spaces lying below the lines ¢ = ¢(@, »). Then the region in question
is convex and (9) follows.

The lower bound (8) is asymptotic to the minimum cost both for
small v and large v. Even at intermediate values of » the lower bound
is reasonably accurate. For example, when there are three cities at the
vertices of an equilateral triangle and v channels are required between
each pair of cities, the lower bound stays within 11.3 percent of the true
minimum for all ». The worst disagreement occurs when v = (143%)
a/b.

For a more realistic illustration, I took the four cities New York,
Chicago, Houston, and Los Angeles and the numbers of channels
given in Table I1.

TABLE Il —NuMBER oF CHANNELS BETWEEN CITIES

Separation
Cities (miles) Number of channels
Houst.—L.A. 1374 x
Houst.—Chi, 940 2x
Houst.—N.Y. 1420 4x
L.A. —Chi. 1745 5x
L.A. —N.Y. 2451 10x
Chi. —N.Y. 713 20x

Here x is another parameter to specify traffic level; the average num-
ber of channels per pair of cities turns out to be v = 6.52x. The number
of channels listed is nearly proportional to the product of the popula-
tions of the cities.* The cost funetion was f(N) = 17,000 + 7N
dollars per mile. The complete graph and ordinary Steiner minimal
tree have lengths

L. = 8,643 miles
L, = 2,980 miles

*N. Y, population includes Philadelphia; Chicago population includes Detroit.
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s0 the lower bound is

50,660,000 + 394,400z

dollars. Table III eompares this bound with the true minimum cost.
Fig. 10 shows some of the minimum graphs. The upper bound in (7)
differs from the lower bound by

TanLE IIT—Cost or MiNntmum Graprus (MinLioNs oF DoLLARS)

Minimum Lower Diserepancy

T » cost bound (percent)
30 195.6 63 .2 62.5 1.1
50 326 72.0 70.0 2,2
100 652 93.2 90.1 3.4
200 1,304 135.2 129.5 4.2
500 3,260 260 .4 247 .9 4.8
1000 6,520 466.0 445.0 4.5
5000 | 32,600 2006.0 2022.7 3.5

a(Le — Lg), which in this example is about 240 million dollars. Then,
for values of x larger than those shown in Table TII the two bounds
will agree to better than 4.6 percent.

Suppose one kind of technology, say coaxial cable, provides chan-
nels with a linear cost function

{(N) = a + BN

and suppose that a competing technology, say waveguide or micro-
wave relay, has another linear cost function

F(N) = A + BN.

Suppose that a < A but B < b so that the first technology is the more
economical one to use if v is small but the second is the more economi-
cal if v is large. It is interesting to compare the two costs at various
traffic levels and to find a value v = vy at which the two technologies
are equally expensive.

Suppose one computes minimal graphs and minimal costs e(v),
as in Table III, using the function f(¥). The corresponding minimal
graphs and costs C'(v) for F(N) may be obtained immediately by the
following “scaling” argument. First, note that if F(N) were just a
multiple Af (N') of f(N), the minimal networks in the two technologies
would be identical and the costs would satisfy C(v) = Ae(v). Secondly,
note that if F(N) = f(uN) for some multiplier x, then the minimal
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network in the second technology is the same as the one which the
first technology had at the traffic level pv; also C(v) = c(uv). Since,
in general,

F(N) = M(uN),
where A = A/a, and p = aB/(Ab), the two observations above com-
bine to show that

C(y) = (A/a)c(aBr/(AD)).
Moreover, the minimal graph for the second technology is the one
found for the first at traffic level aBv/(Ab).

To get a very rough estimate of the traffic level vy at which the two
technologies are equally expensive one might use the lower bound in
(8) as an approximation to the minimal cost. Doing this provides
the estimate

vo = (4 — a)Lo/{(b — B)Lc}.
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