Surface-Wave Effects on Dielectric Sheathed
Phased Arrays of Rectangular Waveguides
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A further study of the effects of dielectric slabs on the radiation char-
acleristics of an infinite array of rectangular waveguides has been carried
out. It is found that, in addition to causing substantial and sometimes
beneficial changes in the array performance, the presence of dielectric slabs
can give rise to sharp resonant peaks in the reflection coefficient at certain
scan angles. The occurrence of such resonant peaks at which total reflection
occurs s contingent upon the presence of space harmonics which have
surface-wavelike field distribution. Extensive data for both the H and E
planes of scan, when the array is covered with a single slab, have been obtained
and are presented here. This paper discusses the influence of the dielectric
constant, slab thickness, and waveguide wall thickness on the resonant
peak location, and points out the relationship between the resonance phe-
nomenon and the surface wave propagation over a corrugaled surface. It
also presents some further resulls for the thin sheath and their extension
to multiple sheaths.

I. INTRODUCTION

We presented the radiation properties of a dielectric-loaded rectan-
gular waveguide array in some detail in a previous paper® for two
planes of scanning: the H plane and a quasi-E plane. (See Fig. 1.)
We discussed the effects of a thick dielectric sheath placed inside or
outside the array aperture. We concluded that the presence of a
dielectric material can cause a substantial change in the array per-
formance, so that dielectric material should be considered an integral
part of the array when it is designed. Moreover, we demonstrated
that the effects of a dielectric may be used to improve the match
performance of an array, perhaps at the cost of a larger frequency
sensitivity, by a judicious choice of the added physical parameters.

This paper deals with some different aspects of the problem based
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Fig. 1 — An infinite array of rectangular waveguides.

on an extensive further analysis. We completely removed the restric-
tions placed on the parameters in the previous work in order to analyze
the full effects of a dielectric medium. In particular, since dielectric
slabs can support surface waves, we direct special attention toward
investigating the possibility of anomalous array behavior when dielec-
tric slabs are used to cover the array. Indeed, a resonance phenomenon
is found to exist due to the presence of trapped- (or surface-) wave
type space harmonics at the air-dielectric interface. One important
effect of such space harmonics is to cause the appearance of sharp
resonant peaks in the reflection coefficient at certain scan angles. The
peaks attain, for all practical purposes, values of unity. We present
results for a dielectric slab of arbitrary thickness placed over an array,
thereby, removing the previous restriction to thick slabs. We also dis-
cuss radiation through a stratified medium.

II. ANALYSIS

The approach we use in this work, as in previous ones,: ? is haged
on an integral equation having either the aperture electric or the
aperture magnetic field as the unknown function. One of the advan-
tages of such an approach is that the integral equation may be easily
and rigorously derived without any limitations from the physical
parameters of the problems, and the approach is readily adaptable
to a more general class of problems such as, for example, an array
covered by a stratified dielectric medium. Although the basic proce-
dures for formulating the integral equation have been discussed else-
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where,> 11 in order to facilitate a further discussion of the formula-
tion and to make this paper more or less self-contained, we present
a brief derivation here and point out the modifications necessary
for an extension to a more general situation of stratified media.

2.1 Integral Equation Formulation of the Problem

The procedure in the integral equation method is first to expand
the fields into the appropriate normal modes in the various regions
and then to match the boundary conditions across the interfaces.
Consider, for example, an infinite array of parallel plates, covered
with a single dielectric slab and scanned in the H plane as shown
in Fig. 2. It is convenient in this case to divide the space into three
regions, the region inside the waveguides, the region inside the dielec-
tric slab, and the free space region. However, as will become evident
shortly, it turns out that the geometry of the problem is such that
it suffices to partition the space into two regions, inside and outside
the waveguides.

The orthonormal modal functions and the modal impedances per-
tinent to the waveguide region are the usual ones given by

2 cos [ar odd a
SV =z ln = |z | =5
a sin \a even 2

en(z) = for
a b
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where
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Fig. 2 — A parallel plate array covered by a dielectric sheath.
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are the z-directed propagation constants for a waveguide filled with
a dielectric of dielectric constant ;.

By using the Floquet theorem, it can be easily shown that the
dielectric slab and free space regions have identical modal functions,
owing to the requirement that the tangential fields must be continuous
at all points across the dielectric-free space interface. The normalized
modal functions take the usual form:

lll,,,(I) = \/% g“(zmr"“*""!)", m = OJ :tlr e

where T, is the phase shift per unit length. The modal impedances
for these two regions are different, however. They are given respec-

tively by

22 = oufbu, e = K — (2 yp,)

for the dielectric region, 0 < z < d,, and

Z?n = w”'/‘Ym y Ym = Jk’ — (‘2? + T,)

for the free space, d, < z.
When the fields in the various regions are expanded into the nor-
mal modes under the situation in which the waveguides are excited

in the fundamental mode of unit amplitude, we have
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A time convention of exp (—jwt) is assumed and suppressed for brevity
throughout this paper. The I's are the unknown modal coefficients.
Waves of all modes travelling in both the positive and negative z
directions are included in the fields for 0 < z =< d,, because this re-
gion is situated between two interfaces. Likewise, the fields for z < 0
contain waves travelling in the negative z direction due to the scat-
tering at the array aperture.
We find, by applying the boundary conditions at z = 0, that

H(2) = 5.(z, 0) = (I + R)pu(x) + 2 Lea)

= 2 Uh+ L)ya@) @)

m=—o0

B2 = 8, 0) = —Z,(1 — R,() + z e

- = > 2L — ).

Hence, on account of the orthonormality among the modal functions,
it follows that

(1+R) = f " @) dr, T, = f " @) dz, n = 2

- B (3)

b/2
L+ L= [ p@HG) d.

—b/2

Similarly, from the boundary conditions at the interface z = d,,

i.(x, d) = 2 (I + Le ™" )u@) = 2 Liu(z)

m=—on m=—a0 (4)
8x, d)) = — 25 Zu(lwe™" — e "™") g (x)

= — Z Z:,I:n‘]bm(x)‘

By observing that the right and left sides of (4) are the field expan-
sions with respect to the same set of modal functions, one may im-
mediately write

I + Ihe " = I,
Zo(Lne™" — Ine ™) = ZoI, .
Equations (5) show that the air-dielectric interface at z = d, is a
simple one in that the m!" order mode in the dielectric region couples

)



122 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1968

only into the same order mode in the free space region and vice versa.
The implication of this result is that the fields at the air-dielectric
interface are completely determined when the fields at the array aper-
ture are obtained. Therefore, it is necessary only to solve for the
aperture field alone. With this in mind, we may then make use of
(2), (3) and (5) to derive an integral equation having only the aper-
ture magnetic field as the unknown function. Thus,

i0ie) = [ {5 Zuna) + 5 2 @uer @) il

where
gl — gD Zn — .7Z£ tan ﬁmdl_
" " Zn — jZy tan B.d,

0]

It is clear from expression (7) that the equivalent impedances Z/
for the m** order modes are the familiar input impedance of a trans-
mission line, which has a characteristic impedance Z2, propagation
constant 8, , and length d,, and is terminated in a load impedance
Z?. Notice also that only quantities pertaining to the m' space
harmonic appear in (7). All these facts suggest that the space exterior
to the waveguides may be treated as a single region from the onset,
as observed earlier, provided that the effects of the dielectric slab are
taken into account through the use of appropriate modal impedances.
Moreover, the integral equation given by (6) is readily extended to a
more general situation in which the array is covered or loaded with
stratified dielectric media (or both covered and loaded). Only the
modal impedances need to be modified for this purpose.

As an example, suppose we wish to study the properties of an array
covered by a stratified medium as Fig. 3 shows. Equation (6) still is a
valid integral equation to use. In this case, the Z, are the usual wave-
guide modal impedances, whereas the Z/ are the modal impedances
as seen at the array aperture of the N layer stratified dielectric medium,
which may be calculated by standard techniques.’

The integral equation appropriate to the quasi-E plane of scan may
be derived in a similar manner. In a quasi-E plane of scan, the scanning
takes place in the plane of the electric field while there is a sinusoidal
field variation in the direction normal to the plane of scanning.*

*Such a mode of scanning results from a planar array of rectangular wave-
guides, which is scanned in the E plane direction with a fixed scan angle of 180°

applied in the H plane direction. This special scan case is considered for the sake
of simplifying the problem. See Ref. 4.
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Fig. 3 — Radiation of an array through N dielectric sheaths.

The exterior modal functions for the quasi-E plane scan are the same
as those for H plane scan, according to the Floquet theorem, but the
wave modes which the waveguides support are different. The orthonor-
mal modal functions for this case are

_\/gcos(?y_r ) o= fven o <
¢ sin\¢ ) odd ¥=3

0 for Ec_

wa(y) =

IA

<

IA
I

Here we have used ¢ for the internal waveguide width and d for the
element spacing. A sinusoidal variation of sin [ (x/b)2], which applies
to all tangential field components, is omitted for brevity.

The integral equation with the aperture electric field as the un-
known is given by

2V ) = [

—c/2

c/2

{f Voo ()eway’) + f;: Y:.wm(y)llzﬁ(y’)}Ey(y') ay’,

e [ ()] o

are the interior modal admittances and the V! are the exterior modal
admittances with the presence of dielectric slab(s) appropriately taken
into account.

where the

2.2 Method of Solution

The method used in solving the integral equations is basically that
of Galerkin,®® the method of moments. Briefly, in this method, the
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first step is to expand the unknown function as a linear combination
of N linearly independent functions. Substitution of the representa-
tion into the original integral equation leads to an approximate equa-
tion. The difference between the left and right sides of the approxi-
mate equation is then required to be orthogonal to the set of functions
individually, thus yielding a set of N equations in N unknowns. The
resulting set of equations may then be inverted with the help of an
electronic computer.

There are different sets of functions one may choose to use in this
approach. Although the choice, aside from consideration of computer
time and convenience, seems to be largely a matter of personal pref-
erence, it is desirable to incorporate as much prior knowledge about
the problem as possible. We have used the set of first N modal fune-
tions to obtain most of the results reported here. This step is tanta-
mount to assuming the higher order modal coefficients to be zero. For
example, to solve (6), we set

HMMSflﬁhw, I.=0 |m|>M. (8)

m==M
Substituting (8) into (6) leads to

M

2Z.p:(2) — 2 {g Z,Compn(®) + Z,’,.xlf,,.(x)}f "~ 0, 9)

m=—M

where

Com = f 149,.(::):,0,,.(::) dz.

The expression (9) is then required to be orthogonal to the set of func-
tions ¢%(z), I = 0, 1, --- , M, individually, thus yielding

M 0
> {): Z.C..CH + Z., aml}f.',. =2Z,CH 1=0,%1,---,+M.
m=—M n=1

(10)
The set of equations (10) may be solved by a standard technique. The
reflection coefficient R is then obtainable from

a+m=nmiam. (11)

Sinee it appears that there is no convenient scheme for estimating
the error in the type of problem being considered here, the following
procedures have been used to ascertain the accuracy of the results.
They include:
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() Observing the “convergence” of the solution by increasing N,
the number of functions used to represent the unknown aper-
ture field.

(1) Using different sets of functions, such as the set of piecewise
constant or pulse functions for the approximation.

(27) Comparing the results with known solutions obtained by dif-
ferent methods where applicable.* 7- 8

(7v) Applying the variational prineciple to check the adequacy of
the algorithm used in the numerical procedure.

(v) Checking how well energy is conserved.

III. RESULTS

In the previous report,* we placed the emphasis on the results for
the situations where the waveguides are either completely filled with
a dielectric material or loaded with a dielectric slab. We also dis-
cussed some preliminary results for covering the array with a di-
electric sheath. We obtained that data for a range of parameters such
that, at most, one propagating mode could exist inside the dielectric
region, and only relatively thick slabs were considered. Such a choice
of the parameters was necessary in order that an approximation based
on the transmission line theory could be applied.

The results presented here are concerned largely with the effects of
dielectric sheaths covering the array. In particular, we concentrate
on the situation in which more than one wave can propagate inside
the dielectric region so that there will be trapped- (or surface-) wave-
like space harmonies at the air-dielectric interface. Although in prin-
ciple it is still possible in such cases to apply a generalized transmis-
sion line approximation, this approach might not be very convenient
in practice. The modification required for generalization depends on
the number of modes which can propagate inside the dielectric, and
this number is, in turn, dependent on the dielectric constant being
used. Moreover, the minimum slab thickness necessary for a valid
approximate ecaleulation might sometimes become so large that it
would exclude a useful range of practical interest. Therefore, it is
desirable to proceed with the solution of the appropriate integral
equations without introducing any intermediate steps. Thus, the ef-
fects of the air-diclectric interface at z = d, on all the modes gen-
erated at the array aperture may be fully taken into account. By
doing so, we are also able to obtain data for comparison with those
calculated by using the transmission line theory, and thus gain a
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general feeling for the accuracy of this type of approximation. Some
results of such a comparison are presented in Ref. 1.

3.1 General Remarks

The effect of an ordinary dielectric (¢ > 1) on wave propagation is
to slow down the phase velocity, or equivalently to shorten the wave-
length. Hence, when a dielectric slab is placed over a phased array,
two apparent element spacings (in terms of the wavelength) have to
be considered: one inside the dielectric medium and the other in the
free space; the former always greater than the latter. A difference in
the element spacings as seen in the two regions results in different scan
angles for the appearance or disappearnce of grating lobes in the re-
spective regions. Consequently, when the fields are expanded into normal
modes according to the Floquet theorem, there will be a range of scan
angles over which the number of propagating modes inside the dielectric
is larger than that in free space. A mode is said to be propagating when
the corresponding z-directed propagation constant is real. In a linear
array, this propagation constant is given by

Bn = \/icie — (3?+ T,),

with an appropriate e for each region. It is easy to show that for m <
b/A. < (m + 1/2), where m is an integer and A, is the wavelength of a
plane wave in a medium with dielectric constant e, the number of
propagating modes will change from (2m+1) for0 = T.b < 2m(b/Ae—m)
to (2m) for 2w (b/\, — m) < T.b < =. On the other hand, when (m + 1/2)
< b/\. < (m + 1), the number of propagating modes will increase by
one from (2m 4+ 1) to (2m + 2), when the scan angle passes from
0< Th<2r(m+1—>b/A)to2r(m +1—0b/A) <T.b<m.

The wave modes which are propagating inside the dielectric and
are evanescent in free space have the same field distribution as that
of a surface wave. Such wave modes have profound effects on the
radiation characteristics of a phased array as we will see in the ex-
amples. It is important to emphasize that a single wave mode of this
type alone is not sufficient to satisfy the boundary conditions. In
other words, all the modes are required to constitute a correct solu-

tion.

3.2 H-Plane Scan Results
Figs. 4 and 5 give the reflection coefficients as a function of scan
for an infinite array of rectangular waveguides covered with a single
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Fig. 4 — Reflection coefficient R vs scan angle T.b for H plane scan with
a/\ = b/\ = 0.5714, and ¢ = 3.0625.

dielectric sheath and scanned in the H plane. The results are obtained
for the following parameters: b/N = a/N = 0.5714, ¢ = 3.0625 with the
thickness of the dielectric slab d, varied over one A, at an increment of
A./8, where ), is the wavelength of a plane wave in the dielectric medium.
Notice that the element spacing is measured in terms of the free space
wavelength A, for b/ is the quantity which determines the number
of radiated beams at a certain scan angle. With the given arrangement,
the element spacing is such that the array radiates one beam for 0 =
T.b = 2r(1 — b/A) = 154°, and two beams when 2r(1 — b/\) = T,b =<
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180°. The dielectric constant of the slab makes the apparent element
spacing in the medium to be b/A, = 1. Thus, there are always two
propagating modes inside the dielectric slab for all scan angles. As a
result, we have in 0 £ T.b < 2x(1 — b/)\) a mode which exhibits a
surface-wavelike behavior by being propagated inside the dielectric
and evanescent in free space. The effect of such a mode is to cause
the appearance of sharp resonant peaks in the reflection coefficient at
certain scan angles as is evident from the graphs.

Based on the results presented here and some further calculations
at different wavelengths, we may make the following general observa-
tions:
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Tig. 5— Reflection coefficient B vs scan angle T.b for H plane scan with
a/\ = b/\ = 0.5714, and e = 3.0625.
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() When the thickness of the dielectric slab is relatively small, no
resonant peak oeccurs.

(tt) When the thickness is increased beyond a ecritical value,
usually in the neighborhood of 3\./16, a resonant peak starts
to appear at a scan angle close to the value 2x(1—b/A), and
the peak is usually preceded by a dip.

(#61) Increasing the slab thickness causes the peak to move toward
the broadside direction and the peak becomes sharper.

(iv) A further increase in the slab thickness makes more than one
peak appear.

(v) The peaks attain, for all practical purposes, values of unity.

The dielectric constant used in obtaining the results for Figs. 4 and
5 was chosen to have a value e = (\/b)* This creates a situation where
one space harmonic possesses a surface-wavelike field distribution in
0 = T.b £ 2rx(1 — b/\). It is possible for a resonant peak to appear
at any scan angle within this range. If a smaller dielectric constant
had been used, the range of scanning over which a resonant peak might
appear would be reduced accordingly. On the other hand, a larger value
of dielectric constant would give rise to more than one surface-wavelike
space harmonie, and it is possible for resonant peaks to appear with
dielectric slab of thickness even smaller than 3X,/16.

Recall that when we use a dielectric slab of small dielectric constant
and large slab thickness, the transmission line approximation may be
effectively applied to yield useful results.® The reflection coeflicients
caleulated under such conditions are periodic functions of the slab
thickness; hence, the calculations only need be performed over a
period, that is, a half guided wavelength. If the dielectric constant is
large so as to permit more than one propagating mode inside the di-
electric, however, the periodic property is no longer present, and
separate calculations have to be carried out for different slab thick-
nesses,

Fig. 6 is typical of the transmission coefficients calculated for b/A
= a/A = 0.5714, ¢ = 3.0625 and d, = A./2. These transmission coef-
ficients are referred to the air-dielectric interface z = d,. The figure
shows both the transmission coefficients for the zero*™ order mode
(corresponding to the main beam) and the first space harmonic (cor-
responding to a grating lobe). These coefficients are defined so that
the sum of the reflection coefficient squared and the square of the
transmission coefficient(s) equals one. Thus, if Ty and T'; denote the
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transmission coefficients of the main beam and the grating lobe re-
spectively, then

IRP+ |To =1 for OéTxbé%r(l—%)

IR+ |To P+ |T.P=1 for 2w(l—§)éﬂb§f-
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Clearly, T has significance as a transmission coefficient only in the
scan range 2x(1 — b/A) £ T.b < =.

The graph of | T, | shows a sharp dip at the scan angle of T, = 70°,
at which the reflection coefficient attains its peak value of one. Notice
that the phase of T', exhibits a discontinuity of 180° at this scan angle.
This is so because both the real and imaginary parts of T, go through
zero and then change sign as the beam is scanned past this secan angle.
This appears to indicate that | T, | does go to zero rather than approach
zero, or equivalently, that | B | actually attains the value one. The
significance of the difference between | R | approaching one and | R |
actually attaining one lies in whether the match of an array can be
improved by network compensation. Moreover, there is an intimate
connection between the fact that | B | = 1 and the surface wave propaga-
tion along a plane corrugated structure. We discuss this in detail in
Section IV).

Another point which might be of interest is that 7', is the radiation
pattern in the angular range 0 < 6 < sin™'(\/2b), when a single ele-
ment is excited with the rest of the elements terminated in the char-
acteristic impedances.” The radiation pattern for the remaining angular
range sin”'(\/2b) £ 6 £ /2 may be obtained from the curve of T,
in the scan range 27(1 — b/A\) = T.b = , reflected with respect to
the T.b = = axis.

3.3 FE Plane Scan Results

The incident wave in the E plane scan is a TEM wave with the
electric field polarized in the direction normal to the waveguide walls.
Figs. 7 and 8 give the results for both the amplitudes and phases of
the reflection coefficients as a function of scan. The set of parameters
used for obtaining these results is: d/A = 0.5714, ¢/d = 0.85. The ar-
ray is covered with a single layer of dielectric material flush with the
array aperture. A dielectric constant of ¢ = 3.0625 is chosen for the
same reason as for the H plane, namely to have one surface wavelike
space harmonic present over as wide a scan angle as possible. Rela-
tively thick waveguide walls are used in this case in order that the
waveguides support only the dominant TEM mode, because the ele-
ment spacing is larger than A/2.

From the numerical data we may observe that, in the absence of
a dielectric material, the reflection coefficient is relatively flat over a
large range of scan angles, except in the vicinity of the grating lobe
formation angle (in this case T,d = 154°), at which we find a sharp
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peak. This is in marked contrast with the H plane scan case (see
Fig. 4). The peak value does not reach one, however. When a dielec-
tric sheath of thickness A./8 is used to cover the array, the effect is
to raise the level of reflection almost uniformly over all the sean
angles. In particular, the peak which occurs at the grating lobe forma-
tion angle is seen to reach a value of unity. Although not presented
here, the results for thinner dielectric sheaths show similar tendencies
with the exception that the peak values are not necessarily unity.
‘While the position for the appearance of the resonant peaks remains
practieally unchanged when the dielectric slab is relatively thin, it
does start to shift toward the broadside direction as the thickness is
increased beyond a critical value of about A/4. A further thickening
of the dielectric sheath eventually leads to the emergence of multiple
resonant peaks.

3.4 Quasi-E Plane Scan Results

A quasi-E plane scan is a scan in which the fields have a sinusoidal
variation in the direction perpendicular to the plane of scanning.*
The reason for considering such a scan condition is that it enables us
to simplify a veector three dimensional problem for a planar array to a
scalar two dimensional one.

The z-directed propagation constants of the exterior modes for this
case are given by

= Aite — (T) _ (2= "
B \/]“_(b) (d+T")

From this expression, it is easy to show that whenm < dv/'e — (A/2b)*/A
< (m + 1/2), there will be (2m 4 1) modes propagating for

0=Td = 2r[dVe — (\/2b)*/\ — m]

and 2m modes for
2r[dV'e — (\/2D)°/N — m] =T, d < .
If (m + 1/2) < dvV'e — (3/2b)’/N < (m + 1), on the other hand,

the number of propagating modes will increase from (2m -+ 1) to
(2m 4 2) as the scan angle is steered through the angle of transition
T,d = 2z[m + 1 — dV'e — (\/2b)*/\].

With the parameters of the array chosen to be a/x = b/ = 0.5714,
c/d = 0.937, the array radiates one beaminQ £ T,d < T,.d = (2nd/N\)-
[1 — (\/2a)°]}, and no beam in T, d £ T,d < =. Fig. 9 shows some
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results of the reflection coefficient for this array when it is covered by a
dielectric sheath with dielectric constant 3.835. The choice of this
relatively large value of dielectric constant is again dictated by the
interest in making as large a range of scan angle as possible for a mode
in the region outside the waveguides to have surface wavelike behavior.

From the results for both the H plane and E plane scans as we already
discussed, it might be anticipated that a resonant peak would be
encountered with a relatively thin dielectric slab. The actual caleulation,
however, shows that this is not so. In fact, the reflection coefficient
starts to show sharp peaks only when the slab thickness exceeds 3),/4,
where

A = A/ V1 — (A\/2b)%

Moreover, even when a resonant peak is present, the reflection coeffi-
cient as a function of scan is usually quite flat except near the scan
angle at which the resonant peak appears.

3.5 Effects of the Size of the Radiating Aperture

So far, we have presented results for the situation where the element
spacing and the dielectric constant were kept constant while the thick-
ness of the dielectric sheath was varied. We studied the effects of the
sheath thickness on the location of the resonant peak in some detail
under these conditions.

Now let us look at some data showing the effect of the waveguide
wall thickness. Fig. 10 shows both the amplitude and phase of the
reflection coefficient as functions of the scan angle for an array which
is scanned in the E plane and is covered by a single dielectric sheath.
We obtained the results with fixed values for the element spacing
b/A = 0.5714, a dielectric constant of the sheath ¢ = 3.0625, and its
thickness d, = 0.5 A.. However, the waveguide wall thickness (or
equivalently, the size of the radiating aperture) is varied over a
wide range. It is evident from the graphs in Fig. 10 that the size of
the radiating aperture has substantial effects on the reflection coef-
ficient. The scan angle for the appearance of the resonant peak is
shifted toward the broadside direction as the aperture decreases.
Similar shift in the scan angle for the resonant peak has also been
observed in the case of the H plane scan. Moreover, loading the wave-
guides with a dielectric material also causes similar effects. It is ap-
parent that the resonance phenomenon is strongly dependent on the
aperture impedance which is a function of the array parameters.
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Fig. 10 — Effects of radiating aperture size (E plane scan, d/x = 0.5714, ¢ =
3.0625, d, = 0.5A.).

3.6 Thin Sheath Results

The results presented earlier indicate that when a dielectric slab
thicker than A,/4 is used to cover an array, an important effect is
manifested by the appearance of sharp resonant peaks in the reflec-
tion coefficient. Such resonances may be avoided if thin dielectric
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sheaths are used. A thin dielectric sheath covered array for H plane
scanning has these dimensions: a/A = b/A = 0.5714, and the dielectric
slab has a fixed thickness d, = A/16. We obtained the results for
dielectric constants ranging from 1.25 to 3. As the graphs in Fig. 11
show, even though it does not cause ‘“resonance,” a thin dielectric
slab does have a considerable effect on the array match characteristics.
This is true even when the dielectric constant is close to one. In fact,
in the example shown here for ¢ = 1.25, the reflection coefficient seems
to have a larger variation than that of an uncovered array. How-
ever, by varying the dielectric constant, and perhaps also the thick-
ness of the slab (as long as the slab is thin), it is possible to obtain a
suitable combination of these two parameters and thus achieve a flat
response in both amplitude and phase of the reflection coefficient at a
single frequency. Such a possibility has been demonstrated previously.*
The significance of this possibility is that a thin dielectric slab may be
used as an effective means for the wide angle match of an array over
a narrow frequency band.

IV. DISCUSSIONS AND CONCLUSIONS

We have shown the effects of a dielectric slab on the radiation char-
acteristics of a phased array. One outstanding feature of the substan-
tial changes which the dielectric slab brings to array performance is
the appearance of resonance peaks in the reflection coefficient of the
array at certain scan angles. This phenomenon is caused by surface-
wavelike space harmonics at the interface between the dielectric and
free space.

When the fields in the free space region are expanded into a gen-
eralized Fourier series according to the Floquet theorem, each space
harmonic may be viewed as homogeneous or inhomogeneous plane
waves, depending on whether it is propagating or evanescent. In the
absence of a secondary boundary at z = d, introduced by the dielectric
slab, the plane waves generated at the array aperture either propagate
away from it if they are homogeneous, or decay away if inhomo-
geneous.

When an air-dielectric interface is introduced at z = d,, it causes
each space harmonic generated at the aperture to be reflected and
refracted upon encountering the interface as it travels away from
the aperture. Naturally, only wave modes of the propagating type
are significantly affected, because those of the evanescent type are
usually rapidly attenuated away from the aperture. Furthermore,
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Fig. 11 — Reflection coefficient R vs scan angle T.b for an array covered with
a thin dielectric slab (H plane scan, a/A» = b/A = 0.5714, d. = A/16).

modes which exhibit a surface-wavelike field distribution suffer total
reflection at the interface. The energy reflected from the interface is
returned to the aperture as a wave incident to the array from the ex-
terior region, and is scattered there.

In the presence of a dielectric sheath, there usually exists a range
of scan angles over which there are two or more propagating modes
inside the dielectric while only one propagating mode is present in
the free space region. Under such circumstances, the two propagating
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modes inside the dielectric interact as they are multiply-scattered at
the array aperture. The degree of interaction depends on the various
array parameters as well as the scan angle. It is then possible that,
given a suitable set of parameters, the multiple scatterings between
the two interfaces might lead to a situation in which a large reflection
is generated at certain scan angles. The numerical examples in Sec-
tion III indicate that the reflections can be so high as to reach unity
for all practical purposes. In fact, it has been inferred from the
numerical results for the transmission coefficient that the reflection
can indeed reach the value one exactly.

4.1 Relation with a Corrugated Structure

The fact that the modulus of the reflection coefficient can attain
exactly the value of unity assumes some special significance. For
when this happens, inside the waveguides at a distance away from
the array aperture such that all the evanescent modes are sufficiently
attenuated, the incident and reflected waves combine to form a pure
standing wave. This implies that the tangential electric and mag-
netic fields alternatively go through zero at one half guide wavelength
intervals. Specifically, by writing B = e/, the resultant tangential
electric field under these conditions may be expressed as

ip/2

8,(x,2) = —2jze' " sin (a2 — ¢/2).

Hence, for z = —L, such that (ayLy+¢/2) = nr, or equivalently Ly
= (nr — ¢/2)/e1, the tangential electric field vanishes. As a conse-
quence, electric conductors may be introduced at these positions with-
out disturbing the field distributions of the entire system. When this
is done, however, the array is then transformed into a corrugated
structure which is completely isolated from the source region. The
solution for the aperture fields obtained under these situations may
then be regarded as the solution of a surface wave which propagates
along a corrugated structure.

There are two aspects of this conclusion which deserve further
comments. A corrugated surface has long been known as a structure
which is capable of supporting surface waves. The characteristics of
such a system are that it supports only the TM type surface wave,
relative to the direction of propagation, in the absence of a dielectric
material and that the period of corrugation be less than a half free
space wavelength in order for the wave to propagate. Moreover, there
is some requirement in regard to the depth of the corrugation for the
surface to be properly reactive.
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The introduction of a dielectric sheath above the array aperture or
corrugated surface produces two significant effects. One is to enable
a surface wave to propagate in the TE mode, corresponding to the
case of H plane scan, as well as in the TM mode. The other is that the
surface wave propagation is possible even though the period of cor-
rugation is larger than a half free-space wavelength. It is important
to observe that when the corrugation period is larger than a half wave-
length, the zero'™ space harmonic of the fields outside the corrugation
is a propagating mode. Therefore, it is necessary for the modal coef-
ficient of this mode to be identically zero in order for the fields to
conform to that of a surface wave. The results presented in this calcu-
lation indicate that indeed this is the case.

4.2 Determination of the Location of the Resonant Peak

The scan angles at which resonant peaks appear may be determined
accurately by the transverse resonant method when the radiating
aperture is small. This situation applies readily to the case of the E
plan scan. In this method, the sum of impedances looking towards the
positive and negative z directions at some reference plane is set equal
to zero, thus yielding a characteristic equation. It is convenient to use
the array aperture as the reference plane. When the radiation aperture
is small in comparison to the size of a periodic cell, the “average” im-
pedance looking toward the array side is almost zero. The impedance
looking away from the aperture may be approximated by that of the
lowest order mode, in this case the (—1)st space harmonies. The im-
pedance of this mode is given by

70, = 72, Z"Z’1 — ijfl tan 8_,d,
Z2, — jZ°, tan B_.d,
By setting this expression to zero and using the appropriate modal
impedances, we find

ey-, = jB-, tan g_.d, .

When this equation is used to determine the scan angle for the ap-
pearance of the resonant peak, it is found that excellent agreement
with actual caleulation is obtainable for aperture size up to 10 per-
cent of the size of the periodic cell. For larger aperture sizes, the
agreement gradually becomes poorer. This is because the impedance
looking toward the waveguide side no longer remains negligibly small.
It appears at this time that an accurate determination of the scan
angle for resonant peaks under such conditions is best carried out by
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solving the boundary value problem directly. Fortunately, this is a
relatively easy task nowadays with the help of high speed electronic
computers.

4.3 Array Match

The numerical results obtained so far have revealed that the occur-
rence of sharp resonant peaks is associated with rather thick dielec-
tric sheaths, and such resonance may be avoided by using thin sheaths.
Thus, dielectric covering of an array is still a useful tool for the pro-
tection of the array from its environment. More importantly, the scan
(or incident angle) dependent reflectivity of dielectric slabs may be
utilized to advantage in improving the match performance of an array.
The feasibility of this desirable feature has been demonstrated by
extensive data presented herein and in [1]. It has also been suggested
by other workers.® 1 Although, based on the calculated results, the
improvement in array match by a thin dielectric sheath is obtainable
at the expense of a higher frequency sensitivity, it seems possible to
achieve a broadband compensation by using multiple thin sheaths.
Further work is being carried out along this line, and the results will
be reported at a later date.
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