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A method of synthesizing a general nth order phase-locked loop is pre-
sented. In contrast to conventional phase-locked loops, the circuilry s
digital rather than analog. The general circuit consists of an assembly of
logic blocks (gates and storage elements) which, when driven by external
clock signals, exhibits phase-locked loop properties. These properties, along
with high stability and the absence of adjustments, make the digital phase-
locked loop ideally suited for use in large systems which use monolithic
tntegrated circuits for microminiaturization. Analysis and synthesis tech-
niques make use of Z-transform methods in achieving the desired frequency
response as the realization of an nth order difference equation. A general
technigque is developed and two specific cases, n = 1 and n = 2, are con-
sidered in detail. Analytic results relating to the phase-locked loop’s static
and dynamic performance are derived and found to correlate well with
laboratory results for actual circuits.

I. INTRODUCTION

A new phase-locked loop (PLL) with interesting properties has
been developed for potential application in large multiple data set
installations which provide low speed serial data communications
for. time-shared computers. An objective for such data set arrange-
ments is to minimize cost per channel by putting the major part of
the required circuitry into a common section where it may be shared
by all channels. This objective is achieved by using a digital PLL
as an FM demodulator with low cost logic circuits located in the
channel units and clocks with their associated driving amplifiers
located in the common ecircuits. PLL’s which use analog circuits have
received considerable attention and analysis and synthesis methods
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are available.l 2 However, the circuits covered here are digital, and
the approach is similar to that of digital (or sampled-data) filters.* *
By using a digital PLL, no low-pass filter or voltage-controlled oseil-
lator, generally associated with the feedback loop of conventional
PLL's is required.* This property, along with high stability and the
absence of adjustments makes the digital PLL ideal for microminia-
turization using monolithic integrated circuits.

This paper presents snythesis procedures for an nth order digital
PLL. The PLL realized by such a procedure possesses a response
which obeys a linear nth order difference equation. Analysis is per-
formed using Z transform methods commonly encountered in sampled-
data control systems.® The technique is that of establishing a mapping
between the s plane and the z plane so that a correspondence between
the coefficients of the controlling nth order difference equation and
the desired s plane poles may be established. An iterative circuit
is presented so that once the coefficients are determined, the nth
order loop may be realized.

The remainder of the paper is devoted to the synthesis, realization,
and analysis of two specific examples, n = 1 and n = 2. Both systems
are analyzed to determine static and dynamic performance, and the
results of data transmission tests are given. The out-of-lock behavior
as well as internal noise resulting from jitter is characterized for the
first order PLL. The second order PLL is representative of higher
order systems and the analysis is easily extended. The “capture
phenomenon” associated with underdamped systems is encountered.
In both of the examples considered, experimental results are found
to correlate well with theory.

II. THE DIGITAL PHASE-LOCKED LOOP

As a prelude to the synthesis procedure we show that the loop
response of the PLL can be expressed as an nth order difference
equation. Figure 1 is a block diagram of the loop. Among its basic
components are an exclusive or comparator which develops an output
gating function dependent upon the phase relation of its inputs, and
a transmission gate acting on several clock signals f;, g; to provide
inputs to register circuitry. When the loop is locked, a shift circuit
periodically transfers the contents of the (i — 1)th register to the
ith register; the period is one half that of the input signal. The shift

* Although no internal loop filter is needed, a low-pass filter is required to
recover the demodulated baseband signal.
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Real part of z-plane pole, z;.

Imaginary part of z-plane pole, z;.

Parameters pertaining to stability analysis of second order PLL.

Normalized total input frequency deviation.

Total input frequency deviation.

Lock range of PLL.

Voltage step.

Peak-to-peak noise voltage.

Peak-to-peak signal voltage.

Time errors resulting from phase discontinuity when switching
between clocks.

Real and imaginary parts of Butterworth characteristic with carrier
frequency input.

Du;a.tioln of kth positive (logical “1’’) level of feedback (flip-flop)
signal.

Interval between kth and (¥ + 1)th zero crossing of input signal.

Real part of s-plane pole, s;.

Duration of kth positive (logical “1"") level at exclusive- or output.

Radial cutoff frequency of low-pass filter.

Imaginary part of s-plane pole, s;.

Counting capacity of N-stage counter.

Input voltage.

Feedback voltafe.

PLL output voltage.

Frequency of input signal.

Discrete input frequency.

Cutoff frequency of low-pass filter.

Average input (carrier) frequency.

Rest frequency of PLL.

End point of frequency lock range.

Clock frequencies (¢ = 1, 2, -- - , n); also denotes input to registers.
Normalized clock frequencies (¢ = 1,2, -+, n).
'(I‘ran)s‘fer function (Butterworth).

—1)4

Counting indices.

Threshold of final register.

Order of system; number of registers.
Number of counter stages per register.
Minimum N for stable operation.

jth s-plane pole.

i

ime.
Period of baseband data signal.

Signal durations for stability analysis.
Average output voltage during kth interval
Continuous time function.

Average output voltage for parasitic mode.
Argument of z-transform.

Z-transform of v(k).

(and reset, of the first register) is controlled by the nth register which
provides an output pulse after the Mth clock pulse is counted. A flip-
flop converts the output pulse train to a square wave and provides
an input to the comparator.

The difference equation desecribing operation of this circuit is de-
veloped with the aid of waveforms shown in Fig. 2, which gives the
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Fig. 1 — Block diagram of general digital PLL.

steady-state terminal signals for the comparator. The output signal
is the gating function. Assume that clocks g1, g2, g3, . . . , On are
enabled during the “0” level, and all other clocks fy, fa, . . ., fa are en-
abled during the “1” level. With the first register initially cleared, its
count at the conclusion of the (k& + 1)th period of gating is g1[p (k) —
r(k)] + fir(k + 1). During each successive period, this count is
shifted into the ith register and augmented by a count of gi[p(k +
i—1) —s(k+1i—1)] + fir(k + 1) forz=2,3,...,n The count
propagates through the n registers where, upon reaching the number
M at the nth register, the count is reinitiated. Although n periods are
required for a complete count cycle, the process may be thought of as
the interleaving of cycles initiated p seconds apart.
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III. GENERAL FORM OF THE DIFFERENCE EQUATION

It can be seen from Fig. 2 that the count of the nth register is the
sum of pulses counted during the intervals p(k) — +(k), p(k + 1) —

k+1),...,pk+n—1) —sbk+n—1,7k+ 1),k + 2),
., v(k 4+ n). Summing the counts for the sources fi, fa, . . ., fa,
d1,92, ..., s and equating the sum to M gives

ilpk) — 7(B)] + golp(k + 1) — v(k + )] + ---
+ gtk +n — 1) — 7k +n — 1)]
+frk+ 1)+ - + fur(k +n) = M,  (la)

or rewriting,

furk 4 m) + (s = g7k +n = 1) + - — gor(h)
=M — [g.p(k +n — 1) + gorp(bk +n —2) + ---
+ gp(k + 1) + gip(k)]. (1b)
INPUT SIGNAL p= #

|m—— X _—
E IZ——p(k)-a--c—p(kﬂ}—:-k—p(kirz)a- ces ETC
o———

FEEDBACHK SIGNAL

. -
Ef (K)o £ (k1) E(Kt2)> = -« ETC ’

EXCLUSIVE —OR OUTPUT (GATING SIGNAL )

- JLIL T T T TL

k"’#'l >|.¢>.I s ... ETC

T(K) | r(k+) (k+2)
[P(k) =7 (k)]
GATED CLOCK
el au |f] oo |f] a0 |f]----emc
Lt=12,---,n

Fig. 2 —Input, feedback, and output waveforms for PLL which is assumed to
be locked with constant input frequency. Gated eclock signals are shown
symbolieally.
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This is the system difference equation relating the response = (k + 1)
to an excitation p(k + 9). In its general form this equation, when
Z-transformed, is analogous to a Laplace transformed system equation
in which polynomials in s multiplying the response and excitation
functions result in poles and zeros, respectively. Since there is a
one-to-one correspondence between the s and z planes with regard to
poles and zeros, it is expected that by properly choosing coefficients,
equation 1b may be synthesized to provide a desired frequency re-
sponse (high-pass, low-pass, bandpass, and the like) possessing spe-
cified critical frequencies. As we show, it is the objective of this paper
to exploit the low-pass properties of equation 1b. To achieve maximum
high frequency attenuation, the coefficients g;,7 = 2,3, ..., n will be
set equal to zero thereby locating all z-plane zeros at infinity.

fur(k 4+ 1) + faorr(k +n — 1) + -+ — gur(k) = M — gip(k). (1c)

Equation 1¢ is normalized by letting F; = fi/fu, i =1,...,n — 1
and G; = ¢./f.. Also, notice that the cycle-by-cycle average voltage
of the r(k + j) interval expressed as a fraction of the maximum
possible voltage is given by

r(k + J)

—_ 2
o+ ) @
Incorporating these substitutions gives

vk +n) + Foowlk +n — 1) + -+ + Folk + 1) — Gok)
= 2MF(k) — G, (3)

vk +7) =

where

1
2f.p (k)

If it is assumed that p(k) changes very little with k and that p(k)
is small with respect to the system response time (which it is), the
v(k) can be represented as a sampled continuous function of time,
v(t), letting ¢ = kp. That is, v(t) is a function whose value at the
Ith zero crossing of the input signal is v (k).

This type of equation is best solved using z transform methods
assuming that the input frequency is constant. In particular, the
following transform pairs are noted:

Flk) =

o

Z(t)] = Zh(®)] = V@) = 2 (i) (4a)

i=0
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Az )
z — exp (a)

Z[A exp (ak)] = (4b)

Zh(k + )] = 2 [V(@)] — ; 2v(j — D). (4¢)

Accordingly, equation 3 is transformed as follows:
ZVE] — 252 — 1)
=1
+ Foeid ' (V@] — Frey D20 — 1 =1 + ---
=1

+ FelV(E) —0(0)] — G V() = @MF — Gl)[;f_—l] (5)
Combining terms,

"+ Fooid®™ + oo 4+ Fiz — G]V()

= (2MF — G.)(z—i—I) + Z i Fzo(j — 1), (6)

i=1 I=1

where

F, =1
1V. GENERAL SYNTHESIS PROCEDURE

Before developing a synthesis technique for the digital PLL, it is of
interest to review a specific application, that of FM demodulation. A
“lock range” may be defined for the PLL whereby steady state input
signals having constant frequencies lying within this range will cause a
steady-state output, v(k 4+ j) = v(k + j + 1), all 4, such that this output
is linearly related to the input frequency f = 1/2p. This is the relation
required for demodulation.

For dynamic behavior one may consider a binary baseband signal in
which each of the two states is assigned a discrete frequency f,, f, within
the lock range. If the baseband signal switches randomly between states
with a maximum rate 1/7; a new phenomenon is introduced. In this
context the PLL may be regarded as a low-pass filter which should
possess a bandwidth, ., equal to or greater than =/ T,. By proper choice
of the coefficients in equation 6 the desired filter shaping may be a-
chieved. It is expected that the low pass filter characteristics will be a
function of the input frequencies f,, f,. The resulting complication is
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conveniently eliminated by making use of the narrowband approxima-
tion f., f» & f. Where f, = 3(f. + f»). This is not unrealistic, because the
PLL was developed for just such a narrowband system.* With this in
mind, we now give a synthesis procedure. In using Z transform techni-
ques it is assumed that the input frequency is approximately constant
so that samples are taken at equal time intervals.

The coefficient of V(z) in equation 6 is the “characteristic poly-
nomial” of the system and using it, the desired low pass filtering
properties of the loop can be synthesized. For example, assume that
a transfer function with poles in the s plane at s, 82, ..., s, is to be
synthesized. Its characteristic polynominal is given by

1T — s, @

i=1
A conformal mapping between the s plane and z plane is given by
the transformation

z = exp(ps), (8)
by which the pole s; = ¢; + tw; is mapped into

z; = exp [(p) (o; + iw))]
= [exp (po;)] [cos (w;p) + i sin (w;p)l.  (9)

Since the complex s plane poles occur in conjugate pairs, and sin (w;p) is
an odd funection, the corresponding z plane poles also oceur in conjugate
pairs, and the desired characteristic equation is transformed into

[TG—2) =2+ A + -+ + Az + 4,,  (10)

i=1
where each of the coefficients are real. Equating coefficients in equa-
tion 6 to those in equation 10 gives the required clock frequencies
g1, fi, - -+, fa. A negative value implies an associated register which
counts “down” while a positive value suggests a register which
counts “up.”

V. FIRST ORDER DIGITAL PLL

5.1 Static and Dynamic Behavior
The difference equation for an n = 1 PLL is easily written from
equation 3:

* Full duplex transmission with f. = 1070 Hz, f» = 1270 Hz in one band, and
f« = 2025 Hz, f» = 2225 Hz in the other band.
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ok + 1) — Gok) = 2MF - G, (11)

in which M = 2% and N is the number of counter stages in the
register. For a steady state condition to exist, v (k + 1) = v (k) so that

2MF G _ 2Mf — g,
(k) - G fi— o

Since 0 < v(k) = 1 the end points of the lock range are given by

I lem-o = fi = 9./2M, flowar = fu = f1/2M. (13)
And so the lock range is

(12)

1
AfL=|fu_fz|=@Igt—f1[- (14)
The static response is diagrammed in Fig. 3.

The dynamic response to a step change in frequency is given by
equation 6 forn = 1.

[z — G\1V() = [2MF — Gl][ — ] + zv(0). (15)

A partial fraction expansion yields

vo - [0 ][]
+ [v(o) -3 F;_(;IG’][z = Gl]' (16)
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TFig. 83 — Average output voltage versus input frequency. for first order PLL.
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Assume that for time ¢ < 0 the normalized input frequency is F,.
At t = 0 the input steps to F,. Then from equation 12:

2MF,, - G]'
1 -G,

Substitution into equation 16 gives the z transform of the response
fort = 0

V) = [%{FL —GIG,]L : 1] + [2M1(F: ?},Fﬂ)][z fGl]' as)

The inverse transform is easily found with the aid of equation 4a.

v(0) = (17)

oy = B2 G  BIR 2T g
— 2Mf, — g _ 2M(fy — fa) o k
L — o fi = o ( 1) for k0. 19)

Assuming that v (k) is a continuous function of time, we let v(k) =
v(t) and t = kp = k/2f,. This gives

o = Bt 2L o [—aplln G/g0) (20)

The resulting time constant is

1
=2 /e )

and thus the half-power bandwidth is

o= 2o (1/g0). (22)

Notice the dependence of filter shaping upon input f;. It follows that
there is a somewhat different time constant for input frequency
changes from f, to f,.

A simplified first order digital PLL has been built as shown in Fig.
4. Tt is a special case of the general system of Fig. 1. The FM input
was composed of the discrete frequencies f, = 1070 Hz and f, = 1270
Hz. Clock frequencies g; and f; were chosen as (2M) (970) Hz and
(2M) (1370) Hz, respectively, to provide a lock range of twice the
total input frequency deviation. M was chosen to be 128 (see Section
5.3). The above values gave a time constant, T, of 1.13 ms. Inter-
changing f, and f, resulted in an increased time constant of 1.34 ms.
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INPUT DRIVER J ou
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g|(FROM LIMITER) SLICER —

Fig. 4—Block diagram of simplified first order PLL. FM discriminator.

Oscilloseope photographs showing the two step responses of the actual
loop are shown in Fig. 5.

5.2 Out-of-Lock Oscillation
If there is no input to the PLL, it will run at a rest frequency of

- (M {‘i)_’ L1 _ah
= (fl + L M g+ h (23)
Notice, however, that one half eycle will be at g,/2M and the next

at f1/2M.

If an input to the PLL is present, but its frequency lies outside
the lock range, that is, if f < f1/ 2M or f > g,/2M, the output voltage
v(t) will oscillate between 0 and 1. Figure 6 shows waveforms for a
loop which is out of lock. For time to the left of the dotted line, the
loop is attempting to lock and the frequency of the feedback signal,
Ey, is approaching that of the out-of-lock input E. Within this region,
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—1270=Ff

f=1070— r

f=1270—§

¥ —1o070=F

(b)

Fig. 5— Output voltage response of first order PLL to input step frequency
of (a) 1070 to 1270 Hz and (b) 1270 to 1070 Hz. Horizontal scale: 0.5 ms per cm.

equation 16 applies and is rewritten in the time domain as
2Mf — gl) [ 2Mf — g](g)
k) = (—H—— 0 — =——2|(£). 24
0 =7 = ) PO 5= W\ @4
For time to the right of the dotted line in Fig. 6, a new difference
equation applies. It is written as
nle(G) — (G + D]+ fir() = M (25)

so that a derivation similar to that previously used results in

- [ - ] oll).

Equations 24 and 26 are represented graphically in Fig. 7. M, g1, and
f, take on the values of the previous example and an out-of-lock
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Fig, 6 — Input, feedback, and output waveforms of nonlocked first order PLL.

input frequency f = 1400 Hz is chosen as the input. The positive
slope segment to the left corresponds to equation 24 with an initial
voltage v (0) assumed to be zero. When v (k) reaches unity, the next
segment is governed by v (j) with an initial eondition v’(0) = 1.
When v (j) reaches zero, the response is again given by v (k) and with
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I

o
o
I

0.41—

0.357

_)lmsl(—_

AVERAGE OUTPUT VOLTAGE, V
o
n
|

TIME, L —>

Fig. 7—Single cycle of output average voltage oscillation for nonlocked first
order PLL.
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— V=1

Fig. 8 — Actual output voltage of experimental first order PLL showing out-
of-lock oscillation. Horizontal scale: 1 ms per cm.

initial condition adjusted accordingly. The actual waveform for the
experimental PLL using this example is shown in Fig. 8.

5.3 Internal Noise From Phase Disconlinuily

The clock signals are unsynchronized, and thus a random phase
discontinuity results at the time of gating. This results in an internal
noise voltage which exhibits itself as a fluctuation in the output voltage.
This effect can be thought of as a quantization noise of the phase. A
portion of Fig. 2 is redrawn in Fig. 9 to show the time errors ¢, €, and e,
at the instant of gating caused by differences in clock phases. It is
assumed that the frequency of the ripple is low enough so as not to be
attenuated by the PLL filtering property. With this in mind, difference
equation 11 may be amended to account for the phase error.

[r(k + 1) — e(k + DIy
+ [p(k) — 7(k) — e(k) — €®)lgs +2 =M. (27)

For a constant input frequency and very slowly varying (), 7(k + 1) =
7(k) so that

k) [fi — @l = M — gip + fra(k + 1)
+ gile(k) + k)] — 2,  (28)
or
®)] [ — ¢] = 2Mf — ¢ + 2ffia(k + 1)
+ 2fgile(k) + ()] — 4f.  (29)



DIGITAL DATA LOOPS 2221

Avy is defined as the difference in voltage for maximum and minimum
(zero) phase errors. Thus

Aoy = [ﬁ—"—;][fm(k 1) Joue + 91(eoh) e + b8) )] (30)
Since
1 , _ 1
El(k + 1) |rnnx - f'[ and ECI("‘;) Imax - Eﬂ(k) |ma: - g] ]
then

6f _ _6fm
i — o h—a'
where f is approximated by the carrier f,, for the narrowband case.

AUN =

63))

E e ————— pK)—————>fe—————p(K+1)-————>
Ef pe—— ——— E(k+1)————— >
Eo e —7 (K )— — > fe- ——T (K +1)——>
|-—e,(k+|]
CLOCK cana e R I Y
9

CLOCK |
|
i

k=i

eo(k) eflk)

Fig. 9— Waveforms for locked first order PLL showing how time jitter is
caused by phase differences in clock signals.
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It may be seen that the peak-to-peak output for an incoming FM
wave with phase continuity in the clock signals is given by equation
12 as
2Mf, — g« 2Mfy — g Af
Av,i, = - =2M ——, 32
Vel L—o fi— ¢ L — o 32

where Af is the total frequency deviation |f, — f» |- Thus the mini-
mum peak-to-peak voltage signal-to-noise ratio within the loop is

Av,i,  2M(A)) _ v Af

S/N = My © 6. 2 6 (33)
Continuing the previous example with Af = 200Hz and f,, = 1170 Hz,
it is desired that the internal noise be 20 dB below the signal so that
9% > 361. This suggests a nine stage counter (2° = 512); however, it
should be pointed out that a worst case of phase jitter has been assumed
and the average phase jitter is less than this. Laboratory experiments
have shown satisfactory results with an eight stage counter thus giving a
minimum signal-to-noise ratio of 17.2 dB.

It is apparent from equation 33 that the internal noise may be made
as low as desired by choosing a sufficiently large value of N. Thus a
direct relationship exists between equipment cost (number of counters)
and performance (jitter distortion).

VI. SECOND ORDER DIGITAL PLL

The location of the desired s-plane poles must be specified and mapped
into the z-plane. The following example is concerned with synthesizing
the familiar Butterworth response, but the procedure is certainly
applicable to other filter classes.

A second order PLL is to be synthesized so that its response is that of
a Butterworth low-pass filter with cutoff at w.. The 2n = 4 poles of
H(s)H(—s) lie on a circle of radius w, and subtend equal ares such that
the filter’s characteristic equation is

s + (2)w.s + o = 0, (34)
with poles at
S = (“‘7); (—1 =+ 7). (35)

The corresponding poles in the # plane are

2.2 = exp (81.2p) = [exp (—a)] [cos () = i sin (a)]
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where

T f.
= i " 36
@ | 0
Digressing for a moment, it is of academic interest to map the entire
Butterworth circle into the z plane. This is easily done by letting s be a
circle of radius «,, that is, s = . exp (i), 0 = ¢ = 2r. Substituting
z = exp (sp) and approximating f by f.. gives

: = {exp [;Tfm cos (¢)]}{cos (;_f.,. sin (¢)) + 7sin (% sin (@)}‘
(37)

The resulting cardioid-like shape is shown in Fig. 10 with f,/f. as a
parameter. The angle ¢ is also shown so that portions of the Butter-
worth circle may be conveniently translated into the z plane.

Returning to the specific example, the charaecteristic polynominal is
written using equation 36 as

(z — 20(z — 2,) = 28 — [2exp (—a)] [cos (a)]z + exp (—2a). (38)

The resulting coefficients are equated to the respective coefficients in
equation 6, namely z* + Fy2—(G so that:

o =

@)

Fy = i/l = —2[exp (—a)][cos a] (39)

and

G, = q./f: = —exp (—2a).
A third equation is arrived at by fixing the steady-state voltage v (k)
for a specific input frequeney, f. The choice is arbitrary, and since the
system’s input spectrum is symmetrical about the carrier frequency,
fm, it is reasonable to fix the corresponding output voltage at 0.5. The
equation is obtained from equation 6 by noting that steady-state im-
plies periodicity so that v (k) = v(k+7). Thus:

Mm+ﬂ—&haﬂ%—a. (40)

Solving equations 39 and 40 gives

__ 2M{f,, exp (a)
f = s (@) — simh @ (1)

__4M{, cos (a)
h=Gos @ — simh @ (42)
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Fig. 10 — Mapping of the s-plane Butterworth circle into the z-plane.
and

_ 2Mf. exp (—a)
91 = %os (@) — sinh (a)

As a practical example, consider the demodulation of a narrowband
FSK wave whose spectrum is centered about a carrier of 2125 Hz. The
signaling rate is limited to < 300 baud so that a cutoff frequency of 250
Hz should prove adequate. As previously noted, the choice of M is de-
pendent upon the maximum baseband jitter (quantizing noise) which
can be tolerated. This must be weighed against the added circuitry and
higher clock frequencies imposed by large values of M. A convenient
choice is M = 128. Thus

(43)

_r f_
@ = Gy - = 0262
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o that
g = 598 kHz,
fi = 1504 kHz,
and
f, = —1012 kHz.

As previously mentioned, the negative value for f, requires a “down
counter” for the second register. This example is continued in sub-
sequent sections.

6.1 Step Response of the System

Once the coefficients g4, f1, . . ., f» are determined, the characteristic
equation is uniquely specified and the system’s time response to a
step in input frequency is easily found. The step response of a second
order system is now derived in the interest of providing further in-
sight into the characteristics of the loop.

Equation 6 is written for n = 2 as:
[‘z2 + Fiz — GiV(2)

- (2MF — Gl)(zi—l) + o(1)z + v(0)2 + 2F(0).  (44)

Assume that the input frequency steps from F, to F at ¢ = 0 (as before,
capitalization denotes normalization so that F; = f;/f., G; = g¢;/fa).
Thus for ¢ = 0 we have

V() = CMF — G")[(z2 + Fz —2 G))(z — 1)]

2 z
+ v(@[m] + [Fw(0) + t'(l)][m]' (45)

The initial conditions v (1) and »(0) are determined from the differ-
ence equation

vk + 2) + Folk + 1) — Gulk) = 2MF — @G,. (46)

Assume that the system is in steady state for ¢ < 0 so that v(k) =
vk — %),k <0 Fork = —2

v(0)[1 + F, — G\] = 2MF, — Gy, (47)
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so that
9MF, — G,
0 =TT =g (48)
Now let bk = —1:
v(1) = 2MF — G, — [F, — G,] v(0), (49)
which may be written as
v(1) = v(0) + 2M A, (50)
where
A = [F — F,. (51)

Substituting equations 50 and 51 into 45 and simplifying leads to

M
Ve = [”(0) S G.][z = 1]
[ 2MA ][ 2 ]
B 1+ F -G 22+F13—G1

2M AG, 2 )
- [1+F1 _Gl][22+F13_G1] (52)

The following substitutions are made so that V(z) may be easily
transformed. Let

F, = —2[cos 8] exp (—a); G, = —exp (—2a). (53)

Substituting and rearranging gives

e = [”(O) 1 +2£{A— GI]L = 1]
_ [ 2M A ][ 2* — z(cos fB) exp (—a) j‘
1+ F, — G, 1LZ* — 22(cos B) exp (—a) + exp (—2a)
4MAG, e —;]
_[(l—i-F,—Gl F')( 4G = F)

2(sin B) exp (—a) -
'[zz — 2z(cos B8) exp (—a) + exp (—2a):|- (54)

This is transformed into

o = [100) + I—Jr%{l‘{%a]uw)
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2MA
- o e () e

4M AG,
+ (1 FF -G
where (k) is the unit step. The time response is found by again assum-

ing that »(k) is a continuous function of time v(f), k &~ 2ft. Substitution
gives the familiar response of an underdamped second order system:

() = [U(O) + %Ju(!)

- Fl)(—4G1 — F)7'sin (ﬁk)] . (55)

2M A
— exp ( —Mﬁ[(m) cos (26f1)
4M AG, “ g . 5
+ (3 g - p)eao - e | 6o

The experimentally determined step response of the actual n = 2
PLL closely approximates the Butterworth response and is shown in
Fig. 11.

6.2 Lock Range for the Second Order System
As was the case for the n = 1 PLL, the loop is said to be in “lock”
if, for a steady input frequency, the output v (k) is constant. Although
there are many frequency ranges for which the loop exhibits this
property, there is a “fundamental” lock range over which v (k) varies
linearly with frequency between its defined limits, and the output
frequency equals the input frequency. In steady state, v(k+2) =
v(k+1) = v (k) so that from equation 40:
2MF — G, - 2Mf — g
v(k)_l"I-Fl_Glﬁfz-l_fl_gl
The end points of the lock range are

if 0=uk =1. (57)

flon-o = 1o = 47 (58)
and
_|_
f v(k)=1 = ft = :{1231 f2 (59)

The lock range is given by

M= 1= Tl = g7 Lo — i = fa . (60)
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— fi =2025 HZ

'FL =2225HZ —§g

Vour (t)
L

f,=2025Hz —

—f =2225Hz

Fig. 11— Qutput voltage response of second order PLL to input step fre-
quency of (a) 2225 to 2025 Hz and (b) 2025 to 2225 Haz. Horizontal scale: 1 ms

per cm.

Substituting the values calculated previously gives a lock range of
414 Hz which is approximately twice the bandwidth required. The
useful bandwidth is reduced still further as will be shown.

6.3 Bound on Culoff Frequency
For a step in frequency f,—f» we have a corresponding step in volt-
age,

= 2Mfa — G _ 2be — = ZM(fa — fl‘:) .
f2+fl_gl f2+f1_9'1 fz+'f1_§'1

Av is defined to have a maximum value of unity so

h+hfh—gz2M{a—f) (62)

Av (61)
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and

1+ F, — f (f fs) for f» <O0. (63)

If f; and f, are symmetrically distributed about the carrier frequency,
fe, we can let v = 14 at f; = f,, so that from equation 40

AMfn

PR R G s
Substituting equation 64 into 63 gives
1+m-&gu+m+m@§%- (65)

Substituting equation 53 for F, and G, gives
1 — 2[exp (—a)] cos B + exp (—2a)
< (1—5;—1—)[1 — 2(cos ) exp (—a) — exp (—2a)].  (66)

The constants « and g are related to the filter shaping desired and are
a function of the input frequency for £ > 0. For the case of a Butter-

worth response (n = 2)
- g = T (L),
«= 0= g (f)

For a narrowband system the input frequency may be approximated
by the carrier f,,. Thus

1 — 2(cos u) exp (—u) + exp (—2u)

< [1 — 2(cos p) exp (—p) — exp (-—2#)][%] , (67)

where
L
SN
This may be written as
A
fo + 3
exp (1) — Af &P (—w
fm -
CosS pu = 2 (68)

2
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Thus for a given f,, f» and fu, the cutoff frequency f, is bounded. For
example let f, and f, be 2025 Hz and 2225 Hz, respectively, and be
symmetrically distributed about the carrier f,. Then

exp. (u) + (0.91) exp (—u)
2 S - (©9)

Solving this transcendental equation gives

p = 0.19 (70)

cos u =

and
f. = 182 Hz.

An upper bound on f, is found by requiring that the end points of
the lock range be positive frequencies. The lower edge of the lock
range is required to be greater than zero so that from equations 59,
41 and 42

f'zjffz >0 or 2 cosu — exp (w) = . (71)

This is satisfied if z < 0.54 which gives positive value for equation 71
as well as for the upper edge of the lock range g,/2M. Thus 0.19 = p =
0.54 so that for f,, = 2125 Hz

182 < §, < 542 Ha. (72)

The bounds on f./fn are loose in the sense that it is assumed that the
full lock range is available to input frequencies. This is not the case
for underdamped systems, where a hysteresis effect known as “cap-
ture” reduces the effective lock range available, and so the bound
might be tightened accordingly.

6.4 The Capture Phenomonen

When the PLL is “out of lock” its output voltage osclllates be-
tween 1 and 0. The “pull-in” frequencies are those frequencies furthest
removed from the carrier for which the PLL will ultimately lock. In
general, the PLL will exhibit a hysteresis so that the pull-in range
will be smaller than the lock range; also, the upper and lower pull-in
frequencies will generally not be symmetrically distributed about the
carrier f,. In general, solution of the capture range (for conventional
phase-locked-loops) results in a nonlinear integrodifferential equa-
tion. Solution for conventional PLL’s requires phase plane techniques
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and is documented in Ref. 2. An analysis to determine capture range
for the digital PLL has not been performed.

6.5 Stability of the Second Order System Within the Lock Range

Thus far there has been no restriction placed on N, the number of
counters required per shift register. For N less than some ecritical
value N,, it is possible for stable modes of operation, different from that
of Fig. 2, to exist. These modes do not exploit the PLL to its fullest
advantage and thus in previous derivations it has been assumed that
N = N,.

A possible parasitic mode is shown in Fig. 12. The input frequency
is constant, as is the frequency of the flip-flop signal, E;, but the
waveform of E; is no longer square. This operation is caused by the
limited length of the registers. Assume that the lengths (number of
counter stages) for the n = 2 system are equal, and of value N. Each
time the feedback flip-flop (see Fig. 1) is triggered, register 1 is reset
to zero. During the period T;+7> (see Fig. 12) this register is ad-
vanced to a count of [T19:+T.f;] modulo C where C = 2¥. This num-
ber is shifted into the second register where one of two conditions may
exist:

Tlgl -+ T2f1 = ]lf,

e — P ——>

Ef“

Eo

T e = |
*jﬂ}k

Fig. 12— Waveforms for parasitic locked mode of second order PLIL..
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or

Tlgl + T:fl = M.

The first equation results in normal operation, analyzed in previous
sections. During T, the count is reduced by a negative f so that

[Ty + Tofy + Tufs] mod C = M.

The second equation requires that the second register count down to
zero (which is congruent to C) and then further reduce the count by
C — M. Thus

[Tlgl + Tnfl + T;fa] mod C = M — C.

These equations may be combined by introducing the parameter 8 =
—1, 0 depending upon the mode of operation:

T + Tafs + T =M — 6C. (73)

Similarly, an equation similar in form to equation 73 covers the in-
tervals Ty, T's, and T'y:

Tagx -+ Tafl + T:fa =M — 701 (74)
where y = 0, 1.
The period, Tz, may be explicitly solved for by noting that

T+ Ti=T:+ Ts = p. (75)
Thus
SR & W [—
P hi+f— o

( 8C + M)f, — (— TC+M)(f2 g1) of
fi = (fa — 7’ '

Under normal conditions § = y = 0 so that

(76)

by = 2Mf — g
fitf—a'
which is identical to equation 57. The parasitic mode of operation is
given by § = —1, y = 1 so that equation 76 may be rewritten as

— 2Mf — ¢ 2Cf .
fn+fz—g|+f|+fz—g: @7)

Graphical examination (see Fig. 13) of equations 57 and 77 shows that
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DESIRED_
MODE

OUTPUT VOLTAGE, V =—3>

fi+fa g,

INPUT FREQUENCY, f —=

Fig. 13 — Comparison of parasitic and normal mode voltage versus frequency
characteristic for second order PLL.

two modes of operation may exist within the lock range. To insure that
this will not happen, C must be chosen so that the frequency range for
which 0 = v, = 1 lies outside the normal lock range. Thus at the upper
lock range edge, f = ¢./2M, it is required that », > 1 so that from

equation 77,
2C(L)
2M > 1

f|+g1_“f2 ’

Hence

£>11+Q1“]‘2
M h

and thus the minimum number of counters required is
_ *
N, =1+ integer value [logg (f‘—t%—f—g)ﬂf] (78)
1

VII. PERFORMANCE

In a laboratory test, an FM digital signal with mark and space fre-
quencies of 1270 and 1070 Hz was fed into an n = 1 PLL which had

* That is, the integer value of 2.3 is 2.
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an 8-stage counter and clock frequencies for which g, = 2M(970)Hz
and f, = 2M(1370)Hz. The output of the exclusive-or was fed to an
amplifier which clipped the signal to precise levels and provided a con-
stant output impedance. The signal then went to a Butterworth low-
pass filter with n = 3 and cutoff of 200 Hz. The filtered signal was sliced
to give a digital output which could be compared with the original
digital input. The FM modulator used in these tests was from a Bell
System Data Set 103E1. The eye pattern for this circuit with an input
at 300 baud is given in Fig. 14a. When the lock range was increased to
-+300 Hz about the carrier, the eye pattern improved, as shown in Fig.
14b. This effect results from the increased bandwidth, f, .

Start-stop distortion, as measured with a Bell System 911A data test
set for bit rates of 150 to 300 baud, was 2 and 5 percent, respectively.
Performance with additive gaussian noise is as shown in Fig. 15,

/||

LN

Y/
L TUN L

(b)
Fig. 14 — First order PLL eye patterns for 300 baud random digital data.
Lock range of (a) 400 Hz, (b) 600 Hz. Horizontal scale: 0.5 ms per cm.
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50 \ 1

40

——t U Fv— -

20— —l

e T S,

START —=STOP DISTORTION IN PERCENT

o] 5 10 15 20 25 30 35
SIGNAL-TO-NOISE RATIO IN DECIBELS

Fig. 15— Distortion performance of first order PLL with input signal de-
graded by 3 kHz band-limited white noise.

Fig. 16 —Second order PLL eye patterns for (a) 150 baud and (b) 300 baud
random digital data. Horizontal scale: 1 ms per cm.
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where start-stop distortion is plotted versus signal-to-noise ratio. The
noise is 3 kHz band-limited white noise and the bit rate is 300 baud.
This performance is similar to that of the receiver in Data Set 103EL.
Start-stop distortion for a single frequency (2025 Hz) interference
was measured and, as might be expected, single frequency interference
is a strong function of frequency, the worst values being at odd multi-
ples of the channel frequency.

Laboratory tests indicated that the second order PLL, with char-
acteristics deseribed in Section VI, performed in accordance with
theoretical expectation. The eye patterns for an input of a modulated .
random data signal at 150 and 300 baud are shown in Fig. 16. It was
found that noise performance of the second order system was not
much better than that of the first order system. This probably resulted
from the counter length falling just short of the value indicated in
equation 78, thereby allowing noise perturbations to randomly shift
operation between the stable and parasitic modes of operation.

VIII. CONCLUSIONS

A synthesis procedure for the realization of an nth order digital
phase-locked loop has been described. Such systems find application
in FM demodulators, filters, and in extremely stable locked oscillators.
Various loop properties have been theoretically derived and experi-
mental performance has been found to be consistent with these results.
The advantages of such ecircuits for use in large multichannel data
sets are:

(1) Filtering property—(6n) dB per octive.

(72) Small size—completely integrable using one or more mono-
lithie chips.

(%) Requires no adjustment—permitting lower manufacture and
repair costs.

(7v) Excellent stability and reliability—the PLL circuit either
works or does not, since it is completely digital, Stability of the en-
tire system is dependent upon clock stability which may be as good
as required.

(v) Multichannel economy—accurate clocks can be used to drive
many channel eircuits.

In addition, this circuit has two inherent advantages over other
types of phase-locked loops. First, it requires no low-pass filter gen-
erally found between the phase comparator (multiplier) and voltage-
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controlled oscillator in conventional phase-locked loops. Second, it
includes, in effect, an ideal voltage-controlled oscillator, the frequency
of which is linearly related to voltage.
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