First and Second Passage Times
of Sine Wave Plus Noise
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(Manuscript received June 25, 1968)

This paper is concerned with the first and second passage times of a
stationary random process, I(t, a), consisting of a sinusoidal signal of
amplitude (2a)! plus stationary Gaussian moise with a finite expected
number of zeros per unit time. This type of random process is present
at the output of the IF amplifier of a radio or radar receiver during the
reception of a sinusoidal signal tmmersed in Gaussian noise. Approximate
integral equations are developed whose solutions yield approxzimate proba-
ability densities concerning the first and second passage times of I(t, a).
The resulting probability functions are presented in graphs for the case
when the frequency of the sine wave 1s located in the center of a band of noise.
Related results concerning the approximate distribution function of the
absolute minimum or absolute maximum of I(t, ¢) in the closed interval
[0, 7] are also presented.

I. INTRODUCTION

Exact, explicit, results concerning the first passage times of a Markov
or “Markov-like” random process have been given by many authors.’”’
But very little is known about the first passage times of a random
process consisting of a sinusoidal signal plus stationary gaussian noise.
This random process is of interest because it serves as a realistic model
for the output of the IF amplifier of a typical radio or radar receiver
during the reception of a sinusoidal signal immersed in Gaussian noise.

Let I(t, a) denote the stationary random process consisting of a
sinusoidal signal of amplitude (2a)! and angular frequency g plus
stationary gaussian noise, Iy(f), of zero mean and unit variance. Thus,

I(t, @) = (2a)! cos (gt + 6) + Ix(2). (1)

6, denotes a random phase angle which is distributed uniformly in
the interval (—m, 7). a denotes the signal-to-noise power ratio.
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The first and second passage times of I(f, a) are indicated in Fig. 1
and are defined as:

(7) =* represents the time I(f, a) takes in going from an upcrossing
of the level I, to the first crossing of the level I, < I, .

(#1) v~ represents the time I (¢, a) takes in going from a downcrossing
of the level I, to the first crossing of the level I, < I, .

(#3%) 7% represents the time I(¢, a) takes in going from an upcrossing
of the level I, to the second crossing of the level I, < I, .

() 77 represents the time I(¢, @) takes in going from a downcrossing
of the level I, to the second crossing of the level I, < I, .

For fixed I,, I, < I,, and a we denote the probability densities of
7+y T, 1":; and 77 by W+(7, I,,1,,a), W(r,1,,I,,a), Wi(r, I, , I, , a),
and Wi(r, I,, I,, a), respectively. These four probability densities
arise in many branches of science and technology.

Because the random process I(¢, a) is symmetrical about its mean
value of zero, we need only discuss the case when I, > I, as is indicated
in Fig. 1. The case when I, < I, can always be converted to the case
under discussion by considering the random process —I(t, a).

For the general process I(t, a), exact, explicit expressions for the four
probability densities are unknown. However, as already mentioned,
exact, explicit results concerning the first passage times of I(t, a) are
known for the special cases when a@ = 0 and I»(¢) is a Markov or Markov-
like random process.

The purpose of this paper is to present theoretical approximations for
the four probability densities of the first and second passage times of
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Fig. 1—7* and 7~ are the first passage times of I(¢, a) (2a)V2 cos (gt + 6o)
+Ig(t) defined by the levels I, and I,. Similarly, =.* and 7~ are the second
passage times.
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I(t, a) for the cases when a > 0 and I () is a stationary, gaussian process
having a finite expected number of zeros per unit time.

II. AUXILIARY PROBABILITY FUNCTIONS

Using a notation consistent with Ref. 8, we define the following
auxiliary probability functions concerning the stationary random
process I(t, a):

(1) P;7(r,I,,1,,a)dr, the conditional probability that a downward
crossing of the level I, occurs between ¢ + 7 and ¢ + = + dr given an
upward crossing of the level I, at &.

(@) P;*(r, I, I,, a)dr, the conditional probability that an upward
crossing of the level I, occurs between ¢ + r and ¢ + 7 + dr given a
downward crossing of the level I, at ¢.

(@) P, (r, I, ,I,, a)dr, the conditional probability that a downward
crossing of the level I, occurs between ¢ + = and ¢ + = + dr given a
downward crossing of the level 7, at .

(@) P3;*(s, I, I, a)dr, the conditional probability that an upward
crossing of the level I, occurs between ¢ + 7 and ¢ + = + dr given an
upward crossing of the level I, at .

These auxiliary probability functions were given in Ref. 8 for the case
when I, = I,. Here, we need to merely generalize to the case when
I, # I,. The reader should see Rice’s work for the definition of all
notation which is not defined in this paper. When a > 0 and I, = I, ,
Rice’s equation 38 generalizes to:

P (r,I,,I,,qa)

r o0 0
= -V [Cae [Can [ annnea , n,n, 1y @
-r o -0
where

N, = Rice’s equation 2.7 of Ref. 9 for the expected number of up-
crossings (or downcrossings) of the level I, per second

_ (B exp (—11/2) & (—1)"(2n)! a\"
- 2r Zﬂ 2'(nl)° (2)

.l.!i) (l. : aq’)
'IFI(_njzi 2 lFl _2 ;n+1;__'8—

1/, = the confluent hypergeometric function
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oy, 1L, 15, 1) = @07 M}
- exp {—-zlﬂ (Moa(I? + I + 2Myg IiT} + 2D,11 + 2B, + Fﬂ}
= M
M,
D, = Myu(I, — Q cos 6) + M[Q cos (gr + 6) — I,]
4+ M,,Qqsin 6 + My,Qqsin (gr + 6)
E, = My,[Q cos (gr + 6) — I;] + Mys(I, — Q cos 6)
+ M,,Qqsin (gr + 6) + M2Qqgsin 6
Fy = M, {I? + I} — 2Q[I, cos 6 + I, cos (g7 + 6)]
+ Q’[cos’ 8 + cos” (g + 6)]}
+ 2M,,Qq{[I, — Q cos 8]sin 6 + [Q cos (g7 + 6) — I.]sin (g7 + 6)}
+ 2M ,,Qq{[I, — Q cos 6] sin (g7 + 6) + [Q cos (g7 + 6) — I.]sin 6}
+ 2M (I, — Q cos 6][I; — Q cos (g7 + 6)]
+ M,(Qq)[sin’ 6 + sin® (g7 + 6)] + 2M2s(Qg)* sin 0 sin (g7 + ).
The M’s are given in Ref. 4, Appendix I with

Q = (20)*

m(z) = f "W cos 2nfr df, @)

where W(f) = one-sided power spectral density of In(f). Also,
B = —m'(0). The primes denote differentiations.

Equation 2 can be put in the form:
P;-(T, I; ,Iz ,a) = [41!'2NI‘]—1M22(1 - mz)-i
[ e (~G/2M TG B k) A0 @
where
[ T pp— fmdxfmdy(x—h)(y—k)e‘

.= a4y’ — 2nay
201 — 7))

_ , 1—m |
hy = Mzi[l - 'rf] l[Dz - TIEE][ M " :l
22
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ks

- . 1—m’|
— M0~ )7 Es — r.Dz][—A—L—:"—]

Gy, = M3l —rj]7'[2rD.E, — Dy — E3] + F, .

P;*(r, I,, I,, a) is obtained from equation 2 by changing the signs
of the «’s in the limits of integration. We find that P;*(r, I,, Lt , @) is
equal to the right side of equation 4 with hs , ks replaced by —hs , —ks .

P; (r,I,,I,, a) is obtained from equation 2 by changing the upper
limit of integration of I/ to — . We find that P;(r, I, , I., @) is equal
to the right side of equation 4 with the function J(r,, ha, ka) replaced
by the function J,(r, , ks, ks), where

T k) = s [ de [ du = b — ke )

T

P}*(r, I,, I,, a) is obtained from equation 2 by changing the lower
limit of integration of I} to 4+ . We find that P;*(r, I, , I, a) is equal
to the right side of equation 4 with the function J(r, , ha, ka) replaced
by the function J,(r, , —ha, —ka).

The functions J(r, , ks, ks) and J,(r, , ks, k3) are expressed in terms
of Karl Pearson’s well-known tabulated function (d/N) in Ref. 10.

A considerable simplification occurs when a = 0. For this case we find

(Tr Il ’ IZ 10) MZZIB !(1 - mz)_

I II 4+ I — 2mI,I
+exp [El - ( ' -;(12_ m:;z ! 2)]J(T1 ,h-3 ’ kﬂ) (6)

where

—m/(mI, — I,)
[Ma(1 — m*)]

L (I, —m)
P (M, (1 — mz)]

hs =

Equation 6 reduces to Rice’s* equation 47 when I, = I, = I.
III. APPROXIMATE RESULTS VIA INTEGRAL EQUATIONS

3.1 Probability Densities

Let us assume that each of the random variables =¥, 7, 7%, and 77
(see Tig. 1), is statistically independent of the sum of the following
(2N + 2) axis-crossing intervals at level I, when N = 0, 1,2, -+ - . Under
this “quasi-independence’” assumption, approximate theoretical results



2244 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1068

for the probability densities of 7*, 77, 7}, and 77, namely W*(r, I,,1,,a),
W(r,I,,1,,a), Wi(r, I, , I, ,a), and W7(r, I,,1I,,a) are given by the
following integral equations:

Py, 1,,I,,0) = W' (r, I, , I, ,a)
+ WHr, I, ,I,,a) * Py (s, 1,1, , q) (7

Py (r,I,,I,,0) = W(r,I,, 1,0
+Wir, I, ,I,,a) *P; (v, I, I, , a) (8)

P, L, I, a) = Wi, I, 1., a)
4+ Wi, I, , I, ,a) * Py (r, I, , I, , @) 9)

P;¥r, 1, ,I,,a) = Wi(r,I,,1,,q)
+ Wir, I, , I,,a) * Py (s, I, , I, , a). (10)

The P,'s are the auxiliary probability functions presented in Section
11, and the symbol * denotes the convolution operator, that is,

jro=[ i —va. ()
From symmetry we have
P;+(TJ IQJIS ;a') =P2_—(71 IZ:IZ :a)' (12)

Integral equations 7 through 10 are analogous to McFadden's
equation 47 and Rice's equation 84 in Refs. 11 and 4, respectively.

Let us define two additional probability densities defined by the
first and second passage times of I (¢, @) between the levels I; and Ip:

(i) W(r,I., I, a)dr, the conditional probability that the first cross-
ing of the level I, occurs between ¢t + rand t + = + dr given a crossing
of the level I; > I, at t.

(ii) Wi(r, I, I., a)dr, the conditional probability that the second
crossing of the level I, occurs between ¢ + = and ¢ + = + dr given a
crossing of the level I; > I at t.

Clearly, we have

W(T’ I, 1., a) = %W+(T; I, I, ,a) + %W_('r, L, I, a) (13)
WI(T: I, ) I, a‘) = %H/-:(T: I, I, ra) + %W_I(T: I, ) I, ,a). (14)

3.2 Absolute Minimum In a Closed Interval
Let us define the following probability functions concerning the
absolute minimum of I(f, a) in a closed interval [0, 7]:
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F"‘(T: Il ] I2 3 a’)
= Pr{min I{t,a) > I, | I(0,a) = I, > I, , I'(0, @) > 0} (15)
OstsT

F-(‘F, Il ,Ig,ﬂ)
= Pr{min I(t,aq) > I, | 1(0,a) = I, > I, , I'(0, a) < 0}  (16)
0stsT
F(r,I,,I,,a) = Pr {min I({,a) > I, | I(0,a) = I, > I,} (17)

Ostsr

where Pr{-} denotes the probability of the event inside the brace.
Clearly, we have

F+(TJIIJI2JG)=f W+(T:I1:I21a‘)d7

(18)
=1—f Wr, I, , I, , @) dr
1]
F_(T)IlJI2la’)=f W_(T!II!I:ZJa)dT
’ (19)
-1 —f W, I , I, , a) dr
0
Fir, I, , I, q) = f W(r, I, , I, a) dr
i (20)

=1—f W(r, I,, 1., a)dr.
1]

Because we are discussing only the case when I; > I, as is indicated
in Fig. 1, we discuss only the probability functions concerning the
absolute minimum of I(¢, @) in a closed interval [0, r]. The corre-
sponding probability functions concerning the absolute maximum of
I(t, @) in a closed interval [0, ] are associated with the case when
I, < I, and they can be obtained from symmetry by considering
the random process —I (¢, a).

IV. RESULTS FOR SINUSOIDAL SIGNAL CENTERED IN LOW-PASS NOISE

For purposes of computation we set the angular frequency, g, of the
sinusoidal signal in the center of a band of gaussian noise with an
ideal low-pass power spectral density of cutoff frequency fo. Thus,

q = fo (21)
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and
-1
W) = {fn 0=f=f (22)
Om otherwise.
Accordingly, from equation 3,
_ Sin 27I'fo'1"
m(T) - 2‘"_](01_ (23)

From equation 23 we see that it is convenient to define normalized
time as uy = 2nfor. All our results are plotted with respeet to normal-
ized time ug.

4.1 Experimental Verification of Auxiliary Probability Funciions

The auxiliary probability functions for the case when I, = I, = 0 are
useful for studying the zero-crossing intervals, the axis-crossing intervals
defined by the level I, = I, = 0, of I(t, a). Figures 2, 3, and 4 present
Pi=, P;*, Pi*,and P;” for the case when I, = I, = Oanda = 0, 1,
and 4. These results were computed by using Simpson’s rule. The results
compare satisfactorily with the initial behavior of the experimental
probability densities presented in Figs. 34, 35, 42, 43, 46, and 47 of Ref.
12. Notice that the experimental probability densities pertain to the case
when the power spectral density of the noise is

1
1+ G—)

rather than the power spectral density defined by equation 22.

W) = (24)

4.2 Resulis When a = O and a = 1

Figures 5 through 13 present the results when a = 0, signal absent,
and I, =1, L, =0;I, =1,I,=—1;and I, = 0, I, = —1L The P.’s
were computed by using Simpson’s rule, the integral equations defin-
ing the W’s were solved numerically by using the trapezoidal rule,
and the F’s were computed by using Simpson’s rule.

Similarly, Figs. 14 through 22 present the results when a = 1, signal
present, and I, = 1, I, =0; I, = 1,I, = —1;and [, = 0, [, = —1.

As an example of the interpretation of these results, we see from
Fig. 16 that the median time, =, for the random process I(¢, 1) to
go from the level I; = 1 to the level I, = 0 for the first time is given by

Uo = 2oform = 7 (25)
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or
Tm = (2f0)7". (26)

™ also represents the median time during which the random process
I(t, 1) remains continually above the level I. = 0 when it starts at the
level I; = 1. From symmetry, r,, also represents the median time dur-
ing which the random process I(¢, 1) remains continually below the
level I, = 0 when it starts at the level I, = —1.

V. CONCLUSIONS

The exact auxiliary probability functions can be used in approxi-
mate integral equations in order to deduce approximate probability
densities of the first and second passage times of sine wave plus sta-
tionary, gaussian noise with a finite expected number of zeros per
unit time. These approximate probability densities can be used to
deduce the approximate median times associated with the first and
second passage times. Also, the approximate probability densities of
the first passage times can be used to deduce approximate distribu-
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tion functions for the absolute minimum or absolute maximum of sine
wave plus noise in a closed interval.
The corresponding exact results are not yet known.
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