The Spectrum of a Simple
Nonlinear System
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The random motion of a particle with nonlinear damping is investigated.
The spectrum of the velocity of the particle is obtained by solving the as-
soctated nonstationary Fokker—Planck equation and also by using the
equivalent-linearization technique. The first procedure yields an exact
solution in terms of Laguerre polynomials. The second leads to simple,
approximate results which are valid for cases where the small nonlinearity
assumption holds. Results obtained by these two methods are compared
and good agreement is observed over a large frequency range.

I. INTRODUCTION

The recent advance in space and communicational technologies has
led engineers to numerous difficult but fascinating problems in regard
to the structural dynamies in random environments. For example,
Hempstead and Lax have investigated noise in self-sustained oscilla-
tion;* * Ariaratnam and Sanker have studied the dynamic snap-
through of shallow, arch-type aircraft components under stochastic
pressure.® In this paper the random vibration of a simple mass with
nonlinear damping is studied. The nonlinearity of the system is in-
troduced to linear viscous damping by adding to it an extra term
which is inversely proportional to the first power of the current ve-
locity. Emphasis of the analysis is placed on finding the power spectral
density of the random motion.

Two different approaches are used to obtain the desired solution.
First, the exact spectrum is found by solving the associated nonsta-
tionary Fokker-Planck equation in terms of the eigenfunction expan-
sion of the degenerate ordinary differential equation. Second, approxi-
mate solutions are obtained by using the equivalent linearization
technique by which the original nonlinear system is converted to an
equivalent linear one. The equivalent linear system, constructed by
the least mecan square error criterion and based on the small non-
linearity assumption, is then solved by standard linear theory.
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II. NONSTATIONARY FOKKER—-PLANCK EQUATION

Consider the first-order nonlinear system described by the follow-
ing differential equation:

&+ F(z) = 1), 1)

which may be thought of as the velocity equation of a unit mass with
nonlinear damping F (z) subject to a force f(£).

Let us discuss the problem of obtaining the power spectral density
of z(t) when f(t) is a random process. We limit the discussion to
the case where f(t) is a stationary white gaussian process with the
first two moments defined as

(f®) =0 @)
and
ft)f(t)) = 2ms, 8(ry — ) (3)

where s, is a constant, the symbol ( ) indicates the ensemble average
and § indicates the Dirac delta function.

Caughey and Dienes* have investigated a similar problem for
F(z) = k sgn z. We shall however consider a different case in which

F) = pr — 2 4)

<< =»

where 8 is a constant and y is a smaller nonlinear coefficient. In case
y = 0, equation 1 becomes the familiar linear differential equation.

The Fokker—Planck equation which governs the transition proba-
bility p(z, | , 7) with given initial veloecity x, = z(f,) for the velocity
z(t) at time ¢ is

. _ 9 _ ap
P = or [(183 I)p] + s, or (5)

where + = t — t,. The initial and boundary conditions for equation
5 are

Pi. = 6(1: - xn) (6)

and

19(0, ) = p(oo, t) = 0: (7)
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respectively. As the time of passage ¢ becomes sufficiently large,
p(z, | , ) in equation 5 approaches a stationary value p,(z) inde-
pendent of ¢ and initial condition 6. Setting $ = 0 in 5, such a station-
ary density can be found by solving the degenerate stationary equa-

tion. The result is:
= 1 pz’ _ )]
C exp |: . ( ) log z (8)

where C is the normalization factor determined by

j:np,, dr = 1. 9

The power spectrum is the Fourier transform of the autocorrelation
function which is determined by the joint probability density p(z,,
x, r). Thus from the relation

p(:l:., » T, T) = Pn‘(xo)p(xu l x, T)r (10)
we need to find the transition probability density, that is, the non-
stationary solution of equation 5. Let p(x, | x, ) = T ()X (z) in 5.
Tt follows that

T4) + \T() = 0 (11)
and
. °X a9 _ a""‘y a ( )
o T o WX T 5 6 +ﬁX =0 (12)

where ¢ = ws,/B8. If X, () is the eigenfunction and A,, the correspond-
ing eigenvalues satisfying equation 12 and the prescribed boundary
condition 7, it can be shown that®

= X (0)X. (z.) g In(t=te)

m L 1
:rg p.l!(x ( 3)
In deriving 13, the following orthogonality condition has been used:

p(xo lxs T) =

f X @X,(o) (Z) = b . (14)

Following the transformations adopted by Stratonovich, let p = 14
(y/ms, — 1), 2 = 2*/2¢% and u = z+X. Equation 12 becomes

(1/2) +u + (/28) | (1/4) = “2]u =0. (15
2

2

' |, ou
?+5+[
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Equation 15 is a degenerate hypergeometric differential equation which
has eigenfunctions U,(z) with corresponding eigenvalues A, = 2nf8:

U,.(Z) = z#+(1/2)e~=L:2n)(z) (16)
where
a — l z_—a _d_“ —z nta
Lﬂ (z) - n! cz dzu (e‘ 4 ) (17)

is the Laguerre polynomial of degree n.
Transforming back to the original variables and applying equation
14, we obtain the following normalized eigenfunctions:

@ zﬂn+<l/2)e-lL;2n)(z) -
¢ ! T@ + 2 + DI + 1P

From equations 13 and 10 the transition density and jointly density,
respectively, can be found as

g} 32n+(1/2)8—= o L,(,m(z)Lf.zm(z,,) el

Xo(2) = (18)

Pz, [z, 7) = = L) Zal T + on + ) (19)
and
—_ _2_ 2u+ (1/2) —(z+2q)
po, 2, 1) = 5 (22) e
- L-:u)(z)L:azm(za) —2nf17

LT+ 2%+ DTG+ 1)° (20)

where
z 2
2= and z, = 257"

From the above the autocorrelation funetion R,(r) of x(f), where
r=1t—t,,18s

-] -]
R.(7) = f f p(z, , z, .z dz dz,
1] L]
L] e—2n.ﬂl'r|

=2 Z T + 24 + DICu + n!

I(u,m)  (21)

where

I(#) ﬂ) —_ f f (2)23+(l/2)e—t(za)2u+(1/2)e—zaL,£2n)(z)L'(‘2n)(zo) dz dzo . (22)
0 0
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In the appendix we show that

j:a z2.u+(1/2)c—zL'$2u)(z) ({Z = _P[ZF + (g{f))}nﬂ[n - (1/2)] , (23)

from which it follows that

om) = %{ [24 + (3/2)]T[n — (1/2)]} (24)

n!

Substituting 24 into 21, we obtain the following expression for the
autocorrelation function R, (r):

o 2+ (3/2) § P = @217
or TCu+1) % @)’Th+ 2u + 1)

which is a monotonically decreasing function of .
The power spectral density of x2(#) ean be derived from equation
25 as the following:

R.(r) =

S.(w) = 217 f_w Ru(n)e"" dr = 20 2”2‘(“2—:;(31/—)23 5(w)
I’[2u + (3/2)] & Mn — (1/2)] 4n,8
+ (2#) I'2u + 1 ”ZI n)’Tin + 2p + 1) 4n°8° + w (26)

Notice that S,(w) is again a monotonically decreasing function of
w and has a spike at » = 0,
The nonstationary mean value of z(¢) is given by

@) = [ apla, |z, 7 da. 27)
Using equations 19 and 23 it can easily be shown that,

oy _ T2+ 3/2)] Tl — (1/2IL8G)
W = L) & T+ 2+ %

Because v, = (20%z,) %, we notice that {x(+)) depends on the initial
velocity ¥,. As + = oo, (x(7)) in equation 28 approaches its stationary
value (x)y, which is given by

(2)'T(2x + (3/2)]
Pou 1) © (29)

(x)y 1s independent of the initial condition x,. This stationary mean
velocity, (x), can also be found by using the stationary density

(). =
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Dy (z) as follows:

(x)al = ‘/:D xpu(I) d.'l:

I

fo " X)) dx

_ (2)“0' ® 2u+(1/2) 57 20
= Tewt D l)j; (&)™ VP LM (2) dz
_ @'r2e + (3/2)]

e + 1)

The variation of (z(r)) is illustrated in Fig. 1. It has a maximum value
z, at 7 = 0 and decreases exponentially to the stationary value (z)..
as given in equation 29. The nonstationary mean square value of z(t),
given its initial value 23, is difficult to evaluate exphcltly, but its
stationary value (z?),, can be found by integrating S.(w) in equation
25 over the entire frequency range from — @ to + «. By this procedure,

U _ A 2u+ (3/2)] s T'ln — (1/2)]
@ = [ Sy do = BT S o g D)

(30)

As expected, (%), is also independent of the initial condition ,. The
variations of {z%),; with the nonlinear coefficient k = y/xs, are shown
in Fig. 2.
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Fig. 2 — Comparison of mean square velocity nonlinear system subjected to
random noise.

III. EQUIVALENT LINEARIZATION TECHNIQUE

The eigenfunction expansion of the degenerate ordinary differential
equation of the governing Fokker-Planck equation is often difficult
to find. In such cases it is sometimes convenient to use the perturba-
tion™” or the equivalent linearization®® techniques to obtain desired
quantitative results. If the nonlinearity of the system is small (that is,
v/B < 1), these techniques provide the simplest means for obtaining
approximate results. In the following, an equivalent linearization pro-
cedure is used to derive the power spectral densities of the nonlinear
velocity z(f) in equations 1 through 4. Let

i+ B + e(@) = (0) (31)

be the equation of motion of a system equivalent to that deseribed by
equations 1 and 4 in which g, is the equivalent linear stiffness and

@) = Bz + 1~ B (32)

is the error function. If e(z) is small and may be ignored, equation
31 becomes a linear differential equation, and its spectrum can be
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solved by standard technique. The equivalent linear stiffness 8, can
be determined by the criterion that the mean square error is mini-
mized. The mean square error is

(el@)’) = j; [ﬁ — B + -|— 2(8 — B. )’Y]’P(I) dzx.
Setting d{e(x) 2)/d8. = 0 we obtain

j:" .BIzP(I) dz = j: ﬂ,:czp(a:) dx — f:o vp(z) dx;

therefore

i j{; 2p(x) dx + v

T j;m z'p(z) da

The following two cases are considered:
(7) Assuming p(z) is gaussian, that is,

then

(@ = a2 = T (34)

Substitution into equation 33 yields

Ba G = .6(1 + 'Y/“-sa)' (35)

(%) Using true (stationary) distribution, p. (x) given by equations
8 and 9 becomes:

p“(x) _ x(‘r/tao) exp L-_()BIZ/2W3‘:)] (36)

where

o0

2
(y/w80) _st)
x ex dx
p ( 2ms,

_ 1(%&)*“”""'"”1.[1 + (v/rsa)]_
2\ B 2

4 =

B
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Therefore the mean square value of x(f), using true distribution
equation 36, is

@, = j:g °p..(2) dx

%[.[‘; (:L_)2‘-(1/'rau) exp (_2fs xz) d:c]

(s, + 7). (37)

o=

Substitution into equation 33 yields

2
e+ ) (38)

]
s s

= Y =
Ber = ﬁ(l + J— 7) = .6‘(1 +

Comparison of equation 38 with equation 35 indicates that 8, ¢ is
the first-order approximation of 8, r.
Now let us consider the simple linear system

i+ B = ft) (39)

whose transfer function is given as

1 .

.Be + Tw

According to the familiar linear theory of random processes, the
power spectrum of x(£) in equation 39 is given by

H(iw) = (40)

8o

B + o

S;(w) = (41)

where s, is defined in equation 3.
Substituting 8., ¢ as given in equation 35 into equation 41, we obtain

S:,6(w) = (42)

Se
B+ (v/ms)]” + o
Substituting g, r as given in equation 38 into equation 41, we obtain

S:. r(‘ﬂ) =

S,
[Brs, + 2v)/(rs, + 1" + & (43)

By setting y = 0, both equations 42 and 43 give

SG

B+ o’

Silw) =
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which is the spectrum of the corresponding linear system. The mean
square value and the power spectral density of the velocity response
z(f), obtained by solving the Fokker-Planck equation, and the equiv-
alent linear equations using gaussian and true distributions, respee-
tively, are summarized in Table I. In this table & = v/=s, is the non-
linear coefficient.

The mean square velocities (z*), (z*)¢ , and (z*)r are compared in
Fig. 2. It is seen that for k < 0.035, that is, in a very small nonlinearity
range, both linearization cases give higher mean square velocities than
the exact solutions. For k& > 0.035, equivalent linearization methods
give larger results when using true distribution and smaller results when
using gaussian distribution than the exact solutions.

The power spectral density functions S, ¢(w) and S, r(w) obtained
by the equivalent linearization procedure, using gaussian distribution
and true distribution of z(t), respectively, are compared in Fig. 3 in
which B, = (8°/8.)8. ¢(w) and B, = (8°/s.)8.,r(w). Notice that both
S, o(w) and 8, r(w) are monotonically decreasing functions, and the
differences between them are negligible for small nonlinearity.

The exact power spectral densities are compared with the equivalent
linearized solutions in Fig. 4. For the exact solution of S.(w) as given
by equation 25, the spike at = 0 is evaluated by normalizing S.(w)
to an area equal to that given by Fig. 2, that is,

@) = f S.(w) dw = 3.053 for k = 0.01.
0

Curves shown in Fig. 4 are seen to be monotonically decreasing. The
equivalent linearized systems have higher power spectra of z(t) in the
low-frequency region and lower power spectra of z(t) in the high-
frequency region than the actual nonlinear system has.

IV. CONCLUSION

It has been shown that the exact expression for the two-dimensional
nonstationary probability distribution of a class of simple nonlinear
systems can be found in terms of the spatial eigenfunction expansion
of the governing Fokker-Planck equation. Equivalent linearization
techniques can be very useful in generating approximate response
statistics for certain systems having small nonlinearities. In Figs. 2,
3, and 4 good agreement has been achieved in the comparison of the
exact and approximate mean square values and of the power spectral
densities of the nonlinear random response,
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Fig. 3 — Power spectral density by equivalent linearization.
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Fig. 4 — Comparison of the exact and approximate power spectra.
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APPENDIX

Derivation of Equation 23

The following formulae are used in the derivation of equation 23:

f e L) di
0

S TBA4 Dle4+n+ 1) 4, (_‘ . .L)
o n! (e 4+ 1) o rl,ﬁ+1.a+1,s

(ReB > —1, Res > 0) (44)

where
F(a, B;v; 2) = 2F, (e, B;7; 2) (45)
is a generalized hypergeometric series which is defined as
o . L. Ca) — o (e)a(aa)e - -+ ()i {
pFu(al y O, ap rBl y 62 Bq :z) g (ﬁl)k(ﬁz)k . (Bq)k k!
in which
(0)s = e + k)
T T
and
_TB4R

A special case for equation 45 is when z = 1:

Iy —a — f)
'y — a)T'(y — 8)
(Rey > Re(a 4+ 8), Rey > Re 3 > 0). (47)

Using equations 44 through 47, the integral involved in equation
22 can be evaluated as follows:

Fla, 8;v;1) =

w0
f z2u+(1/2)e—=L,:2.u)(z} dz
0

T2 A4 (1/2) + 1TR2u +n + 1) By .
- 7 T2 + 1) F(—n, 2 + §;2u + 151)
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_ Tl2u+ (3/2]0@u +n +1) T+ DT2u + 1 +n — 2 = (3/2)]

n! T(2p + 1) T(2u+ 1+ n)l2e+1— 2 — (3/2)]
I'(2u + (3/2)]T[n — (1/2)] _ —T(2x + (3/2)] T[n = (1/2)]
n! T[—(1/2)] 2(m)} n!

which is equation 23.
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