Statistical Analysis and Stochastic
Simulation of Ground-
Motion Data

By S. C. LIU
(Manuseript received July 31, 1968)

The time variations of the root-mean-square accelerations, the auto-
correlation functions, and the power spectral density functions of 12 strong-
motion earthquake accelerograms are analyzed. The results indicale that:
(7) strong-motion accelerograms of sufficiently long duration are stationary
in the rms sense, (1) the stationary rms acceleration is a good measurement
of earthquake intensity, and (iii) the autocorrelation and power spectral
density functions of strong-motion accelerograms resemble those of a nar-
rowband process. Based upon these results, a method of determining the
transfer characteristics of a sile 1s introduced. A procedure for generating
a filtered, gaussian stationary process to simulate ground motions is de-
veloped, and two applications of this simulation procedure illustrate its
significance.

I. INTRODUCTION

For many years structural engineers have been concerned with the
dynamic response of structural systems subjected to seismic excita-
tions. Ground motions may be caused by natural earthquakes, by
underground explosions, or by nuclear air blasts. Structures such as
high-rise buildings, nuclear reactor facilities, or sensitive equipment
in the vicinity of such events are vulnerable to induced random-type
disturbances. Traditionally, deterministic methods of analysis relying
on the known earthquake response spectra have been used.! These
methods have provided valuable information regarding the behavior
of structures during earthquakes. However, this procedure has a
serious restriction in that only a few strong-motion accelerograms
exist which provide ground-motion input. An earthquake is usually
initiated by a series of irregular slippages along faults, followed by
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innumerable random reflections, refractions, dispersions, and attenua-
tions of the seismic waves within the complex ground formations
through which they travel.

Since ground motions are generally random, a probabilistic method
of analysis appears to be more appropriate than the traditional
method of establishing a reliable design basis for structures sub-
jected to ground motions. The simulation of ground motion is un-
doubtedly a necessary step in performing such a probabilistic analysis.
Because earthquakes are unpredietable, some researchers in structural
and earthquake engineering have attempted in recent years to simu-
late earthquakes by using stochastic processes. Both stationary and
nonstationary models have been investigated.*®

It is the purpose of this paper to investigate the best characteriza-
tion of ground motions and to establish a valid basis for the stochastic
simulation of seismic records. For this purpose, 12 commonly used
strong-motion earthquake accelerograms are analyzed. The time varia-
tions of the rms accelerations, the autocorrelation functions, and the
power spectral density functions of these accelerograms are inves-
tigated. The stationary rms accelerations are used as a measure of
earthquake intensities and are compared with those found by Housner.?
From the power spectral density analysis of existing ground-motion
records, a linear filter can be determined to represent the transfer
characteristics of the ground layers at a particular site. This filter
is used in developing a method of generating a gaussian stationary
process to simulate ground-motion accelerations.

In Section III the generation of synthetic ground acceleration
records using a digital computer is discussed. The synthetic records
are generated from existing records and from estimated response
spectra, Two practical examples, of importance to structural engineer-
ing, are illustrated in Section IV.

II. STATISTICAL ANALYSIS OF GROUND-MOTION DATA

In general, no individual record is representative of any other record
in an ensemble. However, if the data are stationary, valuable statistics
may be derived by averaging the existing records. If an ergodic process
is considered, a single record will be sufficient to represent the entire
process.

The mean value of a given time-history record z(t) of duration
T is defined by

@ = 7 f 2(t) dt. )
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The mean square value of x(¢) is defined by

T

2 l 2
e = = x . 2
(7 D 7/ * (t) dt (2)

Following this definition, the root-mean-square or the rms value
of 2(¢) is the positive square root of the mean square value (x*),,. This
is given by

rms of x(f) = [;—, fT (1) dtjl’ (3)

If 2(t) is a stationary random process with zero mean, its autocor-
relation function R.(7) and power spectral density funection S;(w)
are given by the following transform pair:

R.(s) = m% j; "0t + 1) dt. (4)
]- ® —1WT
S.w) = 5 f R dr. 5)

Notice that R,(r) is always a real-value even function with a
maximum at r = 0 and that, if (x),. = 0,

R.(0) = f S.(w) do = lim (2%),. , (6)
-0 T'—wo

that is, the maximum autocorrelation represents the mean square

value of a stationary random process.

These simple statistical quantities defined in equations 1 through
5 are useful in applying random vibration theory in earthquake
engineering. The mean value, mean square value, and root-mean-
square value represent the time-average strength of the input func-
tion. The timt variations of (2)av, (%)4v, or rms of x(¢) can be used
to test the restricted sense stationarity of a time series. The auto-
correlation function and the power spectral density function are closely
related to the second-order properties and are generally used as char-
acterization functions of a stationary process. Since strong-motion
earthquake accelerograms are, in general, gaussian,® either the auto-
correlation functions or the power spectral density functions will be
sufficient to provide a complete statistical deseription. These two fune-
tions also provide a mathematical basis for the random response anal-
ysis of linear structural systems.

If z(t) is given in digitized form, equations 1 through 5 can be
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written respectively as follows:

1 N
@ = 3 kE Tk @
1 N
(xz)“ = ﬁ ’; "'E: ) 8
ot = [ L 5| ®
rms of z(f) = N & x|,
R. = Rk Al) = 57— E:c:c,+,,, k=012 - ,m, (10)

and

S{w)——-[R +22R cos +( 1)*1?,]

i=1

k=0,1,2,---,m, (11)

in which N = T/At equals the digitization time interval Af, z; =
z(kAt), and m represents the maximum lag number.

2.1 Stz Strong-Motion Earthquakes

Using equations 7 through 11, six commonly used strong-motion
earthquakes each with two horizontal components are analyzed. They
are:

A. El Centro, California, December 30, 1934, N-S.

B. The same, but E-W.

C. El Centro, California, May 18, 1940, N-S.

D. The same, but E-W,

E. Olympia, Washington, April 13, 1949, S10E.

F. The same, but S80W.

G. Taft, California, July 21, 1952, S21W.

H. The same, but N69W.

1. Golden Gate Park, San Francisco, March 22, 1957, N10E.
J. The same, but SS0LE.

K. Alameda Park, Mexico City, May 11, 1962, N10°46'W.
L. The same, but N79°14’E.

The accelerograms for these earthquakes are presented in Fig. 1.
Upon first inspecting these existing strong-motion accelerograms, one
might conclude that they are nonstationary. However, this conclusion
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is debatable, considering the lack of sufficient ground-motion data
for statistical studies, the difficulties of establishing valid nonsta-
tionary characteristics, and the ultimate objectives in developing a
useful stochastic model for earthquake-induced ground accelerations.

The time variations of the rms amplitude of these strong-motion
accelerograms are obtained and presented in Fig. 2, from which it is
seen that the earthquake rms acceleration in general approaches a
stationary value as the duration of the accelerogram is increased. This
phenomenon indicates that strong-motion accelerograms are sta-
tionary in their rms amplitude at long duration (7 > 20 seconds, ap-
proximately).

The longest and shortest periods existing in a digitized time-history
record are 2T and 2At, respectively. These two extremes constitute an
effective period range for the record. Any analysis of the record be-
yond its effective period range will be of no significance. A At of 0.01
second was used in this study.

The stationary rms acceleration can be used to measure the inten-
sity of an earthquake if it is accompanied by the corresponding effec-
tive period range. The rms intensities for all earthquakes, assuming
T = 20 seconds (corresponding to a period range of 0 to 40 seconds),
are listed in Table I. This table shows that the N-S component of
the El Centro 1940 earthquake (C) has the strongest accelerogram.

It is interesting to compare earthquake rms intensities with the
traditionally used Housner intensity,® which is defined as

2.5
Sho= [ 8.0, T)dr., (12)
0.1
where S, is the solution of the following equations:
o 4w A
i+ PN+ = () (13)
S.\, T,) = max | | (14)

for constant coefficients A and T,.

Physically, equation 13 represents the equation of motion of a basic
single-degree-of-freedom linear system with mass m, viscous damping
A, and stiffness k subjected to earthquake excitation #,(¢) at the sup-
port, as shown in Fig. 3. Correspondingly, T, = 2= (m/k)% is the
natural period of the system, and S, in equation 14 is the maximum
relative velocity reached by this system during the earthquake excita-
tion. Therefore, Housner’s intensity definition actually represents an
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earthquake’s potential peak velocity of structures in the period range
0.1 to 2.5 seconds. In Table II the rms (normalized to a factor of
2.7/2.20) and Housner’s intensities are compared and good agree-
ments are observed. The basic difference between these two intensity
definitions is that the rms intensity is independent of the transfer
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Fig. 2 — Root-mean-square acceleration of strong-motion earthquakes. (a)
El Centro and Golden Gate, (b) Olympia and Taft, (¢) Alameda Park.
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characteristics of the structure while Housner’s intensity depends on
both the input and the transfer characteristics of the structure. It is
much simpler to calculate the rms value for a given input time- history
function than to find the SI) values, which require numerous mathe-
matical integrations on the computer. However, the rms intensity
should be used with care; one should consider the associated effective
period range and the predominant period contained in the waveform.

2.2 Determination of the Predominant Period

The autocorrelation and power spectral density for all accelerograms
considered are found on a digital computer by using a Fortran program

TasLg I — RMS INTENSITIES OF STRONG-MOTION EARTHQUAKES

RMS acceleration Average
at T =208 rms
Case Identification (ft/s?) (ft./8?)
A EC34NS 1.4 1.4
B EC34EW 1.4
C EC40NS 2.4 2.20
D EC40EW 2.0
E OL49810E 1.7 1.85
F OL49S80W 2.0
G TA52521W 1.4 1.4
H TA52N6OW 1.4
1 GGH7S80E 0.8* 0.7*
J GGHTN10E 0.6*
K AL62N10°46'E 0.75 0.725
L AL62N70°14'E 0.7

* Taken at T = 10.0 s.
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based on equations 10 and 11. Those functions, B(7) and S(w), for the
El Centro 1940 earthquake are shown in Figs. 4 and 5 for the N-S
and E-W components, respectively. The smooth curves in the power
spectral density diagrams (Figs. 4b and 5b) were obtained by introducing
a Hanning or smoothing procedure'® to the raw estimates given by
equation 11. The autocorrelation functions (Figs. 4a and 5a) all have
a maximum at r = 0 and diminish rapidly at large correlation time.
The ordinates of the power spectral density functions (Figs. 4b and 5b)
generally increase with increasing frequencies to a maximum value at
some frequency which may be considered a predominant or character-
istic ground frequency, and then decrease rather rapidly toward zero
in an asymptotic manner. Also of interest is the fact that this general
rise and fall of the power spectral density function is accompanied by
local random fluetuations.

The above results indicate that the autocorrelation and power spec-
tral density of strong-motion earthquake accelerograms resemble those
of a narrowband process. This implies that earthquake acceleration
may be simulated by passing a wideband process through a linear
filter which reflects the local geological conditions.

III. STOCHASTIC SIMULATION OF GROUND-MOTION ACCELEROGRAMS

8.1 Basic Requirements for Ground-Motion Model

There are many occasions when a ground-motion model is required.
Examples are the prediction of ground motion at a certain site where
no past records are available, and statistical analyses of structural
responses based upon very limited actual ground-motion records. The
hypothesized models must, of course, possess the pertinent characteris-
ties of real ground motions and must be supported by existing data.
More importantly, these models must properly reflect the damage (or
response) potential of future ground motions to a wide range of strue-
tures.

TABLE II — CoMPARISON oF EARTHQUAKE INTENSITIES

|
Earthquake |
case A&B l C&D E&F G&H I&J K&L
Normalized
rms intensity 1.7 2.7 2.2 1.7 0.84 0.9
Housner
intensity 1.9 2.7 1.9 1.6 unavailable
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Fig. 4— N-S component of earthquake at El Centro, Calif., May 18, 1940.
(a) Autocorrelation function. (b) Power spectral density function. (c) Compari-
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Fig. 5—E-W component of earthquake, El Centro, Calif, May 18, 1940.
(a) Autocorrelation function. (b) Power spectral density function. (c) Compari-

son of actual and idealized power spectral density functions.
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The random phenomenon observed in earthquake ground motions
suggests that one can reasonably assume that the resultant seismie
wave arriving at the surface of the ground will contain a random as-
semblage of velocity impulses having gaussian distribution. Further-
more, the analyses of the earthquake accelerograms in the previous
sections show that they have characteristics resembling those of a
narrowband process. It is therefore postulated that the use of stochas-
tic processes would be appropriate in modeling earthquake ground
motions.

Basic criteria for establishing such a stochastic model can be spe-
cifically stated as follows:

(1) The model must have the basic properties reflected by the past
recorded data such as the intensity, duration, general physical ap-
pearance, and all important characteristics resulting from local geo-
logical conditions.

(4) The response statistics of the stochastic model must be equi-
valent to those produced by the real ground motion or to those
predicated on strong theoretical or empirical bases.

Some simplifying assumptions required in the development of our
stochastic model for earthquakes are:

(7) The input seismic wave transmited at bedrock by an earth-
quake is represented by stationary, white noise.

(1) The ground layers of a seismic station during the shock are
represented by a single-degree-of-freedom system with linear be-
havior. (A more sophisticated ground-layer filter may also be used.)

(#i7) Local random fluctuations appearing in the power spectral den-
sity function of the real earthquake accelerogram are neglected when
modeling the transfer characteristics of the site.

The representation of ground layers by a single-degree-of-freedom
system is shown in Fig. 6. Such a simple system is characterized by its
transfer function h(r) in the time domain or H(iw) in the frequency
domain, with k(r) and H(iw) known as the unit impulse response and
the complex frequency response of a linear system, respectively.

If the simple mechanical system shown in Fig. 3 is used as the linear
filter, the power spectral density of the total acceleration of the mass,
when the acceleration at the support is taken as the input, can be
found in terms of the corresponding transfer function.

Sl 4 4N(w/w,)”]
1 — (@/w)’]’ + 4N (w/w,)’

S,(w) = | Hliw) [* 8; = [ (15)
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Fig. 6 — Ground layers represented by a linear system.

where S; is the constant power spectral density of the input acceleration
by assumption (¢); A, and w, are the ground characteristic damping and
frequency, respectively.

For known S;, A,, and w,, equation 15 gives a smooth curve for
S,(w). The location of the peak amplitude of S,(w) is determined by
w, . The shape or the rate of the rise and fall of S,(w) is governed by
A, , and the relative amplitude of S,(w) depends on S, . For any power
spectral density derived from a real ground-motion record, an idealized,
smooth equivalent power spectral density can be found by using equa-
tion 15 and by properly adjusting the three-characteristic constant
A, &, , and 8, in this equation. The idealized power spectral density
function for both horizontal components of the El Centro, California
1940 earthquake were found by the preseribed procedure. As shown in
Figs. 4¢c and 5c for both cases, the idealized power spectral density
function covers the same area as the actual power spectral curve in the
frequency range 0 through 10 cps. The w,, A, , and S; values used for
the N-S and E-W components of the El Centro 1940 earthquake are
15.5 rad/s, 0.42, 0.046 ft*/s*/rps, and 14.7 rads/s, 0.41, 0.033 ft*/s*/rps,
respectively.

Once the representative ground-layer filter for a given ground motion
is determined, the artificial earthquake can be generated by passing
white noise through this filter and measuring the output time history.

3.2 Generation of a Gaussian Stationary Process

This procedure starts by sampling a sequence of pairs of statistically
independent random numbers 1, To; T3, Ty; *** ; Tuo1, Ta all of which
have a uniform probability distribution over the range 0 < z < 1. A
new sequence of pairs of statistically independent random numbers
Y1, Y25 Ya, Y43 *** ; Yno1, Yn are then generated using the relations
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— 4

y: = (—2 log, x,)* cos 272, i=1,3 - ,n—1 (16)
Yirr = (—2 log, xi)! sin 274y

which have been shown to have a gaussian distribution with a mean

of zero and a variance of unity.**-**

A single waveform y(t) can now be established by assigning the
values ¥1, ¥z . . . , ¥ to n successive ordinates spaced at equal intervals
At along a time abscissa and by assuming a linear variation of ordi-
nates over each interval. To define a time origin, assume that the
initial ordinate 7,, which is taken equal to zero, is located at £ = &,
where ¢, is a random variable having a uniform probability density
function of intensity 1/At over the interval o < ¢, < Al.

For practical reasons At must, of course, be taken as finite; how-
ever, its value should be set sufficiently small so that the true power
spectral density function is reasonably constant at intensity S; over
the lower range of frequencies which are to be properly represented in
the process. A value of 0.025 second or smaller is recommended.

To establish the desired stationary process a(t), each member y.(f)
(r=1,2, ---, N) of the normalized process »(t) must be filtered in
accordance with equation 15. This step can be accomplished by assum-
ing that a simple single-degree-of-freedom system having an undamped
circular frequency w, and a damping ratio X, is subjected separately to
the N support accelerations ¥, (f) and then by ealculating the correspond-
ing absolute or total acceleration functions a.(t) of the mass. In mathe-
matical form this statement is equivalent to saying that one must solve
the differential equations

Zr(t) + 2&0,)\,2,(!) + wa,(t) = "'yr(t) r= 1) 2, e ,N (17)

for the functions Z, () and then evaluate the desired family of accelera-
tion functions a.,(f) using the relation

a.t) =Z.0) +v.® r=12--,N. (18)

Equation 17 can be solved numerically on a digital computer using
the standard linear acceleration method. Based on the assumption that
the input earthquake duration is divided into the very short equal
time intervals At, and the response acceleration varies linearly over
each interval, this method gives the following simple relations be-
tween the response displacement Z, and its derivatives at step n and
n+1:
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(Z,_)"“ = (Z Y + ( " AL+ (Z )n+l Al
(Zr)ru-l = (_Zr).. + (Z Al + Z )" Al® + (Z )n+1 AL (19)

IV. ILLUSTRATIONS OF GENERATION OF ARTIFICIAL ACCELERATION

4.1 By Known Power Spectral Density

As the first example, artificial earthquakes are generated using the
prescribed approach, to simulate the average of U. 8. strong-motion
earthquakes observed at seismic stations having a firm soil founda-
tion. Values of 15.6 rad/s for », and 0.6 for ),, representative of such
soil conditions, were used. A total of 50 artificial accelerograms (N
= 50) were generated for process a(t) with a duration of 30 seconds
which corresponds to At = 0.025 second and n = 1200. The intensity
S; of the unfiltered “white noise” was set at 0.00614 ft2/s® so that the
mean velocity response spectrum curves for the filtered process a(t)
would give a “best fit” with the standard response spectrum curves
published by G. Housner.® This intensity is slightly less than the
value of 0.0063 ft*/s® used by J. Penzien'* in a previous investigation
to correlate the mean velocity response spectrum curves for “white
noise” with Housner’s standard curves.

A typical sample member of artificial accelerograms generated is
shown in Fig. 7. It is interesting that this accelerogram appears to be
very similar to the real accelerograms in Fig. 1 except, for the general

0.4 T T T T
o ozl l ' ) l §
é o fh] ‘ ir LA :l If 'F‘ | l' :' i Ial A S
I
S—o.au _
0% EI. slo 1I5 zlc EI5 30
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Fig. 7 — Sample member of urtificial accelerogram,
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stationary apparance of the artificial accelerograms versus the non-
stationary appearance of the real accelerograms.

The autocorrelation and corresponding power spectral density func-
tion for this sample artificial earthquake are shown in Figs. 8 and 9,
respectively. It is of particular significance that, while these autocor-
relations and power spectral densities are similar to those for the real
earthquake (Figs. 4 and 5), local random fluctuations also appear in
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Fig. 9— Power spectral density function of the sample member of artificial
nccelerogram,
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Fig. 10 — Comparison of velocity spectra of earthquakes, A = 0.02.

the individual power spectral density function. It is expected that
these local fluctuations and the variations from one individual power
spectral density function to another will be eliminated by the averag-
ing procedure. It has been shown that the average power spectral den-
sity function of artificial earthquakes is quite close to the preseribed
function.1®

The average response spectra (A = 2%) of 50 artificial earthquakes
are compared with the real spectra given by Housner® in Fig. 10. Good
agreements are observed over the significant period range. The con-
fidence limits for these average spectra are given in Fig. 11 by extend-
ing 3¢ (standard deviation) of S, above and below the mean. Since
the distribution of the response spectra is no longer gaussian, these
limits correspond to an approximate 89 percent confidence band
according to Chebyshev inequality.® 17

The above results (Figs. 7 through 11) show that the basic require-
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Fig. 11— Variations and confidence limits for average velocity spectra of
artificial earthquakes, A = 0.02.
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ments for ground-motion simulation have been satisfied. It takes ap-
proximately 10 seconds to generate one sample function on a CDC
6600 digital computer. These facts indicate that a good, reasonably
economical ground-motion simulation has been achieved.

4.2 By Known Response Spectrum

In the second example, we have a situation somewhat different from
the first. Engineers are asked to generate representative ground-mo-
tion accelerations from an estimated pseudovelocity spectra as given
in Fig. 12. There is no past recorded ground-motion data available.
The generated artificial earthquakes will be used to evaluate the prob-
able damage of structures resulting from possible seismic events tak-
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o] 1 2 3
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Fig. 12 — Pseudovelocity response spectra, X = 0.02.
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ing place in the vicinity of a proposed site. The estimated response
spectra were obtained from a careful examination of earthquake ac-
tivities in a certain seismic area and from an analogous prediction
using records taken at stations having geological conditions similar or
comparable to those of the given site. If the event refers to an under-
ground explosion, the estimated response spectra might be predicted
from past events under the same physical conditions (yield level and
depth of the explosion, epicenter distance, and so on) and similar
geological environments.

The given pseudoresponse spectrum curves (Fig. 12) show peaks at
period T, ¢ 1.25 seconds if the long-period portion (T, > 2.5 seconds)
or the low-frequency portion (w, < 2.5 rad/s) is neglected. The cor-
responding frequency value where the peak spectrum amplitudes oceur
is approximately 5 rad/s. This value can be used as an approximate
predominant ground frequency w, . The proposed site has a firm soil
foundation, therefore a value of 0.6 for the characteristic ground damp-
ing ), is used.

Using these two characteristic values and letting S, be unity in
equation 15, the same procedure as used in the first example can be
followed again. Five typical artificial accelerograms of 80-second
duration are generated and shown in Fig. 13. The individual response
spectra and the mean response spectra are obtained (Tig. 14). The
general shape of the pseudoresponse spectra using 8; = 1.0 is similar to
the estimated spectra. By matching the area covered by the estimated
and pseudospectra curves, the amplitudes of the pseudospeetra are
normalized to have the same order of magnitude as the estimated
spectra. The accelerations shown in Fig. 13 which have been modified
by these same normalization procedures, represent the final form of
the desired artificial accelerograms.

The comparisons of individual and mean pseudoresponse spectra
with the given response spectra (Fig. 14) are satisfactory except for
the high-period range (T, > 2.5 seconds). If only those general building
structures are considered which have a natural period range of 0.3 to
2.5 seconds, the large discrepancy of response spectra in the high-
period range is not significant. The mean pseudoresponse spectrum
(Fig. 14f) gives better results, as is expected. Overall results of the
simulation may be improved with more accurate determination of values
for w,, A\,, and the larger sample size N of the simulating process.
Methods for such improvements are presented in a separate paper.'®
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ACCELERATION IN CM/S2
1 1

Tig. 13 — Pseudoearthquake accelerograms.
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V. CONCLUSIONS

From the results presented in this investigation, the following con-
clusions may be deduced:

(¢) In general, strong-motion earthquake accelerograms of suf-
ficiently long duration (7' > 20 seconds, approximately) are station-
ary in the rms sense.

(11) The rms acceleration of an earthquake, along with the effec-
tive period range and the predominant period of the associated ac-
celerogram, can be used to determine the intensity of the earthquake.

(%i7) The autocorrelation and the power spectral density of a strong-
motion earthquake resemble those of a narrowband process.

(tv) The power spectral density analysis of existing earthquake
records suggests that the transfer characteristics of the given site can
be represented by a simple, linear system.

(v) A filtered, gaussian, stationary process generated on a digital
computer proves to be successful in modeling ground motions in-
duced by earthquakes or by nuclear underground explosions.
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