Reliable Information Storage in
Memories Designed from
Unreliable Components*

By MICHAEL G. TAYLOR
(Manuscript received April 10, 1968)

This is the first of two papers which consider the theoretical capabililies
of compuling systems designed from unreliable components. This paper
discusses the capabilities of memories; the second paper discusses the
capabilities of entire compuling systems. Both present existence theorems
analogous to the existence theorems of information theory. The fundamental
resull of information theory is that communication channels have a capacity,
C, such that for all information rates less than C, arbitrarily reliable
communication can be achieved. In analogy with this result, it is shoun that
each type of memory has an information storage capacity, @, such that for
all memory redundancies greater than 1/ @ arbitrarily reliable information
storage can be achieved. Since memory components malfunction in many
different ways, two representative models for component malfunctions are
considered. The first is based on the assumption that malfunctions of a
particular component are stalistically independent from one use to another.
The second is based on the assumption that components fail permanently
but that bad components are periodically replaced with good ones. In both
cases, malfunctions in di flerent components are assumed to be independent.
For both models it is shown that there exist memories, constructed entirely
from unreliable components of the assumed type, which have nmonzero
information storage capacities.

I. INTRODUCTION

The problem of designing systems which operate reliably even
though their components are unreliable has been formulated in many
different ways. In a typical formulation, one considers some particular

*This work, which is based on part of a doctoral thesis submitted to the
Department of Electrical Engineering, M.IT., September 1966, was supported by
the National Aeronautics and Space Administration (Grant NsG-334).

2299

2300 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

system which performs a computation with a nonzero probability of
error. The problem is to design some other “reliable” system which
performs the same computation using the same types of components
but with a smaller probability of error. In fact, the ultimate objec-
tive is to show that it is possible to design systems, using only
unreliable components, which perform computations with an arbi-
trarily small probability of error. Unfortunately, there is no standard
terminology for describing these systems; therefore, the following
section introduces the terminology to be used throughout this paper.

1.1 Definitions

The computations performed by the computing systems are de-
seribed in terms of elementary operations where an elementary opera-
tion is any Boolean function of two binary operands. There are
sixteen different elementary operations, each one of which can be
represented by a binary matrix of the type shown in Fig. 1. Typical
elementary operations are Anp, or, and modulo-2 addition. The com-
puting systems to be considered are constructed from components
which are devices that either perform one elementary operation or
store one binary digit. The complezity of a system is defined to be
equal to the number of components within the system.

In an irredundant computing system, the amount of computation
performed by the system equals the number of elementary operations
which are executed. Corresponding to each irredundant computing

AND 0 1
0 0 0
1 0 1

Fig. 1— Binary matrix for axp operation. There are 2¢ = 16 ways of filling
this table, each one of which describes one of the 16 allowed Boolean functions.

RELIABLE STORAGE 2301

system, there are many redundant computing systems which perform
equivalent computations. These redundant systems are more complex
than the equivalent irredundant one but, hopefully, they are also
more reliable. The amount of computation performed by any one of
these redundant computing systems is defined to be equal to the
amount of computation performed by the corresponding irredundant
system. Finally, the redundancy of a computing system equals the
ratio of the complexity of the system to the amount of computation
performed by the system.

To illustrate the use of these terms, consider a system that com-
putes, in parallel, the modulo-2 sums of the digits in two k-digit se-
quences. The system first encodes each sequence of digits into a code
word from an (n, k)* group code, then forms the modulo-2 sums
of the digits in these code words, and finally decodes the result. The
amount of computation equals k since an equivalent irredundant
computer would simply perform k elementary operations each consist-
ing of a module-2 sum. If the complexities of the encoder and decoder
within the redundant system are Cz and Cp, respectively, the com-
plexity of the entire system equals Cp + Cp + n, where the last term
arises from the n modulo-2 adders required to perform the desired
operation. The redundancy of this system equals (Cy + Cp + n)/k.

1.2 Historical Background

Von Neumann was one of the first to propose a system which uses
redundancy to gain reliability.* He considered systems consisting of
interconnections of identical elementsi where all the elements compute
either the majority function or the Sheffer-stroke function. The form
(network topology) of the redundancy network is similar to that of
the original irredundant network, the precursor. Specifically, each
element in the precursor is replaced by a set of 3n elements of the
same type in the redundant network (redundancy = 3n), and each
interconnection is replaced by a bundle of n interconnections. The 3n
elements in each set are interconnected in such a way that there are
n outputs. It is assumed that a malfunction occurs in a particular set
of elements whenever more than a certain fraction, 8, of the n outputs
are in error; 4 is chosen to minimize the probability of a malfunction
within the entire system. Von Neumann showed that, for large n, the

*n is the length of each code word; k is the number of information digits in
each word.

T The terms “element” and “network element” are used to indicate devices
consisting of several components (some finite number).

2302 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1068

probability that one set of 3n Sheffer-stroke elements malfunctions on
one particular use is

Pr (malfunction in one set of elts.) = 6.4/(n)}- 10751

where it is assumed that the probability of error for each use of each
element is 5.10-%. Therefore, for this system, the probability of mal-
function decreases exponentially with the redundancy, provided that
the redundancy is sufficiently large. Other approaches involving the
use of more complex modules have led to results similar to those
of von Neumann.? In some cases the resulting network is more ef-
ficient (less redundant for a given probability of system failure)
than von Neumann’s network. However, in all cases, to achieve an
arbitrarily small probability of system failure it is necessary to make
the redundancy arbitrarily large.

It is interesting to compare von Neumann’s results with those
obtained by Shannon concerning the reliability of communication
systems.® Both show that the probability of error within the system
can be made arbitrarily small. In the case of communication systems,
this can be achieved for certain nonzero information rates by choosing
the constraint length of the code arbitrarily large. The largest infor-
mation rate for which the probability of error ecan be made arbitrarily
small is called the capacity of the communication channel. By making
an analogy with this result, one might expect that, in the case of a
computing system, it should be possible to achieve an arbitrarily
small probability of error for certain bounded values of the redun-
dancy by choosing the complexity sufficiently large. Extending this
analogy, the reciprocal of the minimum redundancy for which the
probability of error can be made arbitrarily small is called the com-
puting capacity of the computing system. For the systems proposed
by von Neumann, there is no finite redundancy for which the proba-
bility of error can be made arbitrarily small; therefore, these systems
have a computing capacity of zero.

The question remained whether there existed any method for
designing a “reliable” system with a nonzero computing ecapacity.
Since it was well known that by using suitable coders and decoders
it is possible to obtain a “reliable” communication system, it was
natural to attempt to apply coding techniques to the problem of
designing a “reliable” computing system. One approach is to con-
sider coding the inputs to each computing component and decoding
the output. Elias set out to show that this method could not be used
to design a general computing system with a nonzero computing

RELIABLE STORAGE 2303

capacity.* Since Elias desired a negative result, he permitted all
coders and decoders to be noiseless, and since a general computing
system must be capable of performing all 16 elementary operations,
Elias considered 16 types of computing components, each capable
of performing one of the elementary operations.

The computing components were divided into two classes. The
operations performed by components in the first class were those
represented by matrices containing an odd number of ones and zeros
and in the second class were those containing an even number. Elias
showed that components in the first class have a computing ecapacity
equal to zero; but that it is possible for components in the second
class to have a nonzero computing capacity.*

Unfortunately, the only component in the second class which per-
forms a nontrivial operation is the modulo-2 adder; furthermore, there
is no combination of class two components that can perform class
one operations such as anp and or. Therefore Elias concluded that
this coding technique could not be used to design a general computing
system with a nonzero computing capacity.

More recently Winograd and Cowan proposed another scheme for
designing a ‘“reliable” computing system.® Their approach was very
similar to von Neumann’s. However, instead of considering a single
irredundant nctwork as the precursor for the redundant network,
Winograd and Cowan considered a composite network consisting of
k copies of this irredundant network, each computing independently,
to be their precursor. If the original irredundant network has a com-
plexity o then this composite network has complexity ke; but its re-
dundaney is still one since each network is capable of performing
independent operations on different inputs.

To introduce redundancy into this composite network, one con-
siders sets of &k network elements, the members of each set being the
corresponding elements in each of the k precursors. The redundant
network is formed by replacing each set of & elements with n modules.
These modules have the property that each of their inputs is encoded
according to some (n, k) block code, thus allowing each one to per-
form an error correction operation on each of its inputs. Every set
of n modules performs the appropriate operations on the corrected
inputs so that the n binary outputs from the n modules form the

* To achieve this nonzero computing capacity, it is necessary to assume that the
complexity of the encoders and decoders grows only linearly with the block
length of the code as in the case of convolutional coders and sequential

decoders.57

2304 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

code word corresponding to the desired result, namely the code word
whose information digits are equal to the corresponding k outputs in
the original composite network.

Winograd and Cowan assumed that modular malfunctions are
statistically independent from one module to another; furthermore,
they also assumed that for all modules except the “output modules”
the probability of a modular malfunction is po, independent of the
operations performed by that module. The “output modules,” those
modules whose output constitutes the output of the computing system,
were assumed to be noiseless. To compute a bound on the probability
of error for this system, each set of n noisy modules can be modeled
by a set of n noiseless modules, where the output from each module
is passed through a binary symmetric channel (BSC) with crossover
probability po. A failure occurs whenever the output from any set of
n BSC’s is such that a noiseless decoder would be unable to decode
this word correctly. According to the noisy channel coding theorem,®
there exist codes for which the probability of such a fajlure is bounded
by

Pr [modular failure] £ ¢™**®

where E(R) > 0 for codes with information rates less than the capac-
ity of a BSC with crossover probability po. Since there are at most
ne modules within the network and since each module is used only
once during the computation, the probability of a malfunction any-
where within the network during the computation is bounded by

Pr [failure in network] < ng-e ™%

which can be made arbitrarily small by making n sufficiently large.

If the complexity of the modules were fixed, this result would
imply that the probability of error can be made arbitrarily small by
making the complexity sufficiently large, while keeping the redundancy
bounded. Unfortunately, each module must perform encoding and
decoding which requires a number of operations that grows at least
linearly with n. Therefore, the complexity of the modules must grow
at least linearly with n which implies that the redundancy of the
overall network must grow at least linearly with n rather than being
bounded as one would have hoped. Therefore, the probability of
error for the system can be made to approach zero only in the limit
of infinite redundancy. Hence, Winograd and Cowan’s system also
has a computing capacity equal to zero.

RELIABLE STORAGE 2305

1.3 Error Criteria

Although the term “probability of error” is used in connection
with each of the three systems discussed in the previous section, the
error criterion was different for the different systems. Elias, Wino-
grad, and Cowan assumed that each input to the computing system
is uncoded and that the output from the system is also uncoded.
They assumed that for each set of inputs, the system has one correct
output defined as the output which would be obtained if the system
were noiseless. If the actual output differs from the correct output,
the system has made an error. To obtain a probability of error for the
system that is not lower bounded by the probability of error for
the output components, they required that the output components
be noiseless.

The necessity for using noiseless output devices arises because of
the requirement that the output be uncoded. Von Neumann avoided
this problem by assuming that all inputs and outputs are repeated
n times. He assumed that the result is “correct” provided that the
fraction of the outputs which are in error is small. Von Neumann’s
assumption that all inputs and outputs must be repeated is a special
case of the assumption that all inputs and outputs must be coded
according to some error correcting code, The latter, more general
assumption is made in this paper. The only condition that is imposed
is that both the inputs and the output must be coded according to
the same code so that computing systems are compatible with each
other. Since the outputs are coded, there must exist classes of outputs
corresponding to the decoding equivalence classes of the code. A
result is considered to be correct provided that it is within the class
which contains the code word corresponding to the desired result. -

The concept of coded inputs and outputs might, at first, seem
unrealistic since it implies that the user is capable of performing
error correcting coding and decoding. However, if we consider the
case of two people communicating with each other, we observe that
a very complicated process of coding and decoding takes place. Ap-
propriate redundancy is introduced not only through the inherent
redundancy in the language but also through the use of ‘“diversity
channels” which, in this case, correspond to facial expressions, hand
and arm movements, voice inflections, and so on. Therefore, since
there is always an appropriate coding used in the transmission of
information between individuals, it is unrealistic to expect that a
machine and user could communicate without the use of some type of

2306 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1068

error correcting procedure. In fact, the condition that all information
must be coded is a necessary requirement for the reliability of a
computing system in which every component is noisy.

1.4 Synopsis

It is our ultimate objective to show that it is possible to construct
from unreliable components a reliable computing system where a
reliable system is defined as a type of system which has a nonzero
computing capacity. For the first part of the analysis, it is assumed
that component errors are statistically independent from one compo-
nent to another and from one use of a particular component to another
use. A computing system constructed from components of this type
is called a noisy computing system. A virtually identical analysis
and similar results apply in the case where components within the
system fail permanently but where periodic maintenance is performed
on the system; that is, at regularly spaced times, components which
have failed are replaced by good ones. In this paper we restrict our
attention to memories. It is shown that information can be stored
reliably within a “stable memory,” a device constructed entirely
from unreliable components. The paper following this shows that it
is possible to design a computing system, using unreliable components,
that performs operations reliably on information stored within stable
memories.

II. STABILITY

The remainder of this paper is concerned with reliable information
storage in memories constructed from unreliable components. A mem-
ory is a device in which information is stored at one time and recov-
ered at some later time. If a memory is to be useful, it must have
two important characteristics. First, it should be possible both to
store information in the memory and to read information from the
memory at any time specified by the user, or at least at any one of
a set of discrete times where the members of the set are closely
spaced. All memories considered in this paper can have information
stored in them at any time and retrieved from them at any time.
Second, the information read out of the memory must be identical
to or at least equivalent to the information originally stored. With
memories constructed entirely from unreliable components, it is un-
reasonable to expect that the word read out of the memory will be
identical to the word stored; however, we can hope that the informa-

RELIABLE STORAGE 2307

tion will be preserved. To clarify this idea of information preservation
we introduce the concept of stahility.

2.1 The Concept

To illustrate the meaning of stability, let us consider a simple
memory consisting of one noisy register and a correcting network.
The state of this memory is defined by the word contained within
the register. It is assumed that initially (¢ = 0) a code word from
some error correcting code is read into the register, thus defining the
memory’s initial state. Since the register is noisy, errors occur in the
stored digits; hence, the state of the memory is perturbed away from
the original one. The correcting network monitors the contents of
the register, performs error correction, and inserts into the register
an estimate of the original code word. If there were no correcting
network, the state of the memory would “wander away” from the
original one; however, the correcting network provides a “restoring
foree” which tends to bring the state of the device back to the original.
The noise may perturb the state of the device beyond the error cor-
recting capability of the correcting network. If this happens, we say
that a memory failure has occurred. To define a memory failure more
precisely, it is necessary to associate with the different input code
words disjoint classes of states. As long as the state of the memory
remains within the appropriate class, no memory failure has occurred.

The redundancy of a memory is defined to be the ratio of the complex-
ity of the memory to the complexity of an irredundant memory which
has the same information storage capability. The inputs to the memory
being considered are code words from an (n, k) block code; hence, the
memory has a storage capability of & bits. This memory is denoted by
M, . An irredundant memory with the same information storage eap-
ability as M, would have a complexity equal to k, since it would consist
of k one-bit information storage components. If we consider k to be a
variable, we can speak of a sequence of memories where M, is a typical
member of the sequence. If the complexity of every memory in this
sequence is less than «-k, the redundancy of any memory in the sequence
must be less than & which, by assumption, is independent of k. Hopefully,
for any T, it is possible to make the probability of a memory failure
during the time interval 0 = ¢ = T arbitrarily small by choosing %
sufficiently large while keeping « bounded. If the sequence of memories
has this property, we say that the sequence is stable. For convenience
we refer to a typical member of a stable sequence of memories as a
stable memory. Here is a more concise definition of stability.

2308 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

2.2 The Definition

Consider a sequence of memories denoted by {M;}. The memories
in this sequence are ordered according to their information storage
capability; that is, the kth memory, My, has a storage capability of
k bits. The sequence {M;} is called stable if it satisfies the following
conditions:

(i) For any k, M, must have 2* allowed inputs which are denoted
by {I.},0 < i< 2%

() With each input there must be associated a class of states of
M,. The classes associated with different inputs must be disjoint.
For any k and 1, the class of states corresponding to I is denoted by
C(In).

(11) The complexity of M; must be bounded by «'k where « is a
fixed parameter for any particular sequence.

(7v) Suppose that at £ = 0 any one of the allowed inputs is trans-
mitted to each memory in the sequence. Let there be no inputs for all
t > 0. Consider a typical memory M;. Denote the particular input
that was transmitted to M, by Iy. The probability that the state of
M, does not belong to C (I) at t = T is denoted by p.(T) and max,
[Pu(T)] is denoted by pi(T). If the sequence is stable then, for any
T > 0 and 8§ > 0, there must be a k such that p.(T) < 8.

2.3 Examples of Memories

To further clarify the meaning of stability, consider two types
of memories. The first consists of a noisy register without any cor-
recting network and the second consists of a noisy register with a
noiseless correcting network. In light of the discussion in Section 2.1,
we do not expect that memories of the first type can be stable whereas
we do expect that memories of the second type can be. These expecta-
tions are correct.

Consider first a sequence of noisy registers. A typical member of this
sequence is a register containing n binary digits which define the
register’s state. Let p denote the probability that any particular digit
stored in the register is changed during a time interval r. If one is
interested in the contents of the register only at the times ¢ = 0, =, 2r,
3r, -+ -, a model for the noisy register is the noiseless register together
with the n binary symmetric channels shown in Fig. 2. The allowed
inputs to this noisy register, 91, , are the 2* code words from some (n, k)
code. The class of states corresponding to a particular input is the decod-
ing equivalence class corresponding to that code word. The complexity

RELIABLE STORAGE 2309

| o] eme
F(————n BINARY DIGITS———*J LI |]
HEN L]

NOISY REGISTER N“-\ ,
BSC's WITH

CROSSOVER PROBABILITY
EQUAL TO D

Fig. 2— Model for a noisy register. The digits in the noiseless register are
transmitted through the BSC's once every r seconds.

of M, isn = k/R, where R is the information rate of the code; therefore,
the appropriate value of « for this sequence is 1/R.

Suppose that at £ = 0 one of the allowed inputs is transmitted to 7, .
At t = r the probability of error per digit is p. The probability of a
memory failure at ¢ = 7 equals the probability that the word in the
register at { = r does not belong to the decoding equivalence class con-
taining the original input. Provided that the code is at least as “good”
as an average random code, the noisy channel coding theorem’ states
that p.(7) is bounded by

pu(r) = exp — [(k/R) E(R)]

where E (E) is positive for R < 1 — H(p). [1 — H(p)] is the capacity
of a BSC with crossover probability p. Since the probability of failure
is independent of the particular input it is unnecessary to perform
the maximization over all inputs.

Next consider the state of the register at time ¢ = T = Lr. Accord-
ing to the model in Fig. 2, to determine the state of the noisy register
at t = Lr we must transmit the n binary digits through their respective
BSC’s L times. This is equivalent to transmitting each binary digit
through L BSC'’s in series. Since the overall capacity of these chan-
nels in series decreases asymptotically to zero as L increases, for any
fixed rate there must exist some L for which the capacity of the L
channels in series is less than R. Therefore, for any sequence of noisy
registers with bounded redundancy (fixed « or R), there must exist
some L (or T) such that there is no register in the sequence which
has a sufficiently small probability of failure to satisfy the require-
ments for stability. Thus, as would be expected, noisy registers are
not stable.

As a second example, consider the same sequence of noisy registers
but this time associate with each register a noiseless correeting net-

2310 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

work. Within each time interval of length =, this correcting network
takes the output from the » BSC’s and maps this vector onto a code
word which is then inserted into the register to define its new state.
This type of device is shown in Fig. 3. The operation performed by
the correcting network is equivalent to that performed by a noiseless
decoder followed by a mnoiseless encoder. This operation can be per-
formed by a correcting network whose complexity is proportwnal
to k; for example, a noiseless sequential decoder followed by a noise-
less convolutmnal encoder.” If such a correcting network is used,
the redundancy is independent of k and therefore can be bounded
for all k. The probability of a memory failure at ¢ = = is again upper
bounded by exp — [(k/R) E(R)] but the probability of a memory
failure at ¢ = Lr is now bounded by

pu(Lr) < L-exp — [(k/R) E(R)]

according to the union bound. Therefore, for any finite L, pi(Lr)
approaches zero as k approaches infinity provided that B < 1 — H (p).
This shows that a noisy register with a noiseless correcting network
can be stable.

III. THE STABILITY OF MEMORIES CONSTRUCTED ENTIRELY FROM
UNRELIABLE COMPONENTS

We now show that a noisy register with a noisy correcting network
can be stable. This proof of stability is extended to memories in which
components fail permanently but where the components which have
failed are periodically replaced.

_l‘l | |] _|_ [|F_;' NOISELF\I‘EESGSISEI_\ERSTAGE
«en

_ BSC's WITH CROSSOVER
) (I . o e~ PROBABILITY P

. _. NOISELESS CORRECTING
T NETWORK

Tig. 3 — Noisy register with noiseless correcting network.

RELIABLE STORAGE 2311

3.1 The Importance of Low-Density Parity-Check Codes

The memories to be considered store information in the form of
code words from an error correcting code. Each memory consists of
one or more noisy registers and a noisy correcting network that
performs operations which are very similar to those performed by a
decoder. It is our objective to show that noisy memories of this type
can be stable. Since the complexity of a stable memory is required
to be bounded by «-k, where k is the information storage capability
and « is a proportionality factor which does not depend on k, the
complexity of the correcting network in any stable memory can
grow only linearly with k. There are only two kinds of correcting
networks (decoders) known to have this property. One is a correcting
network based on a sequential decoder® ” and the other is a correcting
network based on a low-density parity-check decoder.?®

In deciding whether a particular correcting (decoding) procedure
is suitable for use in a noisy correcting network, one must consider
whether there are any essential steps in the procedure which could
not be performed with a small probability of error by a noisy device.
For example, almost all parity-check decoders are required to com-
pute the modulo-2 sum of a set of digits where the number of digits
in the set is proportional to the constraint length, N, of the code.

To compute the probability that a noisy device makes an error
in performing this operation, consider the noisy addition network
shown in Fig. 4. This network, consisting of N — 1 adders (modulo-2),
computes the modulo-2 sum of N binary inputs. Let us assume that
each adder in the network has a probability of error p, and that adder
errors are statistically independent from one adder to another and
from one use of a particular adder to another. The output of the noisy
addition network will be in error if an odd number of adders make
errors. It can be shown® that the probability of this event equals

1 — (1= 2p)""
2

Prob of error =

This probability approaches 14, exponentially with N, as N approaches
infinity.

The memories under consideration store coded information. To
make the probability of a memory failure arbitrarily small (as re-
quired for stability), one would expect that it would be necessary to
make the constraint length of the code arbitrarily large. Therefore,
the noisy correcting network must be able to perform error correction

2312 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

!
!
|
|
| \\

Ny Yoymesur
] .

1 . //
* ~

|
I
| }-ﬁ}—/
Y
Fig. 4— Modulo-2 addition network. €@ represents one adder (modulo-2).

even if the constraint length of the code is very long. This implies
that no correcting procedure involving a modulo-2 addition operation
of the type just described is suitable for use in a noisy correcting
network. For example, the correcting network based on a sequential
decoder must generate hypothesized branches of a code tree. Each
digit on one of these branches is computed by forming the modulo-2
sum of a set of digits where the number of digits in the set is propor-
tional to the constraint length of the code. The probability that a
noiseless sequential decoder makes an error can be made arbitrarily
small only if this constraint length is made arbitrarily large. But
making the constraint length arbitrarily large makes the probability
of an addition error within the noisy decoder arbitrarily close to %.
Therefore, a noisy correcting network should not be based on a se-
quential decoder.

Fortunately the correcting network based on a low-density parity-
check decoder does not have this problem. A low-density parity-check
decoder does evaluate parity checks, modulo-2 sums of the digits in
parity-check sets; however, the number of digits in each parity-check
set, is not a function of the block length of the code.

3.2 The Correcting Algorithm

The memories to be considered consist of several registers and a
correcting network and they store information in the form of code
words from a low-density parity-check code. It is our objective to
show that memories of this type can be stable. The first step is to
consider the details of the correcting algorithm. This requires a brief
explanation of low-density parity-check codes.

RELIABLE STORAGE 2313

An (N, J, K) low-density parity-check code is defined to be a code
with block length N such that there are K digits in each parity-check
set and J parity-check sets containing any particular digit. Such a
code can be represented by a parity-check matrix which has K ones
in each row and J ones in each column. For example, an (N = 20,
J =4, K = 5)* low-density parity-check matrix is shown in Fig. 5.

J

1 11 1 10 0 0 O0OOOO0OOO0OO0OO0OO0 0 0 O
o0 00 01 111 1 0 00 0 O0O0O0O0OTUO0CTO
0o 0o 0o 00 00 0 0 0 1 1 1 1 1 0000 O
o 0o 0 0 O O0OO0OOOOOOOTO OOOTI11I 1 1 1 1
1 0 0 001 00 O0O0OT1 0 O0OO0OOT1O0 010
0 10 01 0 00 O 1 0O O0OO0OT1UO0OO0OO0OT1TTO0TO
0o o010 001 01 001 O0O0O0OO0OT1O0O00
o 06 010 0 0 1 0 0 O0O0OT1TO0T1O0O0OO0OO0 1
10 01 00 0 01 0 0O0O0OT1O0O0O0OT1TO0TO0
o1 0 0 001 0 01100 O0O0O0OT1O0 D00
0o 0100 0 01 0001 O0O0OTUO0OT1O0TO0OO0 1
o 0 001100 0 00 01 01 00 010
1 0 0 0 01 001 0O OO O 01 10 00 O
o 0 01 00 0 0 0 0 01 01 0 01 0 01
6 10 0 0 01 00 1 0 01 0000 01 0
o 010100100100 O00O0O0T1 0 0f

dﬂ dll dl.l dl d{t dﬂ dl2 dﬂ d! ds; dn dll dl! dlS du dﬂ d:u dﬁ du dl

Fig, 5 — The parity-check matrix for a (20, 4, 5) low-density parity-check code.
The digit positions, denoted by d with appropriate subseripts, are numbered in
the way described in Fig. 6.

Gallager has described two schemes for decoding low-density parity-
check codes, both of which are iterative.’® However, we shall only be
concerned with the simpler one. Each iteration of this scheme consists
of first computing all the parity checks and then changing the value
of any digit that is contained in more than a certain fixed number of
unsatisfied parity-check constraints (if a parity check equals one,
the corresponding parity-check constraint is unsatisfied). Provided
that there were not too many errors initially, each successive itera-
tion decreases the number of digits in error and, eventually, all parity
check constraints are satisfied indicating that the resulting word is
a code word.

To illustrate how this method works, let us suppose that the digit
do is in error but that all other digits are correct. In this case, all
parity-check constraints involving do will be violated, whereas at
most one parity-check constraint involving any other digit will be
violated. Therefore, dy will be changed whereas all other digits will
be unchanged. In this way the digit dy will be corrected. If there are

* Notice that K is always greater than J.

2314 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

errors among the digits used to check dy, this digit may not be cor-
rected during the first iteration. However, after one or more iterations
sufficiently many of these errors may have been corrected to allow
do to be corrected also.

This simple decoding algorithm does have one problem. Recall that
for any digit do, the original values of all the other digits in the J
parity-check sets containing d, are involved in the determination of
the new value of d, and similarly that the original value of d, is used
in computing the new value of each digit in these J parity-check sets.
This means that on successive iterations the values of the digits
involved in making a new estimate of do depend on the previous
estimate of dy. This leads to a complex interrelation between the
errors which degrades the decoder’s performance and, needless to say,
greatly complicates its analysis. Fortunately Gallager has suggested
a way to modify the algorithm which at least partially solves this
problem. Using this modified algorithm, J estimates of each digit are
made, each one being computed using a different combination of J — 1
out of the J parity-check sets containing the digit to be estimated.
The value of a particular estimate is changed if J/2 or more out of
the J — 1 parity checks are equal to one.

To construct a correcting network based on this algorithm, one
starts with J registers of length N. Although the assignment of digit
estimates to register locations can be arbitrary, one would probably
choose to assign one estimate of each of the N digits in a code word
to the corresponding N locations in each register. Since each estimate
of a digit, say do, is to be made on the basis of J — 1 parity-check
sets, each containing K — 1 digits other than dy, there must be (J — 1)
- (K — 1) other digits interconnected with the input to do. Using the
modified algorithm, it is necessary to specify not only the digits to
be interconnected but also the appropriate estimate of each digit.
For example, consider the parity check set (do, di1, di2, dia, dis). The
appropriate estimate of the digit dy; to be used in correcting do is that
estimate based on the J — 1 parity check sets which omit the one
containing dy. This estimate is used so that the values of the digits
involved in computing the new estimate of do do not, themselves,
depend on a previous estimate of do.

This correcting network performs many iterations. During the
first iteration each digit is estimated on the basis of the (J — 1)
- (K — 1) digits to which it is interconnected. Since, during the second
iteration, the same operations are performed, the resulting second
estimate of each digit depends on the first estimates of these (J — 1)

RELIABLE STORAGE 2315

(K — 1) interconnected digits which, in turn, depend on the initial
estimates of a muech larger set of digits. The sets of digits involved
in making successive estimates of some digit, say dp, can be repre-
sented by means of parity-check set trees of the type shown in Fig. 6.
The branches rising from d, represent one set of J — 1 parity-checks
containing this digit. The interconnected nodes on the first tier of this
tree represent, the digits, other than do, in one of these parity-check
sets, Hach digit on the first tier of the tree is also contained in J — 1
other parity-check sets, These other parity-check sets are represented
by the branches rising from the first tier to the second tier of the tree.
This parity-check set tree can be extended indefinitely. The structure
of the tree, beyond the first tier, is completely specified by the parity-
check sets of the codes which, in turn, are specified by the parity-check
matrix.

To see how the tree represents the digits involved in estimating
dy, let us suppose that the decoder has performed ¢ iterations. During
cach iteration the digits on each tier of the tree are used to estimate
the digits on the tier immediately below. Hence, after 7 iterations, the
value of each digit, particularly d,, has been influenced by the values
of the digits on the first ¢ tiers above it.

If a parity-check set tree is extended for many tiers, eventually
some digit will appear in two different places in the tree. If the first
repetition within any of the J-N trees occurs on the (m 4 1)th tier,

VI \\I AUV AN E AR AN IANIAY Y

/
R R RN IR AR VIR AT 1
et

TIER 2 b

AN N N NEE NS N N N N N
MAON NS N A LY N T\ VR VA)

TIER |

do
do + diy + diz F+ dis + du =
do +dy + doz + dog + dy = 2
dy + dsy + daz 4+ das + du = 2
do + di + dyp + dis + dy = ¢

Fig. 6 — Two representations for the parity-check constraints involving do. At
the top i1s one of the J parity-check set trees rising from do. Beneath it are the
parity-check equations containing ds.

2316 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

then, according to Gallager’s nomenclature, the code has m independent
iterations. Notice that this number, m, is a parameter of the code
which is unrelated either to the statistics of the noise or to the par-
ticular decoding algorithm. This number plays a particularly impor-
tant part in the analysis of the correcting procedure as it is shown
that errors in specific sets of digits are statistically independent
during these first m iterations.

The physical configuration of the memory is shown in Fig. 7.
Within the correcting network there are J-N identical sets of com-
ponents. Each set of components performs the operations required to
estimate one particular digit. Let us consider a set of components
which computes estimates of the digit do. The first operation that
must be performed by this set of components, the computation of the
J—1 parity checks rising from dy, requires (/—1)- (K—1) two-input
binary modulo-2 adders. The second operation, deciding whether the
digit do should be changed, can be performed by a decision device
(threshold device) the output of which is a 1 if do is to be changed
and a 0 if d, is not to be changed. Finally, the output of this decision
device must be added modulo-2 to the previous estimate of do, the
operation requiring one binary adder (modulo-2). Similar operations
are performed to obtain estimates of all J-N digits. These operations

NOISY COMMUNDCATION CHANNELS WITH PROBABILITY OF ERROR=P¢
——— J'N BINARY INPUTS — —— —>|

HHIHHH HHH
1

— {1]]
~.—-|iL|1H--- []
|

;I

J
|

!._
|..._
[T T T T == 1]
e 4+ -1 - N ———|>
NOISY CORRECTING NETWORK
COMPONENTS } PROBABILITY
_—

OF ERROR
BINARY MODULO-2 ‘ Da
ADDERS |

DECISION ELEMENTS \ Pd

Fig. 7— Physical configuration of a memory based on a low-density parity-
check decoder.

RELIABLE STORAGE 2317

constitute one correcting cyele (iteration). The correcting network
performs correcting cycles continuously once information has been
read into the registers,

Finally, let us consider the situations which cause the estimate of
the digit dy to be in error after a particular iteration. Since any digit
dy which is in error will be corrected only if a sufficient number of the
parity checks containing do are equal to 1, ideally, we would like
every parity check containing dy to equal 1 if dy is in error but to
equal 0 if d, is correct. If a parity check does not equal the desired
value we say that the parity check is in error. Thus a parity check
error depends on errors made by the adders and errors in the digits
involved in estimating dy, but not on the value of dy itself.

To simplify the mathematical analysis, we restrict our attention
to the class of low-density parity-check codes with J = 2[,1 = 2, 3, 4,

. and the correcting algorithm stated previously. A set of events
each one of which alone leads to an error (indicated by ¢) in the esti-
mate of the digit d, after a particular iteration are:

(i) dy = e after previous iteration and J/2 or more parity checks are
in error.
(72) dy 5% e after previous iteration and J/2 or more parity checks are
in error.
{(#47) The decision (threshold) device makes an error.
The first two conditions demonstrate an interesting property of this
class of low-density parity-check codes. For this class of codes the
conditions leading to an error in any digit after any iteration are the
same whether or not the digit was in error before the iteration. This
property will help to simplify the following mathematical analysis.

3.3 The Stability Theorem for Noisy Memories
Theorem 1: There 1s a stable sequence of noisy memories where every
component in every memory has a fived, nonzero probability of error
per use.
Proof: The memories under consideration consist of J registers of
length N, a noisy correcting network based on a low-density parity-
check decoder, and a set of communication channels over which the
inputs are transmitted. The definition of stability given in Section 2.2
includes specific conditions that must be satisfied by stable memories.
To prove that the memories under consideration are stable, we must
show that they satisfy all these conditions.

The definition of stability requires that there be a set of allowed

2318 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

inputs for each memory. Each allowed input for a memory of the type
under consideration consists of J copies of a code word from some
(N, J, K) low-density parity-check code. If R equals the information
rate of the code, the memory having registers of length N has 27" & 2*
allowed inputs. This memory is denoted by M, . To define a sequence of
memories, we allow k(and N) to be a variable but keep the parameters
of the code, J and K, fixed.* Let the 2 allowed inputs to M, be denoted
by {I.:} 0 < i = 2*. With each input we must associate a class of states
of M, . The classes to be used are essentially the decoding equivalence
classes of the code. To be more precise, the classes can be described in
terms of the equilibrium states of M, , denoted by {Ew} 0 < i < 2,
where an equilibrium state is one in which every register contains one
and the same code word. With each input, I., , there is a corresponding
equilibrium state, F,, , in which the registers contain the code words
represented by I,,. The state of M, belongs to the class C(I,,) if a
noiseless correcting network (that is, a noiseless low-density parity-check
decoder) could correct all the errors; in other words, if its final state
would be the equilibrium state, E,; .

The definition of stability requires that for each sequence of mem-
ories there must be an « such that for every k the complexity of M} is
bounded by «-k. The complexity of the correcting network in Mj is
computed in Section 3.2. If each of the J registers in My is of length
N, the correcting network must contain [1 + (J—1) (K—1)] J*N bi-
nary adders (modulo-2) and J-N decision devices. Since a decision
device must determine whether J/2 or more out of the J—1 parity
checks are in error, the complexity of each decision device depends
only on the code parameter, J, which is fixed for any particular se-
quence of memories. Thus the complexity of each decision device,
denoted by D, is independent of k. Finally, the noisy registers within
the memory must contain J-N storage components. Therefore the
complexity of M7 is:

Complexity of M, = [2+ D + (J — I)(K — 1)]J-N

2+ D+ = DE =D
- .

Since Gallager'® has shown that B = 1 — J/K, the complexity propor-
tionality factor for the sequence of memories under consideration is
upper bounded by

* There are low-density parity-check codes for all values of N which are
integer multiples of K.1°

RELIABLE STORAGE 2319

L2+ D+ = DE = D)
a= 1 — J/K
Every component has a nonzero probability of making an error.
The error probabilities are denoted:

p, = probability that one particular binary digit within the register
changes during a time interval r, the time required for one
correcting eycle.

p. = probability that an adder makes an error on any one use.

pa = probability that a decision device makes an error on any one use.

p. = probability of an error in transmitting a digit across a communi-
cation channel.

=

It is assumed that errors are statistically independent from one com-
ponent to another and from one use of a particular component to another
use.

To prove that the information storage devices in question are stable,
it must be shown that for any £, the probability of a memory failure
in M, during the time interval 0 = ¢ £ £r can be made arbitrarily small
by choosing k sufficiently large. In the remainder of this section, the
probability of a memory failure for the typical device, M, , is upper
bounded. To determine whether a memory failure has occurred at some
particular time we use the following algorithm.

Imagine that M, becomes noiseless at that time and that the noise-
less correcting network within M, performs m more iterations where
m is the “number of independent iterations” desecribed in Section 3.2.
These are precisely the same operations that a noiseless low-density
parity-check decoder would perform. If the final state of the hypothet-
ical noiseless memory is error free (that is, equals the equilibrium
state corresponding to the original input) then, by definition, no
memory failure oceurred. Thus, to bound the probability of a memory
failure we must bound the probability that the final error pattern is
not error free.

In general, the error pattern within the registers of M; depends on
all the component errors that have occurred since the original input
was transmitted to the memory. However, if certain conditions are
satisfied, the error pattern is a function of only the component errors
that occurred during the most recent m iterations. If no component
errors oceur during these m iterations and if the required conditions
are satisfied, the final error pattern will be error free. On the other
hand, if these conditions are not satisfied we say that a propagation

2320 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

failure has occurred. Therefore, to bound (upper bound) the prob-
ability of a memory failure, we bound the probability that a propaga-
tion failure occurs on the mth noiseless iteration of the hypothetical
noiseless memory.

The first step is to show that, in the absence of a propagation failure,
the probability of error for digits stored in the memory (the probability
of error per digit) has an upper bound, denoted by p, , such that p, < i
This can be seen intuitively by comparing the performance of a noisy
corrector with that of a noiseless corrector, that is, a noiseless low-
density parity-check decoder. Provided that the initial probability of
error is not too large, a noiseless corrector decreases the probability of
error per digit with each iteration until this probability reaches zero.
If the probability of error for the components within the noisy corrector
is small, compared with the initial probability of error per digit, for the
first few iterations the noisy corrector decreases the probability of error
per digit just as the noiseless one did. However, eventually this proba-
bility reaches the same order of magnitude as the probability that the
noisy corrector itself makes an error at which time the probability of
error per digit reaches an equilibrium value. Notice that although such
an equilibrium value is attained, it is still possible for errors to occur in
sufficient digits so that a memory failure results. If a memory failure
does oceur, a propagation failure will also oceur and the bound on the
probability of error per digit will no longer be valid.

In light of this intuitive argument, we expect that the time at which
the probability of error per digit is at its maximum value is just
before the end of the first correcting cycle. In Appendix A upper
bounds are computed on this probability evaluated just before the
end of the first and successive correcting cycles. It is shown that,
provided no propagation failure occurs, these bounds form a mono-
tonically decreasing sequence; hence, the bound on this probability
evaluated just before the end of the first correcting cycle, denoted
by Po, is the desired bound.

The next step is to bound the probability that the initial propaga-
tion failure occurs at some particular time. A propagation failure
oceurs whenever the error pattern in the memory is related to the
component errors that oceurred m or more iterations previously. In
most, cases the error pattern depends only on component errors that
occurred in the last few iterations since any digit errors caused by
previous component errors would have already been corrected. In
order for a propagation failure to occur, the effect of component er-
rors must have propagated from one iteration to the next for at least

RELIABLE STORAGE 2321

m iterations. Thus we expect that the probability of such a propaga-
tion decreases as m is increased and, since increasing k increases m,
that the probability of a propagation failure can be made arbitrarily
small by making k sufficiently large. The explicit relationship be-
tween the probability of the initial propagation failure and k is
derived in Appendix B. The result is

Pr [initial propagation failure] < Ck™***
where C and 8 depend only on the parameters of the code (J and K)
and the bound on the probability of error per digit, po; hence, C and
B are constants for any particular sequence of memories.

Some typical values for g are shown in Table I. For example, if
J = 14, K = 15, and p, = 1072 then 8 = 7.55; therefore, in this case,
the probability that the first propagation failure occurs at some
particular time is upper bounded by a function that deereases as the
sixth power of the information storage capability of the memory. By
choosing the information storage capability sufficiently large, this
probability ean be made arbitrarily small.

For the moment, let us assume that neither a memory failure nor a
propagation failure has occurred within A{, during the time interval
0 <1t < &r. We now use the bound on the probability of the initial
propagation failure to find an upper bound on the probability that either
the initial memory failure or the initial propagation failure occurs at
t = &£'r. To determine whether the initial memory failure occurs at
t = £’'r we must imagine that M, becomes noiseless at t = £’r and that
the noiseless correcting network within 3/, performs m more iterations.
As explained previously, the initial memory failure can oceur at ¢ = £'r
only if the initial propagation failure oceurs at ¢ = £'r or during the
m noiseless iterations performed after ¢ = £'r. Thus the sum of the

TasLeE I —TypricarL VAaLvuEs oF 8'(J, K, p,) AND

B(Jl I() pﬂ)
R

J K (lower bound) Do B ;4
+ 5 0.20 108 2.66 0.66
6 7 0.14 108 3.91 1.91
8 9 0.11 10~¢ 4.95 2.95
10 11 0.09 102 5.89 3.89
12 13 0.07 10—# 6.75 4.75
14 15 0.06 108 7.55 5.55

2322 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

probabilities that the initial propagation failure occurs at ¢ = £r,
(&' + D7, -+, (£ + m)r is an upper bound on the desired probability.
Therefore,

Pr [initial memory failure or initial propagation failure
at t = £'7) < (m + 1)-C-k""
Gallager'® has shown that

log N
< log [(J — DK — 1]
Therefore,
m+ 1<y log [(J]—Ogl?(rlx — 1] +1
log [1—_%]
=+ 1

< Tog [(7 — DK — 1]

< log [ﬁ]}z] if k> 2.
(Note : K > J =z 4).

The probability that the initial memory failure occurs during the time
interval 0 < ¢ £ £r is upper bounded by the sum of the probabilities
that either the initial memory failure or the initial propagation failure
oceurs at ¢ = 0, 7, 27, - - - , £7. This bound equals

Pr [failure during time interval 0 = ¢ 7]

<e
<(e+1-C log[J/K] |

<(e+ 1y ([/K g2

= (e + 1)-(."-11-‘”
where

T
1—-J/K
To show that there is a stable sequence of noisy memories, we must
show that it is possible to choose J, K, and p, such that g > 0. Re-
call that when we speak of a particular sequence of memories, {M;},

and g Epg—2

RELIABLE STORAGE 2323

we mean that k is a variable whereas the values of J, K, and the
probabilities of component errors are all fixed. Certain conditions have
already been imposed on J, K and p,. These conditions are:

(1) J=2l, 1=234...
(22) K>J
(@1) po > 2p, + p.

() Do > (JJ;_, l)[(l\’ — Dpo + 21" + pa + p.

@) Pu > Pa

where p,, p., p, and p, must all be fixed and greater than zero. To
demonstrate that there are values of J, K and p, which satisfy these
conditions and for which 8’ > 0, consider an example where p, = p, =
p, = p. = 107" and where p, = 107°. For this example conditions (777),
(iv), and (v) are satisfied for all reasonable values of J and K (that is,
where J < K <« p;"). The values of 8'(J, K, p, = 107%), which corre-
spond to some typical values of J and K, are shown in Table I. For all
the values of J and K which are considered, the value of 8’ is greater
than zero. Therefore, in all these cases, the probability of a memory
failure in M, at ¢t = £7 can be made arbitrarily small by making &
sufficiently large. This proves that there are stable sequences of noisy
memories.

3.4 Stability of Memories Constructed from Failure-Prone Components

Thus far we have restricted our attention to memories in which
component malfunctions are assumed to be statistically independent
both from one component to another and from one use of a particular
component to another use. These assumptions form the basis of a
mathematical model for the component malfunctions that are com-
monly attributed to “noise” in the system. Unfortunately, the model
does not adequately represent the most common type of component
malfunetion that one finds in computing systems: malfunctions where
individual components fail permanently.

To see whether memories of the type considered in the previous
section ean be stable, if their components fail permanently, let us
recall the proof of the stability theorem for noisy memories. In carry-
ing out this proof, it is necessary to show that there are types of
memories for which the probability of error per digit can be bounded
(see Appendix A). If one attempts to find memories in which the

2324 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

components fail permanently and for which a similar bound on the
probability of error per digit exists, it becomes clear that memories
constructed from these components cannot have such a time inde-
pendent bound of value less than ¥4. This is because the probability
that any particular component has failed increases with time given
that components fail permanently; hence, if one hypothesizes any
bound on the probability of error per digit which is less than %5, it is
always possible to find a time at which the hypothesized bound is
violated, showing that such a bound cannot exist. By using argu-
ments such as those in Section 2.3, one can obtain a statistical model
for the errors after each correcting cycle in terms of an equivalent
channel whose capacity decreases with time. Since the capacity de-
creases, it is always possible to find a time at which the capacity of
the equivalent channel is below the information rate of the code used
in storing the information in the memory, thus precluding the pos-
sibility of effective error correction and hence the possibility of
stability.

Fortunately, in most “nonspace” applications, regular maintenance
is performed on computing systems, that is, components which have
failed are periodically replaced with good ones. Numerous specific
failure probability distributions and maintenance schemes could be
considered individually; however, for the purpose of this analysis
we consider instead a general case which includes many of the com-
mon probability distributions and maintenance schemes. This gen-
eral case is the one for which it is possible to upper bound, during
each correcting cycle, the probability that each component has failed
up to or during that correcting cycle. For example, suppose that each
component is replaced every T seconds and that p, represents the
probability that any particular component initially fails during any
particular correcting cycle. For this example, the desired upper bound
on the probability of component failure equals T'-p; which, by ap-
propriate choice of T' and p;, can be made less than 14. Notice that
we are free to choose both T and p; since, as before, we are only try-
ing to show that there exists some memory of the type under consid-
eration which is stable.

One can now perform an analysis identical to that performed in
the previous section. Since the technique used to prove the stability
theorem for noisy memories does not rely upon the assumption that
component, errors are statistically independent from use to use, pre-
cisely the same technique used previously can be used here to prove
that periodically maintained memories can be stable. In fact, in most

RELTIABLE STORAGE 2325

cases, the changes required to make this proof apply when compo-
nents fail permanently merely involve replacing the words “com-
ponent error” with the words “component failure.”

One change which requires some reinterpretation of terms involves
the concept of a propagation failure. This concept was introduced for
the purpose of establishing a condition under which the parity checks
used to estimate any particular digit would be conditionally inde-
pendent. To facilitate an intuitive discussion of propagation failures,
the original definition of a propagation failure was made more gen-
eral than necessary for the mathematical analysis. This analysis, in
Appendix B, uses the fact that undesirable statistical dependencies
can occur only if the effects of previous component malfunctions form
a A propagation path in some parity check set tree. It is now desirable
to redefine a propagation failure in terms of the formation of such a
A propagation path. This is because permanent component failures
can result in recurrent errors in a particular digit during m or more
iterations thus causing a propagation failure, according to the original
definition. However, since these recurrent errors do not lead to the
undesirable statistical dependencies unless they also correspond to an
undesirable A propagation path, the original definition of a propaga-
tion failure should be changed to exclude recurrent errors.

Onee these changes have been made, if one represents the bounds on
the probabilities of component failures by the same symbols that
were used previously to represent the actual probabilities of com-
ponent errors during each iteration, not only is the method of prov-
ing the stability theorem identical to that used previously but so
are the forms of all the results. Thus one proves the following theorem.

Theorem 2: There is a stable sequence of memories where every com-
ponent in each of the memories in the sequence has a nonzero prob-
ability of permanent failure but where components which have failed
are periodically replaced with good ones.

IV. CONCLUSIONS

In Section I we compare the results obtained by Shannon con-
cerning the reliability of communication systems with the results ob-
tained by von Neumann, Elias, Winograd, and Cowan concerning the
reliability of computing systems. Shannon’s results were basically
different from the other results considered. Shannon was able to show
that it is possible to design arbitrarily reliable communication sys-
tems through which information can be transmitted at a nonzero

2326 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

information rate. The maximum rate for which the probability of
error can be made arbitrarily small is called the capacity of the com-
munication channel. In analogy with this result, one might expect
that it should be possible to design arbitrarily reliable computing
systems which have a bounded redundancy. Unfortunately, none of
the computing systems proposed previously has this property; there-
fore, none of these computing systems has a nonzero “‘computing
capacity.”

In Sections II and III we restrict our attention to one part of a
computing system, namely the memory. It is shown that there are
noisy memories and periodically repaired memories constructed from
failure-prone components which have the property that the prob-
ability of failure can be made arbitrarily small for certain bounded
values of the redundancy. The memories which have this property
are called “stable memories.” This result is analogous to Shannon’s
result and is basically different from the other results obtained thus
far concerning the reliability of computing systems. The fact that it
is possible to make a memory arbitrarily reliable while keeping its
redundancy bounded indicates that a memory has an “information
storage capacity” analogous to the capacity of a communication
channel. The information storage capacity of a particular memory
equals the reciprocal of the minimum redundancy for which the
memory is stable; hence it can be expressed in bits per component. It
is a function of the probabilities of error for the components within
the memory. The method used to prove the stability theorem does
not allow one to compute an explicit value for the information storage
capacity of the memories which were considered; however, the fact
that these memories can be stable indicates that they do have a non-
zero information storage capacity.

V. ACKNOWLEDGMENTS

I would like to sincerely thank Professor Robert M. Fano, who
supervised this work, for suggesting the approach to the problem and
supplying guidance and encouragement throughout the research. I
also wish to thank Professor Robert G. Gallager who was extremely
helpful in connection with this work. Many of the results presented
here are based on results originally obtained by Professor Gallager.
Finally, I wish to thank Professors Peter Elias and Claude E. Shan-
non who helped to formulate the problem and contributed valuable
suggestions and constructive eriticism.

RELIABLE STORAGE 2327

APPENDIX A

A Bound on the Probability of Error Per Digit

The first step in computing a bound on the probability of a propa-
gation failure is to bound the probability of error for any digit stored
in the registers within the memory. We assume that initially one set
of J code words is transmitted across the noisy channels and inserted
into these noisy registers. Some time during the next r seconds the
correcting network reads the contents of the registers and starts to
perform the first correcting cycle on the newly inserted digits. The
time at which this first correcting cycle starts is denoted by ¢ = 0 and
successive correcting cyeles start at ¢ = r, 27, 3r, We denote the
instant just before the end of the first correcting eyecle by t = »—38. If a
digit is in error at ¢ = r—38, at least one of the following events must
have occurred:

(7) An error was made in transmitting the digit across the BSC. The
probability of this event is p, .

(74) The digit was changed because of a component error in the register
which occurred either during the time interval —r <t < 0or0 <t <
7 — 6. The probability of this event is less than 2p, .

Therefore, by the union bound, the probability of error per digit at
t = r — 81s bounded by

Pr[digit = eatt =7 — 8] < 2p, + p. < po
where the parameter p, has been introduced to simplify the form of
the results. Other conditions on p, will be imposed later.
Next let us compute a bound on the probability of error per digit
at t = 2:—38, 3r—3, If the digit d, is in error at any one of these
times, at least one of the following events must have occurred:

(1) A set of J/2 parity checks used to estimate d, were in error
during the last correcting eycle performed on d,.
(z2) The decision device made an error during the last correcting
cycle.
(i2) An error occurred while d, was stored in the register.
J —
There are (J/2
the probability that any one of these events occurred. If the ith parity
check used to estimate d,, ¢;, were in error there must have been at
least one error among the K — 1 adders used to evaluate this parity
check, or at least one error among the K — 1 digits denoted by d,,
b

1) possible events of the first type. We now compute

2328 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

dia, -+, dig-1 . According to the union bound, the probability that c;
(for any 0 < i £ J — 1) is in error is bounded by

E-1
PI'[C.- = G] < ZPI' [d,';
i=1
During the first correcting eycle Pr[d;; = €] < poforall0 <j= K — 1;
therefore, for this iteration

el + (K — Dpa .

Pr [c; = e during first correcting cycle] < (K — 1)po + (K — Dp. .

To compute the probability of error per digit just before the end of
the second iteration, we use the fact that, during the first m iterations,
the structure of the code guarantees that errors in the parity checks used
to estimate any particular digit are statistically independent. To see
this, consider the parity-check set tree rising from the digit do as shown
in Fig. 6. Each node on this tree represents a particular digit. With each
digit there is associated a set of components used to compute each
estimate of the digit. Just as the tree represents a history of the digits
which have been involved in the computation of the successive estimates
of dy , it also represents a history of the components which have been
involved in the computation of these estimates. The later interpretation
is more useful for our purposes since it is the components which cause
the errors. If the code has m independent iterations, all the digits on the
first m tiers of the tree must be different and all the components asso-
ciated with these digits must be different also. There are (K — 1)(J — 1)
digits on the first tier of this tree. Provided that m = 1, the errors in
these digits after the first iteration must be statistically independent
since the digits are all different, and hence the components used to
compute the estimates of these digits are all different. (It is assumed that
errors in different components are statistically independent.) In general,
the errors in the digits on the first tier of the tree, and hence the J — 1
parity checks, are statistically independent provided that the sets of
components used to compute the estimates of these digits are disjoint.
The structure of the tree guarantees that this condition will be satisfied
for the first m iterations.

Since, during the first m iterations, the errors in the parity checks
used to estimate any particular digit are statistically independent,
the probability that a set of J/2 parity checks is in error equals the
product of the probabilities that each one of these J/2 parity checks
is in error. Thus the probability of error per digit at ¢ = 2r — 8 is

RELIABLE STORAGE 2329

bounded by
Pr [digit = ¢ at (= 2r — §]

< (JJ72 1)[(K — Do + 2" + pa + D

é pl .

Since we are not attempting to show that all memories of the type
under consideration are stable but merely that there exist some mem-
ories of this type which are stable, we shall restrict our interest to
those memories for which it is possible to make p; < p,. This is not
a serious restriction since in most cases there is no difficulty in bound-
ing p; by po. For example, if

Pa,prandp, = 107°, p, = 1075, J = 14 and K = 15, then p, =~ 2.107*
illustrating one case where p, < p, -

Precisely the same argument can be used to obtain a bound on the
probability of error per digit at ¢ = 3r—38§, 4r—38, .., (m+1)+—38. The
results are:

Pr[digit = ¢ at t = 37 — §]
< (JJJB l)[(K — Dlpy + p1"* + pa + P

L P <P < Po .
Similarly

Pr[pigit =¢ at ¢ = (m + L) — §]
< (JJ72 1)[(K — D@ur + 21" + pa + 20

9—-pm<p,,,_1<~-- <pr <Po.

If no propagation failure occurs at ¢ = mr, the error pattern
evaluated at that time depends on the component errors that oceurred
during the previous m iterations, but not on the original errors that
were present at ¢ = 0. Imposing this condition changes the probability
of error per digit at £ = (m-+1)r—8§; however, as we now show, the
probability computed above is an upper bound on this conditional
probability. Using Bayes rule,

2330 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

Pr [digit = e]no propagation failure]
Pr [no propagation failure | digit = |- Pr [digit = ¢]

Pr [no propagation failure]

It is easily shown, using techniques similar to those in Appendix B,
that

Pr [no propagation failure | digit = €] < Pr [no propagation failure],

therefore

Pr [digit = € | no propagation failure] = Pr [digit = €.

If no propagation failure has occurred, the errors in the set of parity
checks used to estimate any particular digit are conditionally in-
dependent. This is because, if there is no propagation failure, the er-
rors in each set of parity checks depend on errors in unrelated, dis-
joint sets of components. Thus the technique used to bound the
probability of error per digit during the first m iterations ecan be ap-
plied after the mth iteration provided that no propagation failure has
occurred. The general result is

Pr [digit = eatt = ({ + 1)r — & | no propagation failure]

AN

('{]/21)[(K — D(pier + p1"” + pa + p.

é10,- <Pia; < - <p; <Py
This monotonically decreasing sequence of bounds shows that the
probability of error per digit is upper bounded by p, provided that
it is possible to choose py, J, and K such that p; < pe and provided
that no propagation failure oceurs. In general, the probability of
error per digit is upper bounded by p; provided that the memory has
performed ¢ or more correcting cycles and provided that the condi-
tions stated above are satisfied.

APPENDIX B

The Probability of a Propagation Fatlure

Intuitively, the concept of a propagation failure is very simple. A
propagation failure occurs whenever the present error pattern in the
registers is in some way related to the component errors that oe-
curred more than m iterations before, where m is the number of in-

RELIABLE STORAGE 2331

dependent iterations. This intuitive concept can be made more pre-
cise by defining “error configurations” which are hypothetical error
patterns that are functions of some subset of the actual set of com-
ponent errors. In particular, a type t error configuration, for any 1
> 0, is a J-N-tuple corresponding to the error pattern that would be
present if there had been no component errors before the last 7 itera-
tions. If no propagation failure has occurred, all error configurations
of type m and higher must be identical, thus we are really interested
in the difference between error configurations. For this reason, it is
more convenient to restate the definition of a propagation failure in
terms of “A configurations” where, for all 1 > 0, the type 7 A configura-
tion is the difference between the type 7 and type i+1 error configura-
tions. The type 0 A configuration is defined to be equal to the type 1
error configuration. A propagation failure occurs if there are one or
more 1’s in any A configuration of type m or higher.

Let us consider the situations which, for any 7, lead to a 1 in the
type ¢ A configuration evaluated at some particular time, say ¢t =
Lr. Suppose that there is a 1 in the position corresponding to the digit
dy in this A configuration. This means that the value of the digit d,
in the type v error configuration is different from that in the type
i+1 error configuration where both configurations are evaluated at
t = L=. This change in the value of d, must be related to component
errors that oceurred during the time interval (L—i—1)r < t < (L—1)7
since all the other component errors upon which the type 7 and type
t+1 error configurations are based are the same. We refer to the com-
ponent errors that oceurred during the time interval (L—i—1)r < ¢t <
(L—1)r as the controlling errors for the type 1 A configuration eval-
uated at ¢ = Lr and we say that the value of d¢ at ¢ = L+ has been
changed by these controlling errors.

If the value of d, is changed at ¢t = Lr, the controlling errors must
have changed at least one of the digits used to estimate d,. These are
the digits on the first tier of the parity-check set tree rising from d,,
and changes in them are represented by 1's in the appropriate posi-
tions in the type i—1 A configuration evaluated at t = (L—1)+. In gen-
eral these controlling errors must have caused changes in some digits
on the Ith tier of the parity-check set tree, the changes being rep-
resented by 1's in the appropriate positions in the type i—1 A con-
figuration evaluated at ¢ = (L—1) r. These changed digits define at least
one continuous path in the parity-check set tree rising ¢ tiers from
dy. We call these paths A propagation paths. The particular A prop-
agation path which has just been described is referred to as the i-tier

2332 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

A propagation path rising from dy at ¢ = Lr (see Fig. 8). Every 1 in a
type 7 A configuration must have at least one i-tier A propagation
path associated with it. To bound the probability that there is a 1 in
the entry corresponding to the digit do in the type i A configuration
evaluated at ¢ = L, we shall bound the probability that one or more
i-tier A propagation paths rise from the digit do at ¢ = L.

Since A propagation paths must be continuous, for each 1 in a type
i A configuration evaluated at ¢ = Lr there must have been at least
one 1 in a type i—1 A configuration evaluated at ¢ = (L—1)r. If no
propagation failure occurred before ¢ = Lr, the A configurations of
type m and higher must have beeen all zero for all ¢ < Lr. This im-
plies that the A configurations of type m+1 and higher must be all
zero at t = Lr. Hence, the only way that the initial propagation fail-
ure can occur at £ = Lz is if there is a 1 in the type m A configura-
tion evaluated at that time. Therefore, to bound the probability that
the first propagation failure occurs at some particular time, we need

(L-i-1)7 TIER L+1
TIME INTERVAL DURING

t =

A

| WHICH CONTROLLING
ERRORS OCURRED

t X (L-Ur TIER L

_NEW ERRCR
.

t=(L-t+1)T TIER L1
\ __ FOR ANY 0=l<i, AT
H _——" t=(L-1)7 THERE IS
(e A 1IN THE TYPE (L-1)
A CONFIGURATION IN THE
t=(L-U7 TIER L POSITION CORRESPONDING
TO THE CIRCLED DIGIT.

1
1
1

t=(L-3)7 TIER 3
t=(L-2)7 TIER 2
t=(L-1r TIER 1
t=1Lr7 dg

Fig. 18— An example of an i-tier A propagation path rising from do at t = Lr,

RELIABLE STORAGE 2333

only bound the probability of one or more 1's in the type m A con-
figuration evaluated at that time. Since we assume that the memory
fails whenever the first propagation failure occurs, we shall never be
concerned with computing the probability of a 1 in any A configura-
tion of type m+1 or higher. It is important that we can restrict our
attention to the type m A configuration since this A configuration can
be computed for any particular time by considering only the compo-
nent errors that occurred during the previous m+1 correcting cyecles.
The first of these correcting eycle results in statistically independent
digit errors and, as explained in Appendix A, the structure of the
code guarantees that during the next m correcting cycles the errors in
the parity checks used to estimate any digit are statistically inde-
pendent.

To bound the probability that the initial propagation failure oc-
curs at ¢ = Lr, we must compute a bound on the probability of one or
more 1’s in the type m A configuration evaluated at ¢ = L. This is
done by bounding the probability that an m-tier A propagation path
rises from one or more of the J-N digits in the registers within the
memory at ¢ = Lr. At first we restrict our attention to one particular
digit dy. A bound is computed on the probability that an m-tier A
propagation path rises from dy at £ = L. The first step in this com-
putation is to bound the probability that the component errors that
occurred during the time interval (L—m—1)r < ¢ < (L—m)r would
cause any particular digit on the mth tier of the parity-check set tree
rising from d, to be in error at ¢t = (L—m)r. Any m-tier A propaga-
tion path rising from dy at ¢ = Lr must terminate on one of these er-
rors which we call new errors. The next step is to bound the prob-
ability that at ¢ = (L—m+1)r an i-tier A propagation path rises from
any particular digit on the (m—17)th tier of the parity-check set tree
rising from do. This probability is denoted by Pr[d..=A;]. By sub-
stituting m for 7, we obtain a bound on the probability that at ¢t =
Lr an m-tier A propagation path rises from the digit dp (that is,
Pr[ds = A,]). The probability that an m-tier A propagation path
rises from one or more of the J-N digits at ¢ = Lr is upper bounded
by J-N-Pr[dy = A,].

The first step, namely bounding the probability of a new error at
t = (L—m)r, is particularly simply. In Appendix A we computed a
bound on the probability of error per digit which was denoted by po.
Since this bound was computed by considering all possible errors that
could exist at a particular time, it must certainly be a bound on the

2334 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

probability of a new error at some particular time. Therefore, po isa
bound on the probability that a new error oceurs at ¢ = (L—m)r.

The next step is to bound Pr [d,.—. = A, foralll =7 = m. Let us
consider a particular digit on the (m — 4)th tier of the parity-check set
tree rising from d, and denote this digit by d,_.. Now consider the
conditions which must be satisfied if the value of d,,_; is changed by the
controlling errors; that is, if an ¢-tier A propagation path rises from d,,—;
att = (L — m + 9)r.

To describe this “change’” in more detail, we must consider two sets of
component errors. One is the set of component errors that oceurred
since t = (L — m — 1)r and the other is the set of component errors that
occurred since t = (L — m)r [assume that no component errors occurred
beforet = (L — m — 1)rand ¢ = (L — m)r, respectively]. When we say
that the value of d,,_; has been changed by the controlling errors, we
mean that the value of d,,_; at{ = (L — m —+)7 is correct when it is
computed under the assumption that one of these sets of component
errors actually occurred, whereas it is incorrect when it is computed
under the assumption that the other set of errors actually occurred.
There are two necessary conditions for this change. Assume that the
value of d,._, was changed by the eontrolling errors. Denote the set
of component errors for which d,_; = € by 8, and the set for which
dpi # € DY Suorrees - If the value of d,.—; is changed by the controlling
errors, both of the following conditions must be satisfied:

(7) There must have been at least one parity check used to estimate
d,_; which was wrong [at ¢ = (L — m + %)7] under the assumption
that 8, occurred but which was correct under the assumption that
8corree: OCCUrred. Denote one of these parity checks by ¢ .

(#) On the basis of the errors in the set 8, , J/2 — 1 or more parity
checks other than ¢, must have been wrong at { = (L — m 4 7)7.

In order for condition 7 to be satisfied, the value of at least one of
the (J—1) (K—1) digits immediately above d,,; in the parity-check
set tree must have been changed [at { = (L—m+1—1)7] by the con-
trolling errors. The probability of such a change has been denoted by
Prld,_iy1 = Aia]. Therefore, the probability that the value of one or
more of these digits was changed is upper bounded by

Pr [eondition 7 is satisfied]

< Pr [value of any digit immediately above d..; is changed by con-
trolling errors]

< (J — (K — 1) Pr[dn-is1 = ALl

RELIABLE STORAGE 2335

A bound on the probability that condition 7 is satisfied was derived
in Appendix A. This bound equals

Pr [condition (74) is satisfied] < (J'J/Tz__Zl)[(K — D(po + p))"* 7.

As explained previously, the structure of the code guarantees that
parity-check errors are independent; hence, during the m iterations
of interest, these two conditions are independent. Therefore, the prob-
ability that both conditions are satisfied, which is a bound on Pr[d,.;
= Aj], is given by

Pr [d,,.g.' = Ai] < (J - 1)(1{ — 1) Pr [(],,,_{4_1 = A{_l]
(Jigu_gl)[(l\t — D(po + pn)]lﬁ—:.

Substituting: = 1,2 ... m, we ohtain

©

Pr [dm-] = Al] < (J —_ 1)(1\: — l)pﬂ(jjg__'zl)[(K —]_)(pu _|_ pu)],;/z_]
Pr[dys = A < (J — DK — 1) Pr [du_y = A]

< Po{(J - DK = 1)

J =2 J/2-1 ’
(72 i = i + 903 }

Pr(d, = A,] < pﬂ{(J — DK = 1)

'(.f,);:z_—zl)[a" — Do + p")]m—l}m'

Gallager has found a technique for constructing low-density parity-
check codes'® with m, the number of independent iterations, bounded

by

| [N _ __i\f__]
8ok " 2J(K — 1)) _ _ log N

m

2log [(J — DK — D] = 7 = log [(/ — (K — 1]

2336 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

Substituting this lower bound into the equation for Pr[do = An] gives

Prldy = An] < po{(J - DK — 1)(JL;Q__21)

}los [(N/2K) - [N/2J (K=1)11/2 log [(J=1) (K=1)]

(K — 1)(2p])? !
w{{ % - s)

g - o - (7,7 % e - @}
f= 2Tog (] — DK — 1) :

We have assumed that p, has been chosen such that po > p,. For any
L, probability that the initial propagation failure occurs at ¢ = Lr is
bounded by

where

Pr [initial propagation failure occurs at ¢ = Lr]
=0 for L <m
< J-N-Prldy = A, for L=z m

since, by definition, a propagation failure cannot occur before ¢ = mr.

We have chosen to number the memories according to their informa-
tion storage capability, k. We can express this result in terms of k
by noting that N = k/R and 1 — J/K £ R = 1; therefore,

Pr [initial propagation failure occurs at ¢ = Lr]

=0 for L<m

k 1 1 -
< J{l—jjlpu{[ﬁ —_ m]k} for L =m

K
= .k
where

oo J__ _[J___l_ﬁ}"”
S1-—J/KP2Kk T 2K -1 -

Both C and B are functions of J, K and po. For any particular se-
quence of memories, J, K and p, will all be constants. For example, if

RELIABLE STORAGE 2337

J = 14, K = 15, and po = 105, then 8 = 7.55; therefore, in this case,
the probability that the first propagation failure occurs at t = Lr (for
any L) is bounded by a function that decreases as the sixth power of
the information storage capability of the memory. By choosing the
information storage capability sufficiently large, this probability can
be made arbitrarily small.

REFEREN CES

1.

L w N o o R W N

—_
[=]

von Neumann, J., “Probabilistic Logies and the Synthesis of Reliable Organ-
isms from Unreliable Components,” in Automata Studies, ed. C. E. Shan-
non and J. McCarthy, Princeton, New Jersey: Princeton University Press,
1056, pp. 4398,

. Allanson, J. T., “The Reliability of Neurons” Proc. First Congress on Cyber-

netics, 1956, Paris: Gauthier-Villars, 1959, pp. 687-604.

. Shannon, C. E,, “A Mathematical Theory of Communication,” BS.T.J., 27,

Nos. 3 and 4 (July and October 1948), pp. 379-423, and 623-656.

. Elias, P., “Computation in the Presence of Noise,” IBM J. Research and

Development, 2 (October 1958), pp. 346-353.

. Elias, P., “Coding for Two Noisy Channels” in Information Theory, ed. Colin

Cherry, New York: Academic Press, 1956, pp. 61-74.

. Wozencraft, J. M., and Reiffen, B., Sequential Decoding, New York: Tech-

nology Press and John Wiley and Sons, Inc., 1961.

. Fano, R. M, “A Heuristic Discussion of Probabilistic Decoding,” IEEE Trans.

Inform. Theory, {7-9 (April 1963), pp. 64-74.

. Winograd, 8. and Cowan, J. C. Reliable Computation in the Presence of

Noise, Cambridge, Massachusetts: MIT Press, 1963.

. Gallager, R. G., “A Simple Derivation of the Coding Theorem and Some

Applications,” TEEE Trans. Inform. Theory, 17-11 (January 1965), pp.
3-18.

. Gallager, R. G., Low-Density Parity-Check Codes, Cambridge, Massachusetts:

MIT Press, 1963.

