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This is the second of two papers which present information-theory-type
results pertaining to the reliability of computing systems designed from
unreliable components. Two models for component malfunctions are con-
sidered. The first is based on the assumplion that malfunctions of a partic-
ular component are statistically independent from one use to another. The
second 15 based on the assumption that components fail permanently but that
the components which have failed are periodically replaced with good ones.
In both cases, malfunctions in different components are assumed to be
independent. Just as a channel capacity is defined for communication
channels, a computing capacity is defined for computing systems. For both
component failure models, it is shoun that there are computing systems,
designed entirely from unreliable components of the assumed type, which
have nonzero computing capacities.

I. INTRODUCTION

The objective of this paper is to show that it is possible for a com-
puter, designed entirely from unreliable components, to perform op-
erations reliably on information stored in stable memories. The con-
cept of a stable memory is introduced in the paper preceding this,
where it is shown that it is possible to store information reliably in
memories constructed entirely from unreliable components.® Two dif-
ferent models for component malfunctions are considered. The first
is based on the assumption that component malfunctions are statis-
tically independent from one use of a particular component to an-
other use. The second is based on the assumption that components

*This work, which is based on part of a doctoral thesis submitted to the

Department of Electrical Engineering, M.I.T.,, September 1966, was supported
by the National Aeronauties and Space Administration (Grant NsG-334).

2339



2340 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

fail permanently but that the components which have failed are
periodically replaced with good ones. In both cases component mal-
functions are assumed to be statistically independent from one com-
ponent to another. For both component malfunction models it is
shown that there are types of memories, called “stable memories,”
that have a nonzero information storage capacity; that is, for cer-
tain fixed values of the memory’s redundancy, the probability of a
memory failure can be made arbitrarily small. A particular type of
stable memory is considered in some detail.

Since the operation of the computers to be deseribed in this article
is closely related to the operation of these stable memories, let us
look briefly at these memories. They consist of several registers and
a correcting network as shown in Fig. 7 of Ref. 1. The registers store
information which is coded according to a low-density parity-check
code? and the correcting network periodically monitors the contents
of the registers, corrects errors and reinserts the corrected words into
the registers. The correcting network is very similar to a low-density
parity-check decoder. Such a decoder, if constructed from reliable com-
ponents, decreases the probability of error for digits stored in the
registers with each successive correcting cycle (iteration) provided
that the initial probability of error is not too large.

In order to understand the operation of a low-density parity-check
corrector constructed from unreliable eomponents, let us suppose that
the initial probability or error for stored digits is somewhat higher
than the probability of malfunction for any component in the correc-
tor. For the first few interations the corrector decreases the prob-
ability of error per digit almost as much as the reliable decoder does.
However, eventually this probability becomes comparable to the
probability that a new error is made by the correcting network itself.
Thus an equilibrium probability of error per digit is established such
that the probability of error per digit before and after each correct-
ing cyele is the same. Figure 1 is typical graph of this probability.

Although the probability of error per digit approaches an asymptotic
value, it is still possible for a memory failure to occur. A memory failure
oceurs whenever the configuration of errors within the registers of the
machine is such that a noiseless decoder would be unable to correct all
the errors. The probability of a memory failure during the time interval
0 < t < £ris calculated in Ref. 1 and it is shown to have the same form
for both component malfunction models considered. For any k and &,
the probability of a memory failure in M , a memory of the type under
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consideration which can store k bits of information, is given by
Pr[failure of M, during0 £ ¢t £ &7] < (& 4+ 1)-C"- k™"

where C” and g’ are constants for any particular type of memory, or
to be more mathematically precise, for any particular sequence of
memories, {M;}, where the members of the sequence are ordered ac-
cording to their information storage capabilities. It also is shown that
it is possible to make 8’ > 0; in fact, a numerical example is presented
where 8” = 5.55. Therefore, for this example, it is possible to make
the probability of a memory failure arbitrarily small by choosing Fk,
the number of bits stored, sufficiently large. Furthermore, it is shown
that increasing & does not increase the redundancy of the memories
being considered, thus completing the proof of stability for these
memories.

Our objective is to show that it is possible to design a reliable com-
puter which performs arithmetic operations on operands stored in
stable memories and which presents the result in a form that can
itself be stored in a stable memory. The latter condition assures that
successive arithmetic operations can be performed by computers of
this type. Just as stability is defined to be a property of sequences of
memories, reliability will be defined to be a property of sequences of
computing systems.
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Fig. 1 — The probability of error per digit.
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II. DEFINITION OF RELIABILITY

The computing systems we are considering consist of a number of
stable memories for information storage and some logic circuits which
perform the arithmetic operations. The operations are performed on
operands which have been stored in stable memories and the results
of the operations are stored in stable memories. Before it is possible
to define “reliability,” it is necessary to establish a criterion for deter-
mining whether a particular result is correct. We consider a result
(coded) to be correct if a noiseless low-density parity-check decoder
could correct all the errors; that is, if it could obtain the desired un-
coded result. Thus, the class of correct results is precisely the decod-
ing equivalence elass which contains the code word whose informa-
tion digits correspond to the desired uncoded result.

Now consider a sequence of computing systems {S;} where, for
any k, the computing system S, contains memories having an in-
formation storage capability of k binary digits. We require that all
the computing systems in {S;} be able to perform the same set of
operations. The sequence {S;} is called reliable if it satisfies the fol-
lowing conditions:

(3) For all k, the redundancy of S; must be less than « where « is
a constant independent of k. The redundancy of a computing system
is defined as the ratio of the complexity of the system to the amount
of computation performed by the system.*

(#7) For any 3 > 0 and & > 0, there must be a member of {8;} for
which the probability that the result of any sequence of J operations
(within the allowed set) will be in error is less than &.

The reciprocal of the minimum redundancy for which a particular
sequence of computing systems is reliable is called the computing
capacity for these systems.

III. OPERATION OF VECTOR ADDITION MODULO-2

The operation of vector (bit-by-bit) addition modulo-2 is con-
sidered first because low-density parity-check codes have the prop-
erty that when this operation is performed on two code words, the
result is always another code word. This is the only nontrival opera-
tion that can be performed without using some elaborate procedure
for generating the check digits required to form the coded result. For

* Ref. 1 gives precise definitions of “complexity” and “amount of computation.”
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this reason, the operation of modulo-2 addition is particularly easy
to perform.

The computing system to be considered consists of stable memories
which store the operands and the results, and logic circuits which perform
the arithmetic operation. It is assumed that all components within the
computing system have a nonzero probability of malfunction. Let the
stable memories containing the operands for one particular operation be
denoted by M/ and M}’ . At ¢ = T, the operation of vector addition
modulo-2 is performed on the contents of these memories and the result
is stored in another stable memory. It is assumed that all the memories
within a particular computing system are physically identical. This
means that all memories must have the same set of possible states;
furthermore, since the states of a stable memory are divided into classes
of equivalent states, the classes of states must be the same for all of these
stable memories. Let us suppose that at ¢ = T, the state of M belongs
to C(I:,), the class of states containing the code word I,;, , and that the
state of M’ belongs to C(I,;,). If the operation is performed correctly,
the state of the stable memory containing the result will belong to
CUu, ® L)

To show that computing systems of this type are reliable, we must
show that a sequence of 3 operations can be performed with an overall
probability of error that can be made arbitrarily small by choosing &
sufficiently large while keeping the redundanecy fixed. To compute the
redundancy we evaluate the ratio of the complexity of the system to the
amount of computation performed by the system. Each modulo-2 vector
addition performed by the system involves three stable memories, each
with an information storage capability of k, and a number of modulo-2
adders equal to the number of information storage components in one
stable memory.

In Ref. 1 it was shown that the complexity of a stable memoryis
proportional to k; hence the complexity of these three memories and
the associated modulo-2 adders must also be proportional to k. The
amount of computation, that is, the number of two-input binary
operations that an equivalent irredundant computer would perform,
equals k since this irredundant computer would perform % additions
(modulo-2) on its two k-bit operands. Since both the complexity of
the systems being considered and the amount of computation that
they perform are proportional to k, their ratio, the redundancy, is
independent of k as required.

Let us start by considering just one operation performed by the
computing system. We assume that before the operation was performed
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both M/ and M}’ performed at least one correcting cycle on the stored
operands. Thus, according to Fig. 1, the probability of error for digits
stored in each of these memories is upper bounded by p, which, in
general, is very small compared with the maximum allowable probability
of error per digit. After the operation has been performed, the probability
of error (e) for digits in the memory storing the result is upper bounded
by

Prldigit = €] < 2p: + p. + 2p,

since any one of the following events could lead to an error in one
particular digit:

() The corresponding digit was in error in M/(probability < p.).

(43) The corresponding digit was in error in M’(probability = p,).

(#3%) The adder that performed the operation on these digits made an
error (probability denoted by p.).

(&) An error occurred in this particular digit position in the result
memory between the time the result was stored and the end of the first
correcting eycle performed on the result (probability = 2p,).

Provided that the resulting probability of error per digit is less
than the maximum allowable value, successive iterations of the re-
sult memory decrease this probability as shown in Fig. 1. After the
result memory has performed one iteration, the contents of this
memory can be used as an operand in a second operation. Successive
operations can be performed provided that at least one correcting
cycle is performed on each intermediate result.

An error is made on one of these operations if the state of the
result memory does not belong to the desired class of states, or
equivalently, if a memory failure occurs within the result memory im-
mediately following the operation. The method for computing the
probability of such an error is almost identical to that used in Ref.
1 to compute the probability of a memory failure. The result, which
is obtained in the Appendix, is:

Prlany @ operation is performed incorrectly | all

previous &P operations were performed correctly]

C -B+3

<a—Jkr"
where C and B are functions of the parameters of the code (J and K)
and po, the bound on the probability of error per digit. For any par-
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ticular sequences of computing systems, J, K, and po, and hence C
and B, are all constants. This result applies for either of the component
malfunction models discussed in the introduction.

Finally we must bound the probability that an error occurs on any
one of a sequence of J operations. It is assumed that neither a memory
failure nor a propagation failure occurred in any stable memory between
the time when an operand was originally stored and the time when the
first operation was performed on that operand. We need not concern
ourselves about the concept of a propagation failure except to notice
that the bounds on the probability of a memory failure were actually
derived by bounding the probability of either a memory failure or a
propagation failure. Hence, imposing the condition of no propagation
failure does not make the requirements any different from those which
have already been used. The probability of an error during J operations
is upper bounded by the sum of the probabilities that the initial error
occurs on any one of these operations; that is,

Prlerror during a sequence of 3 @ operations | no
memory failure or propagation failure in

memories containing the original operands]

C P
(1 - J/K) '
If J = 14, K = 15, and p, = 107° then 8 = 7.55; therefore, for this
sequence of computing systems, the probability of an error in 3 vector
modulo-2 additions can be made arbitrarily small by choosing % suffi-
ciently large, thus providing that this sequence of computing systems
is reliable.

< 3

IV. GENERAL VECTOR OPERATIONS

Consider a sequence of computing systems, {S;}, in which each sys-
tem is capable of performing many different operations. The inputs to
each of these systems are stored in stable memories, as before; how-
ever, the inputs must specify not only the operands but also the
desired operations. The digits stored in each memory are coded ac-
cording to a low-density parity-check code, but now it is assumed
that the code is in systematic form; that is, the information digits
appear first in each code word. When an operation is performed on
two code words, the desired result is the code word whose information
digits are computed by performing the desired operation on the in-
formation digits of the two operands.
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The allowed operations for the computing systems under considera-
tion consist of any vector (bit-by-bit) operation on the information
digits of the operands. That is, the operation performed on a particular
pair of information digits in the operands can be any one of the 16
Boolean functions of two variables. Each of these operations is assigned
a four-bit operation code. Since different operations can be performed on
different pairs of information digits in the operands, the computing
system S, , which contains memories having a storage capability of %
bits, is able to perform (16)* different operations on any pair of operands.
The desired operation is specified by means of four code words. For all
0 < % = k, the set of four digits in the 7th digit position in each of these
four code words gives the operation code for the operation to be per-
formed on the zth information digit in each operand. For each pair of
information digits in the operands, the computing system first selects
the operation specified by the operation code and then performs this
operation on the appropriate pair of digits in the operands. In this way
all the information digits in the result are computed.

Qince the desired result is a code word, it is necessary for the
computing system to generate the appropriate check digits to go with
the desired information digits of the result. The operation of vector
addition modulo-2 is particularly easy to perform on the information
digits of two code words because the appropriate check digits can be
generated by performing the operation of vector addition modulo-2
on the check digits of the two operands. In general, it is more diffi-
cult to generate the appropriate check digits.

We consider first a method by which a noiseless system could generate
the check digits, then show that by making a rather simple modification
to this method, it is suitable for use in a noisy system. Finally we bound
the probability that an error occurs in a sequence of J operations
performed using this modified method. To simplify the terminology
throughout this and subsequent discussions, we contrast noiseless and
noisy systems. A noiseless system is one in which there are no component
malfunctions whereas, for these discussions, a noisy system is any one
in which the components have nonzero probabilities of malfunction. All
results presented apply for either of the component malfunction models
described in the introduction.

Let us consider how a noiseless system consisting of memories,
operation selectors, and computing devices might compute the desired
result. Since there are 16 operations that could be performed on any
pair of information digits in the operands, there must be 16 types of
computing devices. One device of each type and one operation selector
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is associated with each pair of information digits in the operands. Each
operation selector decodes the operation code and selects the appropriate
computing device. This device then performs the desired computation
on one pair of information digits. In this way all the information digits
in the desired result are computed. These resulting information digits
are represented by the row vector v.

The second step in computing the desired result is to compute the
check digits. Let us assume that, within the computing system, k noise-
less memories are used to store a set of k basis vectors for the code. This
set of k basis vectors is represented by the generator matrix, G. It is
assumed that the basis vectors have been chosen in such a way that G is
in reduced-echelon form. (That is, G = [I,P] where I, is a k X k identity
matrix and Pis a £ X (N — k) matrix. The notation D = [AB] means
that the matrix D can be partitioned into two submatrices, A and B.)*
The desired result is obtained by performing the operation v © G
where © represents the operation of matrix multiplication in which all
additions are pertormed modulo-2.

This matrix multiplication operation is performed in two steps. The
first step consists of performing the bit-by-bit axp of the digits repre-
sented v with the digits represented by each column of G (see Table I).
The resulting row vectors, represented by the matrix G’, are stored in
another set of & noiseless memories. A row of G is all zeros if the corre-
sponding digit in v* is 0 but it is identical to the same row of G if the
corresponding digit in v” is 1. Therefore, the nonzero rows of G’ are the
generators of the desired result. The final step in performing the matrix
multiplication operation consists of adding modulo-2 the rows of G’.

Let us see if a noisy computing system, containing stable memories
rather than noiseless memories, can obtain the desired result in the

TABLE I — AN ExaMPLE oF THE OPERATION V O G.

v=_[1 0 1]

1 0 0 1 1
01 01 0
00 1 0 1

axped with columns of G

1 0 011
=10 0 0 0 O
0 0 1 01

A g

G

]

v

Vector sum modulo-2 of the rows of G’
=[1 0 1 1 0
4 voG
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same way. The information digits of the result are computed by the
method described above. This time, however, there is a nonzero proba-
bility that any particular information digit is in error. There is now
a problem when we try to use these digits to find the generators of
the desired result. If there is any error in these information digits,
the generators of the result will be specified incorrectly, in which
case the resulting state of the stable result memory will almost cer-
tainly be outside the desired class of states. Since there is no way to
eliminate the errors in the information digits, the computing method
as described is not suitable for use in a noisy computing system.

The problem with the computing method that has just been described
is that there is only one copy of the information digits of the result and
there is no way to guarantee that this copy is error free. Suppose that
we had many copies of these information digits such that the errors were
statistically independent from one copy to another. We shall show later
that it is actually possible to obtain copies with these properties. These
copies of the desired information digits can be represented by means of
a matrix V in which each column represents one of these copies. Each
row of V is almost all zeros or almost all ones and the errors across any
row of V are statistically independent. Each row of V that is almost all
ones indicates that the corresponding row of the generator matrix is one
of the generators of the desired result. Suppose that the generators of
the code are stored in stable memories, the generator set. Since each
stable memory containing k bits of information actually contains J-N
binary digits (N is the block length of the code and J is a parameter of
the code described previously), the contents of these stable memories in
the generator set can be represented by a & X JN matrix §. If we require
that V be a k X JN matrix too (that is, that we have JN copies of the
information digits), an operation can be performed on the memories
equivalent to ANDing corresponding entries in the matrices § and V, the
result being represented by a k X JN matrix §’. This operation leaves
the desired generators essentially unchanged but it replaces the unde-
sired generators with vectors which are equivalent to the zero vector.

In this case an error in one copy of the information digits causes at
most one error in the digits represented by §’. This is much better than
the result of the previous method where one error in the information
digits causes errors in an entire row of G'. If the probability of error per
digit in g’ is not too high, it would be hoped that each stable memory
corresponding to a row of g’ would be able to reduce this probability of
error by performing one correcting cycle. The operation of vector addi-
tion modulo-2 could then be performed to obtain the desired result. Since
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this method looks promising, it will be considered in more detail. The
first step is to make sure that it is possible to obtain copies of the infor-
mation digits with the desired properties. Then a sequence of computing
systems which perform operations by this method is analyzed to deter-
mine if the sequence can be made reliable.

When the computing system is ready to operate on a particular
operand it copies the operand JN times and each copy is stored in a
stable memory. A set of JN stable memories corresponding to one
operand is called an operand set (see Fig. 2). An operand matrix,
A; 7 =1, 2, is defined in the following way. Each column of A, is assoc-
iated with one stable memory in the corresponding operand set. The
digits in o particular column of A, equal the digits in the first noisy
register within the stable memory corresponding to that column of A, .
Recall that cach register within a stable memory contains a noisy approx-
imation to the same code word. Thus the digits in cach row of an operand
matrix are almost all ones or almost all zeros. The digits different from
the dominant one in each row correspond to errors in different stable
memories within the operand set. Let each operand memory perform m
(m = the number of independent iterations®) iterations on the digits
contained in it. If no memory failure or propagation failure occurs in
any stable memory within an operand set, the errors in the digits stored
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Fig, 2 — The generator set and typical operand sets. The digits are typical of
the digits in each of the J noisy registers within the stable memory.
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within a stable memory depend only on the component errors that
oceurred in that memory during the last m iterations,” and these com-
ponent errors are assumed to be statistically independent from one
stable memory to another. Since the contents of these stable memories
are represented by the columns of the operand matrix A, the errors in
one column of this matrix are statistically independent of the errors in
any other column. Therefore, after m iterations, the errors across any
row of the operand matrix are statistically independent.

The four stable memories which contain the code words that specify
the operation code are called the “operation code memories.” The
contents of each of these memories are copied JN times to form an
operation code set (see Fig. 3). Each memory in each operation code set
performs m iterations just as the memories in each operand set do. An
operation code matrix 0, , 0 <17 = 4, is defined for each operation code
set; the definition is analogous to the definition of each operand matrix
as stated previously.

Let us consider a particular digit position in each of the operation
code matrices and each of the operand matrices. The four digits in this
position in the four operation code matrices form the operation code for
the operation to be performed on the two digits in this position in the
two operand matrices. After each memory in each set of memories has
performed m iterations, the operations specified by the operation code
matrices are performed. The digits which are the results of these opera-

OPERATICN CODE
FCR FIRST BIT

OPERATION CODE
FOR SECOND BIT —\
A
|
CHECKS NI :
1 |1
v N [
™\ - . i [ ] |
SIREE NN
i | N
N -]
L L :
N N 1‘
U N |
AN NI N v

Fig. 3 — The operation code sets.
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tions can be represented by & X JN matrix, each column of this matrix
being an approximation to the information digits of the desired result.

Since the errors in each row of each operand matrix and each opera-
tion code matrix are statistically independent, and since the errors made
by the components which perform the operations are statistically inde-
pendent, the errors along any row of this resulting matrix must be
statistically independent. Therefore, this is precisely the matrix V
described previously. The digits represented by this matrix are anped
with the digits represented by g to form the matrix §’. The operation
of vector addition modulo-2 is then performed on the digits in the regis-
ters represented by the rows of the matrix ¢’ to obtain the desired
result (see Fig. 4).

Finally we must compute the probability that all of the operations
are performed in such a way that the state of the result memory belongs
to the desired elass of states. The first step required that m iterations be
performed by each memory in the operand sets and the operation code
sets. There are a total of 6-J N stable memories in these sets. The
memories represented by the generator matrix § must also perform m
iterations. There are & memories in this generator set. It is assumed that
neither a memory failure nor a propagation failure occurred in any
stable memory before the m iterations were started. We wish to bound
the probability that a memory failure or a propagation failure oceurs in
any memory during these m iterations.

In Ref. 1 the probability that either a memory failure or a propagation
failure oceurs in any one memory on any particular iteration, given that
no memory failure or propagation failure occurred previously, was upper
bounded. This bound equals

Pr[memory failure or propagation failure | no

previous memory failure or propagation failure)
C\‘
<S1-J/K
where C and g depend on the parameters of the code and the proba-
bilities of component errors but not on k. This bound has the same

form for either of the two component malfunetion models discussed
in the introduction.

k-£+2

Since

ok
1 — J/K

N = 1;A7m and m < lng[ ] for k> 2,
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Fig. 4 — (a) The result set corresponding to matrix G (illustrates the vector AND of
the two operands). (b) The addition operation.

the probability that a memory failure or a propagation failure occurs
during the m iterations is bounded by
Pr[memory failure or propagation failure during m iterations]

< {6[1_—%] + ]“}'{log [1 —kJ/K]}'l —CJ/K'k_m

for k& > 2.

The operation is performed following these m iterations. The result of
this operation should be the generators of the desired result, cach
generator being stored in a stable memory. These memories are called
the result set and are represented by the matrix §'. Let us suppose that
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no memory failure or propagation failure occurred during the m itera-
tions. We now bound the probability that a digit within a memory in the
result set is in error just before the time when the memory has completed
the first correcting cycle on the newly inserted digits. If one of these
digits is in error, at least one of the following events must have occurred:

(7) The corresponding digit was in error in cither one of the operand
sets. The probability of this event is bounded by 2p; (see Fig. 1).

(71) The corresponding digit was in crror in the generator set. The
probability of this event is bounded by p;.

(itt) An error was made in determining the operation to be per-
formed. This probability is denoted by Peontror.

(7v) An error was made in performing the desired operation. This
probability is denoted by Poperation -

(v} An error was made in performing the Anp operation. This
probability is denoted by paxn.

(vi) An error occurred within the memory in the result set. The
probability of this event is hounded by 2p,.

Therefore, by the union bound
Prlerror in any digit within the registers in the result set]

< Spl + DPeontrol + Poperation + Panp + 2p"
and we require that this sum of probabilities be less than poe. In order
to show that it is possible to satisfy this inequality, let us consider
a numerical example where
Peontrol = Poperation — PAnp = Pa = Pr = Pa = 10_10?

po = 107%, J = 14 and K = 15.

For this example p; = 2 x 107°, therefore

37’1 + pcﬂnlrnl + pupurntion + pAND + 2'[3.- ~ 1-1 X 10_0 < 10_!

showing that the condition on p, is satisfied.

The probability that a memory failure or a propagation failure
occurs in any onc of the memories in the result set can be computed
by exactly the same method used in the previous section to compute
the probability of a memory failure in the stable result memory fol-
lowing the operation of vector addition modulo-2. In fact the result
is exactly the same as that obtained in the previous section since
introducing the bound p, makes all the relevant probabilities iden-

Po
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tical. The result is as follows

Pr[memory failure or propagation failure in one memory in result set]

C
< = J/K]

Therefore, the probability that any memory failure or propagation
failure occurs anywhere in the result set is bounded by

E'k—ﬁ+3-

Pr[memory failure or propagation failure in result set]
Cv . k-ﬂ+4
1 — J/KJ* ’
The final step consists of performing the operation of vector addi-
tion modulo-2 on the contents of the memories in the result set. The
adder network, shown in Fig. 4, performs k—1 vector additions mod-
ulo-2. According to the results of the previous section, the proba-
bility that any one of these operations is performed incorrectly 1s
bounded by

Prlerror in any of & — 1 @ operations]

<

(‘ —B+3

<® =D ket

C
< =J/K]
The result is in error only if a memory failure or propagation failure
occurs during the first m iteration, during the computation, or during
the vector additions modulo-2. Therefore, the probability that the

result is in error is bounded by

—B+4
k7.

Prlresult is in error]

< (1{[1_%:] + 1}{14_271__ log[ k /]-;]}] —p+3

9(' A B+4

ﬁ for k> 2

+

a
= Pl'euull .

Finally, we must bound the probability that an error occurs during a
sequence of 3 operations. This probability is bounded by the sum of the
probabilities that an error oceurs on any one of the 5 operations. There-
fore,
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Prlerror during a sequence of J operations] < 3- P, u¢ -

The dominant term in this bound is proportional to k""" where 8 is a
constant for any particular sequence of computing systems. Ref. 1 gives
a numerical example where 8 equals 7.55. For this example, the prob-
ability that an error occurs in a sequence of J operations is bounded by
a function which decreases as k™*. Therefore, for the sequence of com-
puting systems for which 8 = 7.55, the probability of an error during
J operations can be made arbitrarily small by making & sufficiently large.

Thus far we have not considered the complexity of these computing
systems. The “basic processor,” that is, the machine that performs one
operation on each of the & pairs of digits has a complexity which is
proportional to k°. Let us suppose that the system S, is capable of
performing a sequence of 3 operations on each of the & digits. In general,
this requires 3 basic processors. Thus the complexity of the system is
proportional to -4 The amount of computation, the number of
operations performed on pairs of digits, is equal to 3-k. Thus, for S,,
the ratio of the amount of computation to the complexity, is proportional
to k'. The computing capacity equals the maximum value of this ratio
for which the probability of error can be made arbitrarily small. Since
the probability of error for S, is proportional to 3-%7**, this probability
of error can be made arbitrarily small only in the limit as % approaches
infinity; but in this limit the ratio described above approaches zero.
Thus the computing capacity for these systems equals zero.

V. ARITHMETIC OPERATIONS ON OPERANDS OF BOUNDED MAGNITUDE

The systems described in the previous section have two major
shortcomings. The first is that the computing capacity equals zero
and the second is that the systems are restricted to performing op-
erations on corresponding bits in the operands. Let us consider the
first of these shortcomings. We would like to show that it is possible
to modify these systems in such a way that the amount of computa-
tion per component is independent of k, whereas the probability of
error decreases with increasing k. In order to obtain such a result,
we must reuse the basic processor. This means that we must be able
to “program” the computing system. We have already shown that
it is possible to “program’ the basic processor to perform different
operations. We must now show that it is possible to store the program
and the operands in memories which can be located when the contents
are needed.

In the previous section we described a method for locating desired
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generators which were stored within the generator set. The jth genera-
tor was found by first setting up an “address set” consisting of J ‘N
stable memories each of which has a one in the jth information symbol
position and zeros in all other information symbol positions. After
all stable memories had performed m iterations, the generators were
anped with the address set and the result was propagated through
a modulo-2 addition network as shown in Fig. 4. We can store the
program and operands in a “program set” consisting of k. memories
and use precisely the same method to locate a memory in this set.
Thus, the “address” of the jth memory in the program set is a 1 in
the jth information position of a code word.

In order to keep track of the next operation to be performed, we
need to use one memory as an “instruction counter.” Initially this
memory contains a code word with a 1 in the first information posi-
tion and a zero in all other information positions. After each opera-
tion, we shift the information digits one position to the right. A
simple modification of the basic processor allows it to perform this
shift operation. In order to specify whether a shift is desired we add
one more operation-code set. The information digits in the memories
within this additional set are all 1’s if a shift is desired and all 0’s
otherwise. (Notice that we are really wasting (k—1) of the informa-
tion digits in each memory in this additional set since only one digit
is required to specify whether a shift is desired).

The processor checks the “shift bit” before performing any opera-
tion to see if a shift is desired. If the shift bit equals 1, the shift is
performed on the first operand and no other operations are performed.
If the shift bit is 0, the operations specified by the other operation code
sets are performed. In either case, the result is computed as before
by adding the appropriate generators.

The second major shortcoming of the systems described in the
previous section is that only operations on corresponding bits in the
operands can be performed. In order to perform more general opera-
tions we might consider permuting the digits in one of the operands
before the operation is performed. Unfortunately, the probability that
a particular digit is permuted incorrectly depends on k and, in fact,
approaches 1/2 as k approaches infinity. This problem arises because
we have attempted to perform one operation that involves all k
information digits, but it can be avoided by dividing the k digits into
a number of segments where the number of digits in each segment
does not depend on k; that is, the number of segments must grow
with k. We can then treat each segment as a separate operand. This
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means that we must restrict our attention to operations performed
on operands of bounded magnitude, which is certainly not a severe
restriction.

Let us consider the digits in one particular segment. If it were
possible to permute these digits before each operation, we could
compute the sum or produect of the digits in this segment or, in fact,
any finite sequence of arithmetic operations on these digits by per-
forming a sequence of bit-by-bit operations on the appropriately
permuted digits. Consider the additional modifications that must be
made to the basic processor in order to allow it to perform these
permutations, For the purpose of specifying the desired permutation
we must again increase the number of operation-code sets. If the
longest segment, contains s digits, the permutation can be described
by the contents of the memories in log s additional operation-code
sets. The permutation of a particular segment of digits is specified
by the corresponding segments of the memories in these additional
operation-code sets. (Notice that a permutation of s digits can be
described by s - log s digits.) The operation is performed according
to the method described previously. However, in this case the infor-
mation bits within each segment of one operand are permuted just
before the actual operation is performed.

Let us consider how these modifications affect the bound on the
probability of error for the basic processor. This bound is given in
Section IV. The first term bounds the probability that either a mem-
ory failure or a propagation failure oceurs anywhere within the
operand sets, the operation code sets, or the generator set during the
first m iterations. Since there are now [log s] + 1 additional operation-
code sets, the coefficient of this first term must be changed from

[6(1 —JJ/K) + 1] to [(7 + log S)(l —{I/K) + 1]'
However, the dependence on & of the first term is unchanged.

The second term bounds the probability that a memory failure
oceurs either in the result set or in one of the memories required for
the modulo-2 addition operation. In deriving this second term, it
was necessary to bound the probability of error for digits in the
result set. We considered a set of events at least one of which must
have occurred if a particular digit is in error. There are now two
additional events which could lead to such an error. The first is that
the shift instruction was interpreted incorrectly and the second is
that the permutation operation was performed incorrectly. In both
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cases, the probability of error per digit is independent of k. Therefore,
it is possible to find examples where p, bounds the probability of
error for digits in the result set.

For example, consider the numerical values presented in Section
IV. If the probability of a permutation error equals 10-*° and the
probability of a shift error also equals 10-°, then po = 107® is still
a bound on the probability of error per digit. Thus the second term
is not changed by the system modification. Therefore the dominant
term in this probability of error is still proportional to k=A+* The
equipment, required to select the appropriate memory from the program
set is similar to a basic processor. Therefore, the probability of mak-
ing an error in one selection operation is of the same form as the
probability of error for the basic processor. In particular the dominant
term in this probability of a selection error is proportional to k=#+*.

Finally, let us consider the number of operations that can be per-
formed by this modified computing system. We have allowed k mem-
ories for storing the program and the operands. This means that the
number of steps in the computation can be at least proportional to
% where each step consists of one set of k operations performed by
the basic processor. Therefore the amount of computation can be
proportional to k*. Furthermore, the complexity of the system is also
proportional to k2 since only one basic processor and one operation
selector is needed. Therefore, the amount of computation per com-
ponent is independent of k and in general is nonzero.

The probabibity of an error during the k steps in the computation
is upper bounded by k times the probability that an error occurs
during any one step. Therefore, this overall probability of error is
proportional to k+° Since we have already presented an example
where 8 = 7.55, in this case the probability of error can be made
arbitrarily small by making k sufficiently large while keeping the
redundancy fixed. This shows that the computing capacity for sys-
tems of this type is nonzero.

VI. CONCLUSIONS

There are basic processors, designed entirely from unreliable com-
" ponents, which can perform arbitrary binary operations on the corre-
sponding information bit of two operands stored in stable memories.
These information bits ean be shifted, by one bit, or permuted, within
segments of bounded length, before performing the operation. The
probability of error for the basic processor can be made to vanish
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as k=#+* where &k is the number of information bits in each operand
and B is a function of the component malfunction probabilities and
the information rate of the code used in storing information in the
memories.

A program, including the necessary operands, can be stored in k&
stable memories and the operations specified by the program can be
performed in sequence by a single basic processor. It is possible to
perform arbitrary k-step computations on numbers of bounded mag-
nitude. Furthermore, the number of these computations that can be
performed simultaneously is proportional to k. The complexity of the
equipment required to perform the computations and the amount of
computation are both proportional to k2. Thus the amount of com-
putation per component and hence the computing capacity is nonzero.

These results apply to systems designed from either of two types
of unreliable components. The first type is one which malfunctions
because it is perturbed by random noise in the system. The malfunc-
tions of these components are modeled mathematically by assuming
that they are statistically independent from one component to another
and from one use of a particular component to another use. The
second type of component is one which fails permanently; however,
it is assumed that components which have failed are regularly re-
placed by good ones. In this case the mathematical model is based
on the assumptions that components fail independently of each other
and that there is an upper bound, of value less than 14, on the proba-
bility of malfunction of any particular component on any single use.

All the results are existence proofs. Therefore, the eriterion for
choosing the particular systems to be considered was simplicity of
analysis rather than efficiency of operation, Furthermore, the emphasis
was not placed on obtaining the tightest possible bounds but rather
on obtaining simple bounds that were sufficient to prove the desired
results. In particular, one would hope that the probability of error
would decrease exponentially with k rather than algebraically with
k. However, the particular techniques used here do not lead to such
a bound.

There are many questions still to be considered concerning the
design of practical systems constructed from unreliable components.
There are also many theoretical questions concerning the derivation
of bounds which are tighter than those derived here. It is hoped that
the development of practical, reliable computing systems will follow
the presentation of existence theorems like those presented here just
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as the development of practical, reliable communication systems
followed the presentation of the existence theorems of information
theory.
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APPENDIX

A Bound on the Probability of Error

In this appendix we upper bound the probability of error for one
vector addition modulo-2. The method for deriving this bound is
based on the one used in Ref. 1 to upper bound the probability of a
memory failure. Since the method is long and rather involved, it is
not reviewed here. Please see the proof in Ref. 1, because here we dis-
cuss only those places where the two proofs differ. Both the terminol-
ogy and the notation here is the same as in Ref. 1.

The computing systems being considered are described in Section
ITI. It is assumed that the operation was performed at ¢ = T. The
operation takes t,, seconds to be performed. Some time during the
r seconds following ¢ = T + %4, the stable result memory starts to
perform the first correcting cycle on the newly inserted digits. We
denote the time at which this correcting cycle starts by t = T + o
(see Fig. 5).

It is assumed that neither a memory failure nor a propagation failure
has occurred in either operand memory up to ¢ = T. A bound has
already been derived on the probability of error per digit in the
result memory. We must now bound the probability of a propagation
failure occurring in the result memory. This involves relating the A
configurations for the result memory to the A configurations for the
two operand memories. Finally, the probability of a propagation
failure will be used to obtain the desired bound on the probability of
making an error in performing the operation.
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Fig. 5 — Sequence of events pertaining to (P operation.

To relate the A configurations for the result memory to those for the
two operand memories, let us consider the type i(z > 0) A configuration
for the result memory evaluated at ¢t = T' 4 o. If there is a 1 in the entry
corresponding to the digit d, , the controlling errors must have changed
the value of d, in the result memory; but this change can ocecur only if
the controlling errors changed the value of one but not both digits in
position d, in M} and M}’. If both these digits in position d, had been
changed, the two changes would cancel each other when the operation
of vector addition modulo-2 was performed. Therefore, the type 7(z > 0)
A configuration for the result memory evaluated at { = T + o is equal
to the vector sum modulo-2 of the type ¢z A configurations for M{ and
M}’ where the A configuration for M} (or M}’) is evaluated at the end
of the last correcting cycle performed beforet = T (thatis,att = T — ¢t/
ort =T — ).

The type 0 A configuration evaluated att = T 4 ¢ is computed in
a different way. A 1 in this type 0 A configuration represents a new
error in the stable result memory at ¢ = T 4 o. To compute the con-
figuration of new errors, we imagine that the computing system was
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noiseless up to the beginning of the most recent correcting cyecle per-
formed on the digits stored in the result memory at t = T' + o. In this
case, the “most recent correcting cycle” consists of the last correcting
cycle performed by M before ¢t = T and the last correcting cycle
performed by M’ before t = T (see Fig. 5).

Since the probability of error per digit at £ = T + ¢ can be bounded
by po , the probability of a new error at ¢t = T' + o can also be bounded
by po . Therefore the probability of a 1 in the type 0 A configuration
evaluated at t = T + o must be less than p, . Since the type i( > 0)
A configuration for the result memory evaluated at t = T + o is the
modulo-2 sum of the type i A configurations for M| and M}, the
probability of a 1 in the type ¢ A configuration evaluated att = T + ¢
is bounded by twice the probability of a 1 in the type ¢ A configuration
for M/ (or M!") evaluated at t = T — ¢’ (ort = T — .

The method for computing a bound on the probability of a memory
failure at + = T + o is exactly the same as that used to compute a
bound on the probability of a memory failure at any other time for
any stable memory. This method consists of bounding the probability
that a noiseless correcting network could correct all errors present at
t = T + o by performing m iterations. This probability is bounded
by the probability that the initial propagation failure occurs at t =
T + o or during the m noiseless iterations performed after t = T' + o.

The initial propagation failure occurs whenever there are one or more
1’s in the type m A configuration. Since, by assumption, no propagation
failure occurred in either M! or M}’ before { = T, the type m A con-
figuration for M{ and M}’ must be all zero for all ¢ < T'. The type m A
configuration for the result memory evaluated at ¢ = T + o is the vector
sum modulo-2 of two of these type m A configurations for M] and M}’ .
Therefore, the type m A configuration evaluated at ¢t = T + ¢ must be
all zero. Hence, no propagation failure can occur at ¢t = T' + o.

A bound is derived in Ref. 1 on the probability of a 1 in the entry
corresponding to the digit d, in the type m A configuration evaluated
at t = Lr. The equation used to compute this bound is;

Pr(1 in one particular entry in type m A configuration
evaluated after Lth iteration]

2 & — DEpor*

< (J — DK - 1)(_]"/'2__

-Pr[l in one particular entry in type m — 1 A configuration

evaluated after (L — 1)th iteration] (1)
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where p, is both a bound on the probability of error for digits in the
registers of M, and a bound on the probability of a 1 in the type 0 A
configuration. To compute a bound on the probability that the initial
propagation failure occurs at ¢ = T + ¢ + 7, we apply this recurrence
relation. By applying it m — 1 times, we obtain the probability of a 1 in
the type (m — 1) A configuration for M} evaluated at ¢ = T — ¢/,
namely

Pr[l in one particular entry in type (m — 1) A configuration evaluated
att = T — ']

m—1

Po{(-l — (K — 1)(";;’,2‘)21)[([( _ 1)(2%)]”2_1}

é mel .

A

The probability of a 1 in the type (m — 1) A configuration evaluated
at t = T + ¢ is bounded by 2 - P,,_;. One final application of the
recurrence relation leads to

Pr[l in one particular entry in type m A configuration evaluated at
t=T+ ¢+ 7]

<o — v~ 7,72 o - D)

Gallager has shown that there are low-density parity-check codes?
for which

lo [Jﬂ _ 71",7] | [#]
“LK T2k -l Pl - /K]
2log (J — DK — 1) " S og (J — DK — 1)
Therefore,

Pr[l in one particular entry in type m A configuration evaluated at
t=T++ 0o+ 7]

. J =2
2069 (J — (K — ( - )
< pn{(f ) 1 I/ — 1
log | (k/2K)=[k/2J(K=1)11/2 log (J=1) (K-1)

K — 1)(2300)]”2_‘}

) S U ) e
- 2”“{[ﬁ T 2J(K — 1)]’"}
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where

log {(J — v - 7,7 e - 1)(2pu)1”"‘}
A== 21log (J — DK — 1) '
The probability that the initial propagation failure occurs at ¢t =
T + o +  is bounded by the probability of one or more 1’s in the
type m A configuration evaluated at ¢ = T + o + . Since there are
J-N entries in this A configuration, and since N < k/(1 — J/K), by
the union bound,

Prlinitial propagation failure occurs at ¢t = T' + ¢ + 7]

1) ook - s

4 20k~P*.
This same bound applies to the probability that the initial propaga-
tion failure occurs on any one of the m iterations performed after
t=T + o.
A memory failure can oceur at £ = T + o only if the initial propa-
gation failure occurs on one of the m iterations performed after ¢ =
T + o. Therefore, by the union bound,

A

Pr[{memory failure at { = T + o | no memory failure or
propagation failure for ¢ < 71

= Pr[@ operation is performed incorrectly]

< 2-C-m-k*"
< 2-Clo l:%—-k—u—]-k'ﬂ“
8l1 - J/K
C -_8+2
<TT R k

To show that the computing systems being considered are reliable, we
must show that it is possible to perform a sequence of J operations with
an overall probability of error that can be made arbitrarily small by
choosing k sufficiently large. After one iteration of the stable result
memory (thatisfor¢ = T + o 4 7), the result stored in this memory can
be used as an operand for another vector addition modulo-2. Let us
suppose that another addition operation is performed at ¢t = T + ¢ +
r 2 T and that the first correcting cycle on this second result starts at



RELIABLE COMPUTATION 2365

t = T' + ¢'. We now bound the probability that this second operation
is performed incorrectly given that the first operation was performed
correctly (that is, given that no memory failure or propagation failure
occurred at ¢ = T + o). The method for deriving this bound is identical
to the one used above. We bound the probability that the initial propa-
gation failure occurs at ¢ = 7" + ¢ or on any one of the next m itera-
tions. In this case, the probability that the initial propagation failure
occurs at ¢ = T" + ¢’ is not zero since a propagation failure could have
occurred at ¢ = T".

Equation 1 relates the probability of a 1 in the type ¢ A configura-
tion evaluated after one particular correcting cycle, to the probability
of a 1 in the type (¢ — 1) A configuration evaluated after the pre-
vious correcting cycle. The application of this equation is simple
except in cases where an addition operation has been performed
between successive correcting cyecles. It has been shown already that
in each case where an addition operation has been performed, we
must double the probabilities that otherwise would have been sub-
stituted into the equation. Since, in this case, there were two addi-
tion operations performed within the m correcting cycles of interest,
the value of this bound must be twice the value of the bound derived
above.

Therefore,

Pr[second @ operation is performed incorrectly | first @
operation was performed correctly]

< 2% [m + 1]-C-k~**

2 v, L A3
<2 Clog[l_J/K]k

< 92°. ; _CJ/K PR

where we have used the bound

k
o[iz]
1 - J/K k ] )
log ( — DK — 1)+1 <10g[1 —JJK for k> 2.
This result can be extended to any number of vector additions
modulo-2 performed in series. However, since only m iterations are
considered in deriving this bound, the largest value that this bound
can have corresponds to the case where an addition operation has

m+ 1<
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been performed between each iteration for the last m iterations. For
this “worst case” the bound on the probability that the mth vector
addition modulo-2 is performed incorrectly, given that all previous
additions were performed correctly, is

Pr[any @ operation is performed incorrectly | all previous

@ operations were performed correctly]

< 2".C- log [i———}"d’/K] ,k‘ﬂﬂ

C X k i —B+2
<1 JJK o8 [1 - J/K] k

C g

<a-JEEF
In this Appendix we have not made any reference to the underlying
assumptions concerning the models for component malfunctions. We
are interested in two models as explained in the introduction. Since
equation 1 applies for either of these models and since the mathe-
matical development based on equation 1 also applies for either
model, the final result, namely the probability of the initial modulo-2
operation error, has the form given above for either component mal-

function model.
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