A Self-Healing Control

By BRUCE E. BRILEY
(Manuseript received April 30, 1968)

This article describes an electronic compuler self-repair technique which
does not require system duplication. It identifies the properties demanded of
control hardware to effect this end and considers their practicability. It also
decribes a protolype computer constructed to test the feasibility of this form
of self-repair, and discusses fest results.

I. INTRODUCTION

In electronic computing machines, where a high degree of availabil-
ity is a requisite, some form of self-repair is provided. The rational in
most such machines is that a given piece of hardware must be backed
up by an identical part which may be switched in upon failure of the
first.

Work in nonreplicative self-repair has chiefly centered about the
arithmetic unit and other controlled entities where the solutions,
though not trivial, are relatively straightforward. The control portion,
however, has consistently been avoided as unmanageable short of
replication.? This paper describes a technique for what will be called
“gelf-healing” the control of a machine which differs radically from
conventional self-repair, and displays potential for considerable eco-
nomie savings.

II. DEFINITIONS

Terms used in describing the technique and their definitions are:

Order denotes that portion of an instruction eonventionally used to
identify the instruction type, not including the address and other
fields of the instruction, even when used for augmentation rather than
addressing.

An order structure is ealled closed (closure under imitation) if to
each order there corresponds at least one program of finite length
using only a subset of the order structure diminished by the object

2367



2368 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

order such that the program imitates the salient actions of the object
order in every detail except timing.

A control is called failure autonomous if the circuitry associated
with the sequencing of an order is unique to it and does not propagate
the effects of an internal failure beyond the associated circuitry’s
geographic bounds.

A control unit is called self-diagnosing if, under failure, (2) the con-
trol immediately ceases activity, (i) the identity of the offending
order is immediately available, and (i) the control is failure au-
tonomous.

A control unit is called entropic if the circuitry associated with each
order assumes a state under failure such that any subsequent attempt
to execute that order will cause a summary hang-up without any of
the order’s control signals having become active.

Self-diagnosing means immediate “incidental” diagnosis as a basie
property, as opposed to “self-diagnosable,” which means lending itself
to easy but finite diagnostic processing, and contains the former term.

The fact that all order structures are not closed may not be ap-
parent, but examination of the repertoire of a typical computer will
bring to light orders which violate the definition.

Proof of the existence of a nonclosed order structure capable of all
the conventional operations requires only observation of the effect
of a failure upon Van der Poel’s limiting case machine.* (Van der
Poel shows that a computer with only a specialized subtract instrue-
tion can perform all essential operations.) This machine is left with
the empty set upon diminishing its repertoire by one. However, exist-
ence in the repertoire of any order which performs a unique function
such as setting a flip-flop accessible to no other order is sufficient to
render the structure, of which it is a member, outside the closure
definition.

A seemingly trivial example of a closed order structure is the case
of a repertoire with each instruction duplicated; the imitating routine
for a given instruction, in this case, is of length one. This extreme
appears to be, at best, equivalent to conventional duplication ap-
proaches, and certainly worse than any other self-healing case. How-
ever, H. Y. Chang has pointed out that no conventional checking
circuits would be necessary in the control and imitation would be per-
formed with no reduction in efficiency. This form of duplication, then,
may be viewed as the boundary between self-healing and conventional
self-repair, with some of the advantages of both.



SELF-HEALING CONTROL 2369

III. BACKGROUND

The definitions are chosen advisedly because a control which is self-
repairing in the sense described must be the realization of an order
structure which is closed, and must be entropic and self-diagnosing
(which implies failure autonomy).

The practical possibility of building a self-healing control came to
light as the result of study of a (picoprogramming) control with self-
diagnosing properties.*

Self-diagnosing is a required attribute because (i) the identity of
the offending order must be immediately available without processing
(the control cannot be trusted to perform diagnostic processing),
() control activity must cease until remedial action is taken or insane
processing may be performed, and (i) failure autonomy must be
realized or several orders may be rendered imperfect by a single failure.

Entropic behavior is required so that (i) the repairing entity may
be called automatically into play each time the defunct order is to be
executed and (ii) the defunct order’s circuitry will remain inactive
and not interfere with the repairing entity’s action.

The order structure realized must be closed to permit the technique
to function; this requirement is central to the technique’s operation.

IV. PRACTICABILITY

These requirements may seem artificial; indeed, unattainable. How-
ever, the self-diagnosing control has the very properties demanded
above, so that the only otherwise artificial requirement to meet is that
of order-structure closure.

We conjecture that the addition of about 10 percent to the repertoire
of a typical machine would effect closure. Reealcitrant instructions,
the length of whose imitating routines threaten to increase without
bound, can be handled by the compromise of duplicating those instrue-
tions only. Their imitating routines then shrink to one instruction in
length. (A machine designed specifically to be self-healing would, of
course, try to avoid such instructions.)

V. THE TECHNIQUE

The technique is relatively simple. An inductively coupled detec-
tion lead monitoring all order circuits observes a continuous sequence
of pulses during normal operation. However, because of the second

* See the Appendix and Refs. 3 through 6.



2370 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

property of the self-diagnosing feature, when the circuitry associated
with an order fails, the monitoring lead will notice a cessation of ac-
tivity. A time-out will take place, and the machine will be placed in
the remedial mode.

In the remedial mode, the entire (failed) instruction is stored, then
control is transferred to a location in memory whose address is gen-
erated from the order field of the instruction, and normal operation
is resumed. The transferred-to location in memory contains the first
word of a routine which imitates the action of the failed order using
only other orders. This is possible because of the closed order structure.

The transition from imitation to a continuation of the program
being run is smooth, requiring no intervention. The next time execu-
tion of the failed instruction is called for the machine hangs up again,
without any control pulses being generated, because of the control’s
entropic character. The same procedure as before is then followed.

A simple example is logical left shift (shift the contents of the ac-
cumulator logically one binary place to the left), because its imitating
routine is brief. Figure 1 shows the effective mechanization of self-
healing for the shift left instruction. The action of sensing the health

PREVIOUS
INSTRUCTION

SRR rame | | e " rransrer |
SHIFT LEFT ~_NO TO
OPERATIVE 7 o— COUNTER) +1 IMITATING IMITATING

ROUTINE FROM
| LocATIoN 1_| | ORDER CODE | L _Routine |

STORE
ACCUMULA‘I’OR

SHIFT LEFT

LOCAT ION J

1S > IMITATING
“ NEXT ROUTINE
< INSTRLJrCTID;d %__. FOR  —| ADD (J)
OPERATIVE SHIET (SUPPRESS OV)
-~ LEFT

YES

NEXT
INSTRUCTION

TRANSFER TO
NEXT
INSTRUCTION
(ADDRESS IN

-1 LOCATION I)
|HARDWARE ACTIONS L

r—

Fig. 1 — Example of self-healing.



SELF-HEALING CONTROL 2371

of an instruction is indicated by the test preceding each instruction;
actually, the test takes place throughout the duration of an instrue-
tion’s execution, and is much less specific than the illustration im-
plies, asking only the general question, “Is the machine still run-
ning?” rather than, “Is shift left operative?”

The net result is that the machine is, in effect, healed; software is
used as a patch over the “crack” in the hardware. Execution of the
failed instruction will be, in general, very inefficient, but if the time-
out is short, the overall speed of the machine generally will be only
slightly affected.

If fast memory is considered too expensive or limited in size to
contain all of the imitation routines, they may reside in auxiliary
storage, and the one seclected under failure would be called into a
standard block in fast memory. Subsequent uses of the defunct order
would execute its imitation routine out of this block. Such “calling”
would require more elaborate remedial hardware.

VI. REALIZATION

The picopragrammed control lends itself to self-healing because of
certain properties peculiar to its implementation:

() The circuitry implementing each order is segregated to a single
card and is unique to it; magnetic coupling to the control leads pre-
vents propagation of failure effects.

(12) Because the control is autochronous® (self-timed), a failure in
a sequencer causes an asynchronous hang-up, leaving the order reg-
ister in one-to-one correspondence with the failed sequencer.

(74%) The nature of the ferrite disk” sequencer is such that any fail-
ure in the active sequencing mode will leave the disk in a partially
switched condition (in a state representing one element of a continuum
of states) which prevents the success of any subsequent attempts at
switching, and results in a hang-up. No control signals are generated
by attempts at switching subsequent to failure.

To a ‘“conventional” picoprogrammed control must be added intel-
ligence to perform remedial action. The remedial tasks illustrated in
Fig. 1 are:

(¢) Store in an appropriate location the nonorder fields of the in-
struction (which usually change each time the order is executed).

(iz) Store in an appropriate location the current address (or the
current address +1).



2372 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

(#i7) Derive from the order field the location of its imitating routine.
(fv) Transfer to the imitating routine.

The imitating routine alters its instructions according to the non-
order fields of the defunct instruction, performs the imitation, and
transfers to the defunct instruetion’s successor in the interrupted pro-
gram.

VII. PROTOTYPE IMPLEMENTATION

A small prototype computer was built at Bell Laboratories to test
the feasibility of self-healing (see Fig. 2). Picoprogramming was
used, providing the necessary properties for self-healing.

7.1 Duplication

The special (limiting) case of duplication is the simplest to im-
plement, and was the first tried. In effect, dual repertoires are in-
stalled whose order codes differ by one bit (are adjacent). Any num-
ber of techniques could be used in a full scale system to guarantee
that both halves of the extended repertoire are exercised regularly,
such as assembler insertion or internal bit complementing. The
equivalent of the second technique was used in the prototype because

CONTROL COUNTER
& DECODER
8
l( ) NE= BIT WORDS READ
4 WRITAB WR
PROGRAM mEPS MEMORI;'E ITE
STORE
READ 8-4 BIT & ACCESS AUXILIARY
WORDS REGISTER
MY (20) = ‘ (4) |}
RA 20
—e{ CONTROL e INSTRUCTION ADDER
MEMORY REGISTER
] | (4)
REMEDIAL (2) (2) Fﬂﬁi&'&?
HARDWARE A\
(4) ORDER E oV | ACCUMULATOR
REGISTER DECODER
B ) |

Fig. 2 — Prototype self-healing processor.



SELF-HEALING CONTROL 2373

it does not require an additional bit per order in main memory; the
internal order code was augmented with a bit which served to choose
between twin instructions,

The mechanism used to recognize failure (cessation of activity) was
a simple integrating circuit, which monitored the completion signal
common to all instructions, and a level diseriminator.

The remedial action consisted simply of complementing the “twin”
bit and injecting a bogus completion signal to start the system again.

Physically simulated failures were experimentally shown to yield
to self-healing independent of the instruction class, and the imple-
mentation of this grade of self-healing was definitely proved possible.

7.2 Nonduplication

A test off the boundary line was necessary to show that a non-
duplicating grade of self-healing is possible, The limited size of the
prototype’s repertoire, however, precluded a complete closed repertoire
from being tested. Instead the properties of self-healing were studied
“in the small”; repertoires were chosen which could imitate a subset
of themselves, but which did not include duplieates.

The procedure followed was to place the machine in a convenient
program loop performing ecalculations easily checked for accuracy,
such as a first order Markov chain. In another memory area was
stored a routine that could imitate the action of an order used in the
calculating routine.

A manual switch was provided to either disable or invoke self-
healing capability, and another to disable the object order.

With the machine running in the caleulation loop, and with self-
healing disabled, it was easily shown that disabling (simulating a
failure) the object order would bring the machine to a halt, leaving
on display its location, its identity, and its nonorder fields.

Invoking self-healing capability, and running in the calculation
routine, disabling the object order had no effect upon the caleulations’
accuracy in most cases; however, occasionally an error would occur.
The errors (which will be explained) oceurred only at the instant of
simulated failure; caleulations after that (while self-healing) were
properly performed. When the simulated failure was removed, the
machine automatically reverted to its original mode of operation.

An order is always assumed innocent until proven guilty. That is,
whether or not an order failed the last time it was to be used, an at-
tempt is made to use it the next time the program calls for it. The



2374 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

innate properties of a failed order thus provide the necessary memory
that the order is inoperative, and prevent these attempts from causing
trouble. Should the order spring back to life again, however, either
because the “failure” was caused by noise or because the failed card
is replaced, the order “takes over” again, and self-healing ceases.

This technique does not solve all problems. One difficulty is that a
fragment of an instruction may be executed before failure occurs
(this was the cause of the occasionally observed errors at the instant
of failure), and it may be impossible to reconstruct the status of the
system before execution of this instruction began. Two solutions are:

(7) Defensive programming, a technique which is recommended
for all real time programming applications, but difficult to implement
as a complete solution. It consists of programming in such a fashion
that errors (the outward manifestation of a partial instruction execu-
tion) do not appreciably disturb operation.

(1) Picoinstruction counting, which forces the picoinstructions to
count themselves as they are executed (the counting register is reset
upon the successful completion of each instruction). Under failure
the contents of this register are digested by the imitating routine,
which (the first time) performs only those operations not yet per-
formed by the defunet instruction.

VIII. HARDCORE

8.1 Control Hardcore

The hardcore (that portion whose failures cannot be healed)
specifically associated with a self-healing control consists of a fixed
and a variable component. The fixed component includes the instruc-
tion register, an order register which copies the order field of the
instruction register, and their associated circuitry; in addition, a
relatively simple integrating and level sensing cireuit to recognize
and react to failure, and a flip-flop and timing circuit to store the
control mode and provide interinstruction timing, are required.

The variable component depends upon the degree of duplication.
For full duplication a flip-flop is needed to differentiate between
twin instructions. Zero duplication requires a means for storing the
nonorder field of the failed instruction and its address for use by
the imitating routine, and a means for generating the address of the
first instruction of the imitating routine and placing it in the instrue-
tion counter register (assuming a single address format).



SELF-HEALING CONTROL 2375

8.2 Noncontrol Hardcore

The noncontrol portions of the machine are not directly aided
by self-healing, but the indirect help is far reaching. For automatic
diagnosis, the hardcore of the machine does not include the entire
control, but rather the control’s relatively small hardeore. This means
that much more of the machine may be automatically diagnosed. For
extension beyond diagnosis to self-repair (and possibly self-healing)
in the noncontrol portions of the machine, the more effective diagnosis
and more trustworthy control are substantial aids.

Among the more interesting possibilities is that of building an all
memory machine (including the control) which would use tables in
a manner reminiscent of the IBM 1620 to replace the arithmetic
unit and reduce the diagnostic problem to one of handling memory
(which, because of its relatively homogeneous nature, tends to he

tractable).

IX. ANALOGIZING VIEW

Suppose it were feasible to store a set of remedial routines for each
order, which could imitate the order’s action for all possible combina-
tions of order failures. Then as the machine grew old, and one by one
the orders failed, the control would survive but become inereasingly
slower until a minimum eritieal subset (possibly one order) remained.
Under these conditions the control would be acting in a manner anal-
ogous to the compilation of a high-level language, written in itself. It
is necessary in the latter case (the compilation) to (software) im-
plement a critical subset of the language which can bootstrap the
remainder of the language, just as it is necessary to have a healthy
(hardware) implementation of a critical subset of the instructions
in the former ease (the aged machine). Extending the analogy further,
a correspondence may be seen between the computer’s microinstrue-
tion language (if it exists) for the former case, and the machine lan-
guage of the computer used in the latter case.

X. CONCLUSIONS

Self-healing is a practicable and potentially useful variation of
self-repair.

(Comment: Although picoprogramming was used in this work, it
was a vehicle of convenience, not an essential constituent. Other im-

plementations are possible.)



2376 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

XI. ACKNOWLEDGMENTS

I wish to acknowledge helpful discussions with H. Y. Chang, and
the excellent experimental assistance of D. J. Matter.

APPENDIX

Picoprogrammaing

This is a very brief description of picoprogramming; the serious
student should see Ref. 3.

P1coprogrammmg may be viewed as a logical extension of micro-
programming wherein the control memory, which in a practical
microprogrammed machine constitutes some fraction of the control,
is allowed to expand until it is identical with the control. Figures
3 through 5 depict the evolution in oversimplified form.

Figure 3 illustrates the typical pre-third-generation machine con-
trol, with the order portion of the instruction used to identify a
sequence implemented, in general, with ill partitioned circuitry de-
noted by crosshatching.

Figure 4 shows the microprogrammed control where the order field
identifies the starting address of a microprogram in the control mem-
ory, but a conglomerate of circuitry is still required to implement
the microinstructions, count through them, and the like.

Figure 5 shows a picoprogrammed control consisting only of a
memory with the order field now choosing a single memory element.

ORDER PORTION
OF INSTRUCTION
/—‘——\

Vi

NONMODUL AR
CONTROL

Fig. 3— Conventional control.



SELF-HEALING CONTROL 2377
CONTROL
MEMORY

%% 7%

Fig. 4 — Microprogrammed control.

The memory element in Fig. 5 is a square loop ferrite disk called
a myra (for myria-apertured) disk. This disk has the property that,
when selected, it can spill out many sequential strings of control
pulses temporally juxtaposed in almost any desired fashion and at
voltage and driving point impedance levels capable of driving most
logic circuits directly. Most instructions ean thus be implemented
with a single disk.

[
/

@ MYRA
7/ \ MEMORY

Fig. 5 — Picoprogrammed control.



2378 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1968

When these disks are mounted separately with their drivers, they

exhibit failure autonomy. Further, since no clock is used, the disk
corresponding to an instruction under execution is in complete and
independent control, and the machine stops if it fails. In fact, an
unequipped card can be used to implement a HALT instruction.

The instruction cards can, in general, be interchanged to provide

a variable repertoire.

REFERENCES

1.
2.
3.

6.

Avizienis, A., “Design of Fault Tolerant Computers,” Proc. Fall Joint Com-
puter Conf., 31 (November 14-16, 1967, Anaheim, Calif.) pp. 733-743.
Van der Poel, W. L., “The Essential Types of Operations in an Automatic
Computer,” Nachrichtentechnische Fachberichte, 4 (1956), pp. 144-145.
Briley, B. E., “Picoprogramming: A New Approach to Internal Computer
Control,” Proc. Fall Joint Computer Conf., 27 (Las Vegas, Nev,, Novem-

ber 30-December 2, 1965), pp. 93-98.

. Valassis, J. G., Macrander, M. C., Pacer, T. A, and Rekiere, R. J,, “An

Integrated-Circuit MYRA Picoprogrammed Computer,” Automatic Elec-
trical Technical Journal, 10, No. 8 (October 1967) pp. 326-336.

. Valassis, J. G., Mehta, M. A, and Holden, J. R., “Analysis of the MYRA

Picoprogramming Control Technique,” Automatic Electric Technical
Journal, 10, No. 8 (October 1967), pp. 327-348.

Valassis, J. G., “Modular Computer Design with Picoprogrammed Control,”
Proc. Fall Joint Computer Conf., 81 (November 14-16, 1967, Anaheim,
Calif.) pp. 611-619.

Briley, B. E,, “MYRA: A New Memory Element and System,” IEEE Inter-
mag. Conf. Proc., Washington, D. C. (April 21-23, 1965), pp. 14.8-1—148-6.



