Eliminating Broadband Distortion in
Transistor Amplifiers

By LEE C. THOMAS
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This paper presents the results of a study directed toward understanding
the basic distortion mechanisms in transistors. (i) We develop an analytic
model for the transistor which describes small signal linear performance
and nonlinear effects. The linear model is matched to the measured h-
parameters of the device over a wide range of frequency and bias current.
We superimpose three distinct nonlinear effects on this linear skeleton
model, all approzimated to third order terms. (i7) We show experimental
confirmation that, for some bias-load conditions, the second order distor-
tion can be mintmized and we show that it is possible to stmullaneously
minimize both second- and third-order distortion under the same bias-load
condition. This resull also is confirmed experimentally. (iti) We derive
and discuss in detail an analytic expression for the optimum load. Based on
this expression, we present detailed procedures for finding this optimum
condition for any transistor, and give experimental corroboration. (iv) We
give a qualitative description of the interaction among these three nonlinear
effects based on an analog computer simulation of the model. T'his description
makes it easier to visualize the distortion cancellation phenomena derived in
this paper, and indicates a technique for extending the effect to a broad band
of frequencies. We conclude that proper use of the distortion cancellation
effect can greatly improve intermodulation performance in existing tran-
sistors.

I. INTRODUCTION

System studies have indicated that very broad band (greater than
20 mHz) AM coaxial cable systems will be modulation-limited. Inten-
sive investigations to understand and characterize the inherent modu-
lation properties of devices and repeater circuits have been called for.
We made one such study directed toward understanding the basic
distortion mechanisms in transistors.
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The history of transistor distortion literature can be characterized
as an erosion process in which highly restricted parts of the total
problem are attacked leaving fresh complexities exposed for future
work. In early work by Akgun and Strutt, the analysis is restricted
to nonlinearities in the emitter resistance assuming an ac short at
the input and output.! Observed nulls in second and third order
distortion do not correlate with the theory, which does, however,
include frequency effects. Using many of the same assumptions, Mal-
linckrodt and Gardner extended this earlier work to account for a
third order null at low frequencies when the nonlinear emitter resis-
tance is dominant.?

More recently Riva, Beneteau, and Dalla Volta considered all
important sources of distortion by breaking the problem into three
distinet operating regions with expressions for minimizing second
order distortion in each.® They do not treat of third order minimiza-
tion, and they use a dc model. Reynolds analyzes third order mini-
mization at particular nonzero frequencies for dominance of the
emitter resistance nonlinearity.*

There are two reasons for the specialized nature of these efforts.
First, transistors, as contrasted with va¢uum tubes, have at least three
dominant nonlinearities. It would be difficult to consider all of these
in a general expression for second and third order distortion. Second,
frequency effects can be important in many applications. In general,
the analysis of nonlinear effects as a function of frequency requires
the use of extremely powerful and, as a result, cumbersome analytic
techniques. In the special case of an exponential input v-i relation
it is possible to avoid a general analysis, which explains why analyses
which include frequency effects have been limited to emitter non-
linearities. Even in this exponential case, however, the third order
null predicted by Reynolds is a narrowband effect, applicable only
at a particular frequency.

This paper extends these earlier efforts in four important respects.

(1) We conclude that the distortion measured at the terminals
results from algebraic cancellation between distortion components
produced by nonlinear effects within the transistor. This conclusion
originated from empirical observations made on an analog computer
simulation of a transistor. An analytic argument reinforces this con-
clusion by comparing plots of algebraic cancellation to measured dis-
tortion curves. Also, we give experimental support of the cancellation
phenomenon.
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(17) We present a low-frequency analysis of a complete extrinsic
model including three nonlinearities: emitter resistance, nonlinear
current gain, and avalanche multiplication, all approximated by a
third order polynominal. We avoid considerable complexity by direct-
ing the analysis strictly to the question of minimizing distortion and
by not developing a general distortion expression. This analysis is
independent of any assumptions concerning distortion cancellation,
but yields the same results.

(%%) From this analysis we show that it is possible to simultaneously
null both second and third order distortion under the same bias-load
condition. The analytic technique we use to determine a null is
linearization of the input-output relation up to and including third
order, thus implying a minimum in harmonic distortion, intermodula-
tion, or any other specialized figure of merit. The existence of this
simultaneous null is verified in the laboratory.

(iv) Extension of the cancellation effect to a broad band of fre-
quencies can be accomplished by external reactive compensation.
This compensation maintains a 180° phase shift between the collector-
base voltage and the real component of the emitter current, a relation
that exists automatically at low frequencies where the rigorous anal-
ysis is performed. This phase shift is the fundamental requirement,
for total eancellation, based on the qualitative insight mentioned in
item .

PRINCIPAL SYMBOLS

A Parameter in the 3(Z.) relation.

a(l,) Current dependence of the dependent current source.

@, , a,,as Taylor series coefficients in the expansion of a(I,) around
I.,.

Omax Maximum value of a with respect to I, .

B Common emitter ac gain.

Bmax Maximum value of 8 with respect to I .

I, Total collector current.

I, Collector current where B8,,x occurs.

1, Small signal collector current.

Total emitter ecurrent.
Emitter current bias level.
Small signal emitter current.
Collector current bias level.
Current in the load resistor.
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M(V.) Voltage dependence of the dependent current source.

M, , M,, M, Taylor series coefficients in the expansion of M(V..)
around ¥V, .

T Emitter resistance.

Ti, T2, Ts Taylor series coefficients relating v, to , .

R, Load resistance.

Ry ope Load which minimizes second order distortion when third
order distortion is negligible.

R, Source resistance.

Ve Total collector-to-base voltage.

Ves Small signal collector-to-base voltage.

v, Small signal voltage across r, .

V. Collector-to-base bias level.

Vout Voltage across the load resistor.

II. A QUALITATIVE MODEL FOR THE DISTORTION MECHANISM

Let us describe the qualitative insight (7) to get a broad look at the
cancellation phenomenon before rigorous analysis obscures a simple
coneept.

An analog computer simulation of the model of Fig. 1 allows us to
examine the interaction of the three nonlinearities by examining their
effects one at a time. Thus, for example, we may allow only «(I,) to
be nonlinear and observe the second harmonic distortion components
of the output voltage. If we then make a constant and allow M (V)
to vary, we observe that the resulting waveform is 180° out of phase
with the first waveform as shown in Fig. 2. This is plausible since
V., and I, are inherently 180° out of phase at low frequencies. Thus any
cancellation that we obtain between current dependent nonlinearities

”CbC
-+ R
Veb y
yVe-
}our
a(le)M(V) +
Vs ('\D = Cd VourgRL

Fig. 1— High frequency nonlinear model.
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Fig. 2 — Cancellation of distortion components.

and voltage dependent nonlinearities will not require phasing I, and
V., properly, but will result from properly adjusting the relative
magnitudes of V., and I, .

Since I, &~ I,.., the most direct way to adjust the magnitude of
V. &~ V... relative to I, is to change the load resistance. Hence the
strong dependence of distortion on R, as shown in Fig. 3 for a fixed
bias level of V., = V, and I,.. = I,. To obtain cancellation in second
and third order distortion at the same time, not only the relative
magnitudes are important but the absolute level must be correct.
This cancellation model explains the sharpness of the null: since the
net distortion is a small difference between large distortion components,
a small percentage change in the ratio of the larger components will
yield a large percentage change in the difference. Experimentally, as a
null is passed the output distortion waveform changes phase by 180°
as we would expect from one component’s becoming dominant over
the other.

It is important to notice that this cancellation effect is not some
artificial phenomenon that we are foreing to occur. According to the
model presented here, some degree of cancellation always occurs in
any transistor at any level of distortion. We give a more quantitative
argument supporting this exaect cancellation model for visualizing the
transistor distortion mechanism in Appendix C.

It has been the author’s experience that a disturbingly large per-
centage of published technical material is exclusively concerned with
presenting conclusions. In most cases, these conclusions were arrived
at by the rigorous manipulation of symbols long after the original
insight which prompted the investigation. The purpose of this section
is to desecribe the insights first in the belief that the reader will have
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Fig. 3 — Experimental null in second harmonic distortion as a function of R,
using a Western Electric 20J transistor with ¥, = 30 volts, I, = 100 milliam-
peres, and R, = 500 ohms.

at least one less handicap if he is allowed to see the simple ideas
on which the rather interesting conclusions of this paper are bused.
These ideas are:

(1) The nonlinearities of the transistor (including some, such as
the base spreading resistance and the diffusion capacitance, which
are not considered in this paper) are dependent on the emitter cur-
rent, I,, and the collector-base voltage, V. At low frequencies I,
and V., are 180° out of phase.

() As a result of this phase difference, distortion components
resulting from these independent variables will subtract at low fre-
quencies.

(#) On an analog computer simulation, we observe the ability to
extend this subtraction effect to the extent of total cancellation by
manipulating external circuit parameters. Thus it should be possible
to analyze a low frequency model by imposing the condition of zero
distortion and solve for the required ecircuit parameters. We would
expect the load resistance to be an important parameter in this anal-
ysis since it determines the ratio of V¢ to L.

(iv) Considering the low frequency phase difference between I, and
V., as the most important factor in achieving total cancellation, we
suggest a technique for extending the low frequency results to a broad
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band of frequencies. This extension is achieved by the simple expedient
of compensating the load to achieve a constant real part, Ry, and still
maintain the proper phase between V., and I, as frequency increases.

The following sections develop the rigorous analysis (most of which
is relegated to Appendix A) and examine in some detail the analytic
conditions for a null and the implications of these conditions in the
area of circuit and device design.

IIT. TRANSISTOR MODEL

The model in Fig. 1 has been matched closely to the h parameters
of the Western Electric type 46A transistor over a wide range of
frequency (5 to 100 mHz) and bias current (50 to 150 mA). Figs.
4 and 5 show a typical match, obtained from a general purpose
optimization program. Three distinet nonlinear effects were then
superimposed on this small signal linear skeleton model. The current
dependence of the dependent current source is changed from ol, to
the expansion around the emitter current bias point, I,,,

C!(I,) =TI, + 0{1([, - I,.,.,)

+ oo/, — 1) + das(l. — L) + - -- 1)
where I, is the quiescent collector current. The voltage dependence
of the dependent current source is changed from the constant, M, to
the expansion around the collector-to-base bias voltage, V,,

IM(VCD,) =1+ «Mrs(Vcb - V.

+ %ﬂ]z(veb - Vn)z + GL*’?WS(VL-& - Vo)s + - (23")
(-
9.c|1\pF 56ka
500
] 0.9791, |
’:7450PF
VSQ\D song
0.77nH

Fig. 4 — Linear model for /. = 150 mA, V.» = 10V. With the indicated ele-
ment values, this model matches the measured h-parameters shown in Fig. 5. The
quality of the mateh at this bias point (/, = 150 mA, Ve = 10V) is typical.
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So that the total dependent eurrent source relationship is
I, = a(I)M (V). (2b)

And finally the emitter resistance, 7., is replaced by the expansion
around I,

v, = Tl(Il - Ina) + %1‘2(1-! - Itﬂ)z + %_TE(IG - Il"’a + e (3)

where the coefficients in equations 1, 2, and 3 are the corresponding
derivatives of the Taylor series expansion. Define the small signal
quantities as

io=1.-1, (4)
. =1I.—1., (5)
Vo = Voo — Vo (6)
Using these relations, equations 1, 2, and 3 become
a(l) = I, + ayi, + outs + fosts + -+ 0
M(V.) = 1+ M, + 3Ma?, + 2Maly + - @®)
v, = i, + At + il 4 e )

Substituting equations 7 and 8 into 2h, and retaining third order terms
I = (I, + e, + ety + ol
(1 + M., + M3 + tMad)  (10)
I.— I, =i, = ayi, + LMp., + }a:t; + 3L.Ma% + aMiia.,
+ Ja Mot + JeuMwais + Jote + §LMa:,  (11)

At this point we have developed a model for the transistor, indicating
the nature and form of the particular nonlinearities considered in both
the analog computer simulation of the complete, frequency-dependent
model of Fig. 1 and the analysis of the de model of Fig. 6.

IV. THE ANALYSIS

4.1 Optimization Equations

An analog computer simulation of the complete, frequency-depend-
ent model just discussed suggests that a simpler model is sufficient
to describe the distortion characteristics of the transistor at low
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Fig. 6 — Low frequency nonlinear model.

frequencies. Fig. 6 shows this simplified de model. The following
analysis of this model is detailed in Appendix A.

(i) The incremental output voltage, Ve, is related to the input
voltage, Vg, retaining third order terms as in equation 11.

(i) This input-output relation is constrained to be linear, thus
forcing both second and third order distortion to zero.

(t%) This constraint requires certain coefficients in the nonlinear
Vout (Vg) relation to be zero. These coefficients are, of course, func-
tions of the linear and nonlinear parameters of the system. Thus,
when these functions are made zero, Vo is a linear function of Vg
(to third order), and the derivation of the optimization equations is
complete. These equations are:

—RI(IM,) + R.(2a,M,) + 6 —az =0 12)
Ri(IaMa) - Ri(3f11M2) +E — Q3 = 0 (13)
where
8 =r/(R, + 1} <0, since 7, <0, (equation 19), (14)
and
t=r/(R, +r}) >0, since 7, >0 (equation 20). (15)

For the simpler case where the amplitude of third order distortion
is sufficiently low so that third order terms are negligible, equation
13 is satisfied identically and only equation 12 remains, which is
easily solved to yield

R(z} opt — anMx/IoMrz + [(a,Ml/I.,Mz)z - (0-'2 - 5)/InM2]i- (16)

Thus R (2)opt i8 the value of load resistance which causes second
order distortion to be zero for the case where third order terms are
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negligible. Notice that the analytic technique used to determine a
distortion null here is linearization of the input-output relation, and
thus implies 2 minimum in harmonic distortion, intermodulation dis-
tortion, or any other specialized figure of merit. Of course, R (2)opt i 2
function of bias current and voltage because of the dependence of
M; and M, on voltage and 72, a; and as on current. The implications
of equations 12, 13, and 16 become more clear when the dependence
of these parameters on bias is considered.

4.2 Relating Parameters to More Directly Measurable Quantities

It is revealing to express the parameters of equations 12 and 13
in terms of the bias variables and other directly measurable param-
eters of the transistor.

Assuming the standard exponential i-v relation at the emitter-base
junction we can immediately derive from

I, = I[exp (\V,/kT) — 1] (17

the following relations:

"= kT/?\qu = ""o/Io ) (18)
ry = —kT/NgI: = —r,/I} , (19)
ry = 26T/ \qI: = 2r, /I3 . (20)

Similarly, if we assume that the avalanche effect in the common-
emitter mode is deseribed by an equation of the same form as Miller's®

MWV,) =11 — (Va/V)T' 1)

where V, is the common-emitter breakdown voltage as shown in Fig.
7. Then, at Vi, = V,:

IC—'P'

)

Vg Va Veg —>
aM (Vg)=1 M(Va)=00

|
| |
] [
| l
] [
| |
| |

Icmin

Fig. 7— Avalanche characteristies.
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M, =n(V./V)/V., (22)
M, =nln — 1)(Va/VA)ﬂ/Vﬁ ’ (23)
M; =nn — Dn — 2)(V./V)"/Vs . (249

The avalanche voltage, V4, can be determined on a curve tracer
oscilloscope by leaving the emitter open-circuited in a grounded base
configuration and sweeping the collector-base voltage. The sustaining
voltage, Vg, shown in Fig. 7, is obtaining with the transistor in the
common-emitter mode and at least enough base current flowing to
produce Icmm at the output. At Vg the avalanche factor M (V) has
increased above unity sufficiently so that «(I¢) M (Vg) = 1. As a result
the common-emitter current gain (8) at this voltage is infinite. Choos-
ing the smallest « at which this occurs (amm) allows us to determine
the exponent, n, in equation 21:

aminﬂf(Vg) = 1 = am;,,Il - (Vs/VA)“]_I. (25)
Therefore

n &2 log Buin/log (Va/Vs), (26)

where B, corresponds to amp, and may be determined from equation
27 using I, = Ipmin. Notice that equation 21 constitutes an empirical
relationship in this study and is not intended to be rigorously tied to
any one of the various avalanche mechanisms. It is apparent, too,
that the measurements determining equations 25 and 26 will be influ-
enced by other voltage-dependent mechanisms (for example, the
Early effect); hence they are not strictly related to the avalanche
multiplication effect alone. Equation 21 has the virtue of mathematical
tractability; equation 25 allows the parameters of 21 to be determined
conveniently; and, finally, the excellent experimental agreement with
the theory described in Section V provides adequate justification of
the original assumptions. In any case, the derivation of equations
12 and 13 is based on a general power series expansion for M (V)
around V,; hence it remains valid for any M., M,, and M;.

Finally we require a» and «3. We show in Appendix B that g ecan
be empirically related to collector bias by

B = Buu/[l + 4 In* (I,/1.,)] 27)

where Bmax i8 the maximum B which occurs at I, = I,,, as shown in
Fig. 8, and A is a parameter of the equation. Determination of as,
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Tig. 8 — Current gain nonlinearity as a function of the bias current, I,.

ag, and A is derived in Appendix B. They can be expressed as

o — (%;:Lf;) In (fr) (28)
= (1)
A = | o = () /5 (0

so that A may be determined by finding I, and measuring 3 at that
current and at 1/e times that current. Thus equations 18 through 30
give the functional relations for the various parameters in equations
12 and 13 and indicate the method of measuring the more funda-
mental parameters such as n and A. In the next section we use these
relations in existence conditions for a simultaneous null, in order to
guide an experimental search for this condition.

4.3 Eaxistence Conditions for Realizability

While the simultaneous solution of equations 12 and 13 has not
been accomplished in closed form, it is possible to derive the condi-
tions under which a solution exists. Expressed in terms of the bias
variables, such conditions can then be used as a guide in an experi-
mental search for simultaneous nulling of second and third order
distortion.

Basically we require Ry to be real and positive. For the second
order equation, solved in equation 16, this simply requires that

(M, /I M,)* Z (g — 8)/IM, . (31)
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The condition for the existence of a positive, real solution to a cubic
of the form

2 —pf+r=20 (32)
where
p = 3a,M,/I. M, (33)
r = (& — as)/I,M, (34)
x =R, (35)
is easily derived. Basically require
2 = pax* — 1 (36)

Now, from equations 34 and 29, r > 0 for I, < el,,. Thus, at z = 0,
the parabola on the right side of equation 36 will be below the cubic
on the left. There will be a positive intersection only if the equation
is satisfied before the cubic term begins increasing more rapidly
(larger slope) than the parabola. The slopes are equal at

T, = §p. (37)
Therefore require
2y S pad —r (38)
or
& = (39)

Expressing this existence condition in terms of the problem variables
and rearranging terms gives

(M) = 1t — as)(I,M3)" (40)

Substituting in equations 31 and 40 with 18 through 29 and arranging
terms we obtain

(V./V4)" > the Greater of [@, , Q. (41)
where
1\| ~, , 4402, !&.
Q, = (1 — ?_t)l:f_, R, + 1) — (‘_.__L—_ﬁma: ) In (IW)] (42)

[ N 3Aa§,u) (_L)] n — 2)°

% = [I., ®. + 1) ( B ) P\ =y )
For most ranges of parameters and bias variables Q; > @Q., thus, we
will examine the condition
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@ > (- m o -G2u()] @

in greater detail. This distinction between @; and Q. is not critical,
however, because they are similar in form. Thus, many of the qualita-
tive considerations to be developed in the next scction are the same
for @; or Q-.

4.4 Searching for a Simultaneous Null

A careful examination of the existence condition (44) is useful
in guiding an experimental search for a simultaneous null. Starting
at the left side of the inequality, it is obvious that the bias voltage,
V,, must be as large as possible relative to V,. Since, in any case,
V, < V4, the exponent, n, should be as small as possible. The value
of n, according to Rogers,® depends on whether the collector or base
has the higher resistivity, and whether the high resistivity side is n
or p type.

Where the collector has the higher resistivity, the lowest values of
n are for npn silicon, and for pnp germanium. A second, less impor-
tant, advantage of small n is that the multiplier on the right side of
the inequality is reduced. The first term in the brackets tends to be
the major contributor to the right side of the inequality and is there-
fore the term which is most desirable to reduce. This term, which
represents input distortion resulting from a nonlinear emitter resis-
tance, can be reduced by increasing the bias, I,, and by increasing
R, to approximate a current source drive, thereby reducing input
distortion.

The second term in the brackets will favorably reduce the right
side of the inequality only if the logarithm is positive. This will be
true if the bias current, I,, is greater than I, which is consistent
with the earlier requirement for a larger I,. Finally, the multiplier
A, in equation 18 should be small in order to reduce r,.

Thus, it appears that the most likely candidate for a simultaneous
null is a silicon power transistor to allow large values of I, and V,.
The structure should be either pnp or npn, depending on which type
gives the smaller n.

V. EXPERIMENTAL PROCEDURE AND RESULTS
Let us illustrate the application of these existence conditions in an

experimental determination of R 2y, as well as a simultaneous null
in second and third order distortion.
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As a fundamental check on the theoretical results, we decided to
determine the accuracy of equation 16 with 19, 22, 23, and 28 sub-
stituted for the Taylor series coefficients. Also, it was desirable to
verify the existence of a simultaneous null using the existence condi-
tions of the previous section. Because of the low frequencies involved
(input frequency of 1 kHz), the simplest approach was to simulate
the measurement apparatus on the analog computer, using the same
oscillator and bandpass filters already available on the original simula-
tion.® The transistor used was the Western Electric 20J, and npn
power transistor.

Using this equipment, the parameters of the 8(I,) characteristic
curve of the transistor were measured:

Buax = 78
I,,=15mA

B .»/e) = T73.
From a curve tracer oscilloscope, the avalanche parameters were
determined:

Vi =60V
Vs =35V
Bmin = 45.
These measurements yield the information to compute
n=7
A = .064

from equations 26 and 30. From the manufacturer’s data, r, = 50 mV
and v/ = 50 Q. The output power was maintained at one watt.

These parameters give all the information required by equation 16
to compute the function Ry oni(I,) for various values of V,. The
curves in Figs. 9 and 10 show this computation compared to the plotted
points which were measured. The agreement here is quite adequate. The
quality of the match is further emphasized by comparing the computed
values of Rz op: indicated in Fig. 3 and Fig. 11 to the measured nulls.
The computed value shown in Fig. 11 is based on a solution to equation
16 only.

A typical simultaneous null obtained in the laboratory is shown in
Tig. 11. This data indicates the high voltages (to emphasize avalanche
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distortion) and currents (to minimize input distortion) required for
a simultaneous null. Conditions for a simultaneous null exist on an
(Ry,I,,V,,R,) surface, giving some redundant control to achieve
desired power and impedance levels as well as minimum second and
third harmonie distortion, It is apparent that a transistor manufac-
tured with a lower value of # would allow a broader range of control
over the bias voltage and current level required. Measurements on
different units of the WE20J show a maximum spread of =10 per
cent in measured values of the optimum load for a simultaneous null.

Experimentally, as R, is varied, the second harmonic displayed on
the oscilloscope decreases in amplitude, goes to zero, and begins to
increase in amplitude. As it goes through a null, the second harmonic
changes sign, giving additional weight to the qualitative distortion
model discussed in Section II.

VI. EXTENSION OF CANCELLATION TO A BAND OF FREQUENCIES

Up to this point, our discussion has been limited to low frequency
effects, Now let us consider why the above results do not apply at
high frequencies and look at a straightforward approach to extend
the validity of all previous results to a broad band of frequencies.
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If we accept the qualitative picture given in Section II, it is obvious
that we should not expect to maintain exact cancellation as fre-
quency increases, since the phase of V,; relative to I, will change. A
small change in phase will have an effect similar to changing the
relative magnitudes of the current and voltage-dependent distortion
components: the amplitude of their difference (the net distortion)
will change by a large percentage near a null. In fact, at higher fre-
quencies (on the order of fr/100), the null of Fig. 2 vanishes alto-
gether. It is apparent, then, that a solution to this problem is to apply
external reactive compensation in such a way as to keep V,, and I,
180° out of phase as frequency increases. In the model shown by
Fig. 6 if we consider a eapacitor, Cp, in parallel with r,, it is straight-
forward to derive the relation,

_Vrb/Ir—Re {ZLI +J|: +Im [ZLI]) (45)
where
1
wWp = CDT * (46)

Ideally, we would desire Z, = R, — jwr]{/w; but this would require
a negative inductor. A simple first order approximation to this function
would be to parallel B, with a capacitor, C. Then

RiC

%= T HEC R TT G 0
From equation 47 choose
Cope = 14/Riwr. (48)
Now
-1 = Ty i T @
For small angles the phase is given by
p(w) = o’ (r}/Rror)’. (50)

Thus the phase is reduced below the uncompensated case up to the
frequency

RLWT
r

Winax =
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At which point the cubic dependence of equation 50 intersects the
linear phase of the uncompensated transistor.

Obviously additional compensating elements can be used to cause
higher derivatives of ¢(w) to be zero. A complication may arise if
Copt is less than the parasitic Cop of the transistor. In this case we
extend the required low-pass structure of the compensating network
to include an inductor in series with Ry. In this case the required
inductance is given by

Lont = RECCB - Tl:/wT
which is greater than zero for Ccx > 7{/Riwr = Cop .

VII. CONCLUSION

Our conclusions are based on simulation of the transistor on an
analog computer, analysis, and experimental results. The rigorous
analysis predicts the existence of a simultaneous null in second and
third harmonic distortion under the same bias-load conditions. This
null has been observed in the laboratory. In addition, experiments
on the simulation provide qualitative insight into the nature of the
distortion mechanism.

We conclude that this mechanism consists of the algebraic sub-
traction, at low frequencies, of distortion components from various
sources within the transistor such as the nonlinear emitter resistance,
current gain, and avalanche multiplication effect. This interaction
between distortion components yields a net distortion which is the
difference between the contributing components, and can be made
zero by a proper choice of the bias and load.

With this mechanism in mind we developed a technique for ex-
tending the cancellation phenomenon to a broad band of frequencies.
This technique consists of external reactive compensation which
maintains 180° phase shift between the distortion components, a
condition which exists inherently at low frequencies.

We have obtained experimental confirmation of the theoretical
dependence of the optimum load for second order distortion on bias
variables. The theory predicting a simultaneous null in second and
third order distortion has been confirmed. We have also obtained
experimental support for the distortion cancellation phenomenon. We
discussed methods to aid future measurement efforts in implementing
this distortion reduction phenomenon. These methods are based on
interpretation of the theoretical expressions developed in the paper
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which reveal the necessity for high levels of bias voltage and current
to obtain a simultaneous null.

This study opens several fruitful areas for future work, both in
device and circuit areas. Primarily, the phenomenon described uses
circuit techniques to minimize distortion (optimizing the bias-load
point). Additional effort in the circuit aspects of minimizing distor-
tion should be directed toward desensitizing the null condition to
variations in the bias-load point. For example, if the bias current is
forced to change with Ry as shown in Fig. 9, optimum conditions
could be maintained over a range of changes in the load.

In the realm of device design, effort should be directed toward
adjusting deviee parameters to allow nulling in useful regions of the
bias-load space. For example, a softer avalanche characteristic (lower
value of n) would allow the use of lower bias voltages.
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APPENDIX A

Derivation of the Optimization Equations

In Fig. 6 the following relations hold

1:: = ib + 'ic
i'v = (Vl - U!)/(Rz + Tﬂ)
Vout = _RLT:: X Ve -

Let
VR, + 1) =1
n/(R, + 1) =
ro/(R, +1f) = 8
ro/ (R, + 1) = &
Substituting (9) and (54) through (57) in (52)
i = I — i, — 38607 — §&ic .
Combining (51) and (58)
i, = (1 +v) + 38 + 3% — 1.
Now %, is given by equation 11, Therefore
(L) + 5o + §g — 1
= ayi, + LMw., + Yosic + LM% + aiMidwe,

2 . 2 3 3
+ %a1M2ych1'| + %aL’Mlvchic + %aazl + %IoMBUcb .

Substituting (51) and (53) into (60) and gathering terms:
P MR, + (MR, — 3o, MoRY — }as + §E)
+ [} 8 — day — FLMLRL + auM R,
+ (3¢ — JaMoRL — 3auM R — }ay))
4+ il +y—a + MR, + (8 — e + a,M,R,)
+ (3 — das + M R.)] + [l + v — a
+ Glf 6 — feu] + G[— 8 — fe] — I =0

(61
(52)
(53)
(54)
(55)
(56)
(67)

(58)

(59)

(60)

(61)
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The only approximation that we have made up to this point is that
Vout R V., the collector-to-base voltage, assuming that », is small.
Now we would like to express the variables of (61) in terms of the
independent driving voltage, V,, and the output current, 7, , which
is linearly related to the output voltage. To accomplish this, we start
with (58) and make the approximation

where we have ignored the high order terms in (58) and used the linear
relation 7, ~ 17, .

Notice that (62) certainly does not imply that we have fixed a linear
relationship between ¢, , I, and 7, . We are simply using this new ap-
proximate variable in the highly nonlinear (61) for convenience. The
approximation is justified by the fact that second order and higher terms
ignored in (62) would appear as fourth order and higher terms in (61).

Substituting (62) into (61) we have

i A3LMRL — Jou(l — )"

+ #1 — 1) + M R.(1 — v)° — Ja,MoRL(1 — 7))

+ ity 81 — )’ + e MR.(1 — v) — 3LM.R] — }as(l — 7)*

+ I[QQA/[IRL(l — ) + 31 — '}’)2 — Foa(l — 7)2 - %CYJMERE]}

+ il =) —a(l —v) + LM\R,

+ I[6(1 — v) — au(l — v) + o.M \R,]

+ PBEL = v) — das(l — ) + MR,

+ 1y = el + I3 8 — ol + Il — dau] = 0. (63)
At the 100 mA bias levels where we are assumed to be operating,
r = 0.5 Q. Also 7 = 10-20 @ and R, can only increase the R, + 74
sum in (55). Hence v << 1 and will be ignored in (63). Thus we have
effectively substituted I for 7, in (61) to obtain (63). This substitution
is not justified by requiring the assumption I > i, in (62) (that is,
a current source drive); but is justified on the grounds that the sub-
stitution of (62) into (63) did not generate new terms in (63) for y << 1.
Equation (63) is of the form

ai; + (b + cI) + i.(d + el + fI*) + gI + hI* + jI* = 0. (64)

Now to force linearity we would like to require

Vo = KV, , where k& is a constant. (65)
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But from (53) and (54), (65) can be expressed in terms of the
variables of (64) as

i = MR +10) p _ pp. (66)
R,
Substituting (66) into (64) and gathering terms
I*laB® + ¢B® + {B + j]

+ I’[bB* + eB + h] + I[dB + g] = 0. (67)
Now I is an independent variable so that this equation can hold only
if each coeficient is simultaneously zero. In the linear term

dB+¢g=0

(68)
= 9.
d
Ignoring terms in y and noticing that I,M R, < 1 in (63)
) a] .
B~ ¥ TR, (69)

The constant B should be easy to identify. For small M, (low levels
of V,), B = ;. However, at the higher values of I, and V,, I,M;Ry,
can be on the order of (1 — «;). Thus, roughly speaking

Bz 18> L (70)

Substituting (69) into (67) our final coefficients to be equated to zero
n (67) become

aB* +cB*+ B+ j=0 (71)
bB*> + eB + h = 0. (72)
Substituting for a, ¢, f, 7 in (71) by comparison between (64) and
(63) ; ignoring terms in y:
B3I.M.R}, — }as + § + juM R, — ja.MR]]
+ Ba[aiMlRL + 3t — Fos — ‘%%MzRi]
+ B[}t — jo3 + 3c.M \R.] + [3 — 3] = 0. (73)
Gathering terms in Rp:
R}[I.M,][3B%] + Ri[—a,M,][B® + B]
+ R.[a;M,][3B° + B* + B] + ¢3B° + 3B + {]
—a[3B°+ 3B+ 3B+ 3] =0 (74)
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Using (70) we can ignore lower powers of B, and as M, being the prod-
uct of second order terms, is very small compared to the other coef-
ficients in (74). Thus (74) becomes

(ILM)RE — REBayMy) + £ — ay = 0. (75)

Now substituting for b, e, and & in (72) by comparison between (63)
and (64); ignoring terms in y:

B3 6 — %ay + a,M,R, — 31.M,R3]
+B[6 —ar + o MR,] + [56 — 3] = 0.
Gathering terms in RB;,:
Ri["‘Ian][%Bz] + RL[“J"L][BQ + B]
+ 8(3B° + 1B] — a[}B* + $B] = 0.  (76)
Using (71), (76) becomes
—(I.M)R} + Qa,M)R, + 6 — a, = 0. (77)

Equations (75) and (77) are the relations that must be satisfied to
satisfy (67), which in turn results from the requirement of a linear
input-output relation, (65).

APPENDIX B

Relating Current Gain Nonlinearities to the Bias Cwrrent

Riva® has shown that the small signal gain of a transistor can be
closely matched to an expression of the form
B = hfuumx[a logfu (If/IL‘ mux) + 20‘ loglll e loglf] (IC/IE lllllx) + 1]_1' (78)
Where

Bomex = maximum de current gain
I, s collector current bias where h.n.. Occurs
a = a constant characteristic of the transistor.

Il

Differentiating the denominator of (78) reveals that the maximum ac
current gain (Bm.x) occurs for I, = I.ux/e. Call this current I,,. Then

ﬁ = hfamax[a’ ]ngo ([r/Irp} —a 10gfﬂ € + 1]-1' (79)
At the peak in the 8(I,) curve, I, = I, and
anx = hl’emnt/(l —a 1Og::() e)' (80)
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Substituting for hremay in (79)

B = Buull + a(l — a logi,e)™" logi, (I./1.,)]7".
Then, for

a(l — alogi, )" log, e
-anx/[l + A ln3 (Ir/I,-,,)]

Il

a = 6 — Xinnx .
a 1+B Aamnx 2(14—)
1 + _pg|.."x In ?;
Where
da l da
Al, = a Al, = (ﬂtl + TI, Al, + Eﬁf A[f) Al,
_ da o 1da 0
Al, = a, AI.—i—dL Al 2dIfAI'
= a, Al, + 1ay AL} + %oy AL .
Thus
d
Qy = 2 d}x’
and
o _ | o day

a; = Sa‘ﬁ = 1.-)(_”'r
Now, taking I, = I, , from (84)

a = _iAﬂaiu; 1{1 (o/1.0) —
oBrmas [1 +'8—:::‘f"ln2 (I_;)]
at I, = I,. In essentially all cases
0.04 < II—” < 25
Bumax > 30

Aam < 0.15.
Thus, to within 10 per cent in the most extreme case
Oy g - (4Aa§mx/lgmano) ln (In/Icp) .
Then, from (86)
ag = (ﬁAainx/IanxIE) 11'1 (I.,/EI,,,) .

(81)

(82)
(83)

(84)

(85)

(86)

(87)

(88)

(89)
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Now to solve for A, notice that, from (78)

B(%r) = hiemaxla logly € — 2a logy, e log, € + 117" (90)

= hfemn:
But from (82) and (90)
hl’nmux = ﬁmnx/(l + A)- (91)
Therefore,
A= (ﬂmu - hfnmnr.)/hfemu (92)
where hgemax may be measured at
I. =1, ./¢ = I./e. (93)

APPENDIX C

The Qualitative Distortion Model

The purpose of this appendix is to support the qualitative picture
of algebraic distortion cancellation given in the text. The development
here is not intended to be rigorous, but rather to strengthen the reader’s
ability to share the author’s insight into the cancellation mechanism.
We have argued that the net distortion current, D, is the algebraic
difference between positive and negative distortion eurrent compo-
nents, A and B, dependent on output voltage and current, respectively.
Express this relation as

D=4 — B (94)

But, for 4 and B monotonic in voltage and current, the ratio 4/B is
a measure of the load. Define this measure as

A
R = B (95)
Now
D = B(R — 1). (96)
On a dB basis
D] D « 3
,010g§=2010g1113—1|. (97)

Fig. 12 is a plot of 20 log |R-1| as a function of B. Compare this plot
with that of Fig. 2, which was measured in the laboratory. The simi-
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Fig. 12 — Decibel measure of the small difference between large numbers.

larity between the nature of these two minima adds additional weight
to the idea that exact algebraic cancellation is involved in producing
the net distortion frequencies. Thus any dependence of distortion on
frequency should be compensated at distortion frequencies and not at
input frequencies, since it is at the distortion frequency that cancella-
tion takes place.



