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This paper considers the identification and synthesis of linear sequential
machines from their state transition tables. Necessary and sufficient con-
ditions for linearity are derived which form the basis of identification tests.
A sufficient condition leads to a method jor coding the system’s state vectors
in a fashion consistent with linearity but which does not entail trial and
error. The coding process 1s analytic in nature and allows the coding of
stale veclors independently of the coding or linearity of the output table.
Both the Moore and Mealy models are considered in deriving coding pro-
cedures for the input and output vectors.

I. INTRODUCTION

This paper develops a method for identifying and synthesizing
linear sequential machines using their state transition table representa-
tion. The basic objective is to construct a procedure which can be
efficiently implemented by a digital computer. Towards that end, we
develop simple and easily used preliminary tests which reject non-
linear systems to precede the time consuming synthesis, or state cod-
ing, process. The method for the coding of states is completely analytic,
with the result that trial and error processes are not required.

Consider the symbolic state transition table, Table 1.

The input vectors, u, have m components (2 < M =< 2"),* and the
next state vectors, s, , and present state vectors, s; , have n unspecified
components (N =< 2"). The vector components are defined over a
modular field, and here this field is taken as GF(2). Most of the results
obtained below can be easily extended to other prime fields.

In terms of the state transition table, a linear sequential machine

*This paper considers tables which have at least two distinct columns of next
states (nonautonomous syvstems).
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is defined as a system which changes state according to the equation

8iz = A.S.' + Bu, . (1)
A and B are n X n and n X m matrices, respectively.* A linear se-
quential machine is called fully linear when its symbolic output vector,
Zin, ODCYS
z;. = Cs; + Du, (2)
where C and D are matrices of proper size.
When D is the null matrix, the last two equations represent a Moore
model of the linear system. Otherwise, the equations describe a Mealy

model, Cohn and Even have given a method for model conversion in
linear systems.*

TasLe |
Uy Uy v Uyt U
8 81 Szttt S vt Sy
S 833 Szttt 82p ctt Sanw
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Sy Sx1 Sxz ottt Snx " Swm

In recent years linear sequential machines have been studied ex-
tensively. The motivation for this activity stems from two sources.
Not only do linear sequential machines exhibit interesting mathemati-
cal and theoretical properties, but they have found a wide range of
practical applications; for example, memory addressing circuits, com-
puting over finite fields, counting and timing circuits, error correct-
ing codes, encoding and decoding circuits, and generating pseudo-
random and minimum-time test sequences.

As persistent research led to greater understanding, several investi-
gators developed synthesis procedures for linear sequential machines.
Davis and Brzozowski? have reported a method for the synthesis of
nonsingular systems (systems in which, under each input, every pre-

*The addition and multiplication operations are modulo 2. Also, the entries
in all matrices are from GF(2).
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sent state goes into a unique next state). Their technique is based
upon an iterative search over partitions of the system states.

In a mathematically elegant treatment, Cohn and Even®' have
derived a synthesis procedure which is free of trial-and-error processes.
Coded output vectors are used to generate the state vector codes. Not
only is it necessary that the system have a linear output, but the
more severe restriction that the output vectors have been given, a
prior, a linear coding is also required.

Yau and Wang® have disclosed a synthesis technique which does
not require a linear and coded output. The construction of the A
matrix by examination of a transition graph, which describes the state
transitions owing to a given input, leads to the coding of the state
veetors. The method requires the system to have 2" states. When N <
2", a sufficient number of “don’t care” states are introduced to com-
plete the state transition table; however, no suitable procedure is
given for the specification or coding of the “don’t care” states. The
lack of complete freedom from trial-and-error routines is another dis-
advantage of the method.

In this paper, necessary and sufficient conditions for linearity of the
state transition table are derived which lead to the development of
the procedure for coding the state vectors. The method acecommodates
linear systems in general (both singular and nonsingular). The syn-
thesis procedure is analytic and, therefore, no trial-and-error routines
are necessary. Also, the state vectors are coded independently of the
output table so that the coding process is able to treat systems that
have linear or nonlinear, coded or uncoded, output vectors. Both the
Moore and Mealy models are considered in deriving coding procedures
for the input and output vectors.

I1I. NECESSARY CONDITIONS FOR LINEARITY

Forming the sum of two next states, say si; and s;,, under the same
present, state, s;, yields
Siz + 8y = B(uz + uv)r

since A(s; + ) = A0 = 0, mod (2). Since the sum is independent
of the present state, it follows that

Siz+ 81y = S2e F 82y = 00 =8+ 8y, = - = Sy: T 8wy

for each x and y. Let the equality of these sums, for a particular z
and v, be denoted by the term state sum, and call the individual sums
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of pairs of next states component sums. For example, the state sum,
811 + Si2 = 82y + S22 = 831 + Ss2, consists of the component sums sy;

+ 832, 821 + S20 and sa; + Ssa.

As a direct consequence of the state sum: if a present state has two
identical next states, under two different inputs, then the columns
which correspond to the inputs in question are identical, or the table

represents a nonlinear machine.*

The state sums of a linear system must be consistent over all pairs
of inputs. For example, assume that a state sum contains component
sums (written in terms of present state symbols) s; + s and s; + 8s.
The state sum is consistent only if so = sg; however, if the output ta-
ble does not allow the reduction of the state transition table by merg-
ing s; and ss, then the state sum is inconsistent and the system is

nonlinear.
In order to check state sums over the entire table only M — 1 state

sums are required. Taking the input u, as a refcrence, the state sums

sut s, = =81+ 8, =" =58+ sm
fory = 2,3,..., M cover the table. Since, if sy + sj, = su + 8y for
all v of interest, then for any =
Siz + 8;y = 8= + 81 + 85 + 8
= §;; + 81 + 8 + Sir
= 8;; + Siy -
Therefore, it is not necessary to form state sums for all possible pairs
of inputs. For example, consider Table II.
TasLe II
Uy Uy Uy Uy
8, 8 8 8 8
S 8 S5 8§ 8
S3 S5 8 & 0§

8 & 8 8 8

From inputs u; and us, 8; + 82 = §3 + 84 (redundant components sums
have been deleted) is consistent in the first two columns. From u; and

* A similar result has been obtained by Davis and Brozozowski® using a different
approach.
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Uz, S2 + §3 = 8§ + 84 and from w; and ug, 52 + s4 = 8; + s3. The last
two state sums are rearrangements of the first and therefore, the state
sums are consistent over the entire table.

Another symmetry feature appears in singular linear machines
(those characterized by a singular A matrix*). If A is singular, then
for some present states the rows of next states are identical.? This
follows since a singular 4 has rank r < n, and therefore, the null space
of A has dimension n — r, so that 4s; + Bu, = s;; has more than one
solution for s; given s;, and us.

The reduced state transition table of a linear sequential machine
has additional interesting properties. In what follows only reduced
state transition tables are considered unless stated otherwise.

As a preliminary, consider

Theorem 1: If A s nonsingular, then the reduced table of a linear
system has an even number of states.

Proof: If A is nonsingular, under each input, each state will appear
once, and only once as a next state. Thus, the next state columns are
permutations of the present state column. As a consequence, each of
the state sums involves all of the system’s states. If the number of
states, N, were odd, then the same state must appear in two distinct
component, sums of the same state sum. That is, the state sum con-
tains an equality s, 4+ s; = s, + & which implies s; = s,. But this
contradicts the statement that the state table is reduced.

Next, a starting result which connects the number of system states
to the number of distinet inputs® is deseribed by

Theorem 2: For a reduced, nonsingular, linear sequential machine
which has N states, the number of distinct inputs cannot exceed 2, if
N/21s odd, or

24+ N > 2

=2

where t is the smallest integer for which N /2t is odd.

Proof: Consider the state sums associated with the first two dis-
tinet inputs, u; and w..

811t 812 = 8o F S = 0 =8 F 8= 00 =8y + sy 3

* Common terms from linear and abstract algebra which appear in this paper
are treated in several texts; for example, see Birkhoff and MacLane.*

Tu. is said to be distinct from u, if and only if the columns of next states
under wu. and u, are distinct.



348 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1968

Taking w, with u,, a third distinet input, the following state sum is
obtained:

81y + 8ir =82 F 82, = 0 =8y F 8 = 000 = 8w + sv: . 4
Writing segments of equations 3 and 4 in terms of present state sym-
bols as 8; + 8; = 8o + 8, = 8, + 8y = ..., and & + 8¢ = s + 8z =

, respectively, leads to the conclusion that state sum consistency
requires that equation 4 contain a sum s; + ;. For if it did not,
then locating the terms of equation 4, which contains sy, say s, + s,
leads to 8; + 8o + 8; + s = 0. From equation 3 &, + s; + s + s = 0.
For compatibility, s; = s;; so that equation 4 must contain s + s; or
contradict the reduction of the table. It then follows that the state
sums over distinet pairs of inputs must be mutually derivable via
component sums.

Let the component sums obtained from the first state sum from
1, and us be denoted as follows:

S, =83+ 82, 00, 8 =81+ 8z, , Sy = Sy + Sw2.
Since there are N/2 distinct sums, let the symbols S, , S,, «-- , Sy
denote the distinet component sums. Then equation 3 can be repre-
sented by S; = S, = = Sy .

In view of the foregomg, a necessary condition for hnearlty is that
all other state sums must be derived from the sums S,, -+, Sy,2 -

In generating new state sums the S;s are paired and the component
sums which are consistent with equation 3 are formed by transposing
terms in the resulting equation. For example, pairing S; and S; can
yield either of the two equations which do not appear in 3:

Sa 4 81 = 82 + 82,
or
S+ Sz = 8;1 + Sia

Then it is clear that each pairing of the Ss yields two possible state
sums. Therefore, the number of unique pairings of the Ss, where each
pairing oceurs only once (this insures that no component sum will appear
in two distinet state sums), is equal to half the maximum number of
distinet inputs in excess of the first two.

Separating the S; according to subscript parity gives:

Sl Ss e SN/R-]
Sz S.; L SN/z .
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If N/2 is odd, then one S cannot be paired. Therefore, one sum will
occur in more than one state sum. Since this is inconsistent with a
reduced linear table, a system for which N/2 is odd can have only two
distinet inputs. If N/2 is even, then the number of unique odd to even
subscript pairings is N/4. The odd-to-odd and even-to-even pairings
can be enumerated by considering a single row. It is advantageous to
transform the subscripts as follows:

S;=Sz, S£=S4,"',S:=Sz,‘-
Then, separating the new symbols by subseript parity gives:

ST 83 S

S: Sy Sk

When N /4 is odd, no pairing is possible. If N /4 is even, the odd-even
subseript pairings number N/8. Clearly, the odd-to-even pairings of
the S’ can be treated by reapplying the same transformation to the
subseripts. Therefore, the number of allowed pairings is

N Y 27,
i=2
where ¢ is the smallest integer for which N/2¢ is odd, if N/2 is even.
Since each pairing provides for the generation of two distinet columns,
in addition to the first two columns, the number of distinet inputs is

2,1if N /2 is odd or not greater than

24+ N D2 otherwise.

This completes the proof.*

Theorem 1 leads to a very simple test for the identification of non-
linear tables. The number of states in the table is used to determine
the maximum number of distinet inputs. Then, the table is rejected
as nonlinear if the number of its distinet inputs, or, equivalently, the
number of distinet columns, exceeds the maximum. Table IIT illus-
trates the restriction which linearity imposes upon the form of the
state transition table.

There are similar, but weaker restrictions associated with the state
transition tables of singular linear machines. Consider a system which
has N states such that each next state column contains d(<N) distinct
states. (The singularity of the A matrix requires that some rows of

* A smaller upper bound can be obtained when N = 27, See the Appendix.
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TasLE 111
Maximum Number of

N Distinet Columns or Inputs
4 4
6 2
8 8
10 2
12 8
14 2
16 16
70 2
72 56
74 2
76 40
526 2
528 464
530 2
2086 2
2088 1568
2090 2
2092 1048
2094 2
2096 1836

state transition table to be identical.) If the singular matrix A has rank
r, then the maximum number of present states which yields the same
next state (that is, the maximum number of times a row can be re-
peated) cannot exceed 2" ". Since there are N(=2") states, N2'™ =
d £ 2". r # nimplies that each column cannot contain all of the system’s
states so that the reasoning of the last theorem cannot be applied.
In order to gain some insight into how linearity limits the form of the
state transition table, consider the case where N = 2". That is, the set
of state vectors form a complete set of n-dimensional vectors with
components over GF(2). Let S denote the set of present states,
(81, 82, **+ , 8x), 81, is defined as the set of distinct next states, (s;.,
S22, **+ , 84z) under the input u., and it is assumed that u, = 0.
Consider the following

Theorem 3: A linear system which is associaled with a singular A
matriz of rank r, a null input vector, and which has all stales appearing as
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next states must have at least 2"~ distinet tnput vectors, and S;, and S;, are
either identical or disjoint for all x and y.

Proof: Tirst, it will be shown that the S,, are cosets of the group
{8, +1}. Since S is a vector space, 0, s; + s, are members of S for any
8; , 8; which belong to S. If v, = 0, then the veectors of S,, are a subspace
of S because:

(7)) A() = 0e S, and

(%) As;, As; £ S, implies A(s; + s;) € Spy
(This follows since s, + s; = s, ¢ S and As, & S;; .)

The nonull input, ., generates cosets of the group {8, +}, because
Bu, is an n-component vector which must belong to S and therefore,
Su + Bu, = Slz-

It is well known that cosets are either disjoint or identical. Since
0 e Sy, Bu, ¢ S,, implies that S,, and 8,. are disjoint. Therefore, no
member of S,, can be used as Bu, if the table is to have a column which
contains states not found in column 1. If S,, and S,, are to be disjoint,
then Bu, e (S — S,,); that is, Bu, can be selected from a set of 2" — d
vectors. Continuing, the next distinet coset is associated with an input,
u, , such that Bu, has not appeared in any of the preceding cosets.
(If it has, then 0 ¢ 8;; + Bu, .) Then, Bu, is among 2" — 2d vectors.
The last unique cosets is generated from a set of d vectors, or 2" —
kd = d. So that there are k + 1 = 2"/d unique cosets of next states in the
table. If each present state is to appear as a next state, the table which
contains the minimum number of distinet columns must be comprised
of one column from each unique coset. Since A has rank r, d = 27;
consequently, there must be 2"”" distinet inputs.

Also, since each unique coset can form 2" distinet columns, the num-
ber of distinet inputs is not greater than 27, as expected.

This section has derived several properties that must be exhibited
by the state transition table of a linear sequential machine. The con-
sistent state sum requirement will play a central role in the code
assignment problem.

III. SYNTHESIS! THE ASSIGNMENT OF LINEAR STATE CODES
To each symbolic state, s, it is necessary to assign a p-dimensional*
vector, v, with components over GGF(2). That is, si; = vi,.
The vector assignment must preserve linearity ;
L
v, = Av; + Bu, .

*p=n
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Linear systems must give rise to consistent state sums; therefore,
the vectors must obey the same sums. Since state sums are only neces-
sary conditions for linearity, a nonlinear state transition function may
exhibit consistent state sums.

For any sequential machine the general state transition equation
can be written as

véz = AU, + Bu: + fis H (5)

where fi, is a p-dimensional vector which is a nonlinear function of
the present state and input vectors. When the symbolic states obey
the state sums, (equation 3), the vectors must be assigned such that

Uiz +vlu = Vo, +l"21.- = =V +vv’y S +vas (6)
for each z and y. Therefore, from equation 5 it is clear that the non-

linear function obeys the same restrietion,

fetfw=foutlo==futfo==futfnm. O

The selection of the A and B matrices exerts some control over the
nonlinear function. When 1, = 0,

Alv, ‘Uz! e ] 4 U | fai | ifm] = [ Ivm ]Upl]
where
[ | va | +- | 0]

is a p X p matrix whose columns are p linearly independent vectors.”
Then,

f11=f21="'=[p1=0 (8)
can be achieved by
A = (v, l Vg | | vallv: | vz E Ii'v]—l
Similarly,
Al |U1 | i |U1] + Blu, 1'“"3 1 |um+l]
+ [fre |f13 1 lfl..m+ll = [t {”13 I Ivl,m-i-i]l
where s, . . . , w41 are m linearly independent input vectors, yields
fz=fiz =" = fimer =0 )]

*In cases where the system is singular the matrix of next states (the matrix
on the right side of the last equality) must be selected so that A has the required
rank. The rank of 4 can be determined directly from the repetition of rows in
the transition table.
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when

B = [1’12 + vy |U13 + vy, l |Ul.m+1 + Uu][uz lus I |um+1]_1'

Additional constraints on the nonlinear funetion become clear when
equation 7 is examined in light of equations 8 and 9. For x = 1, a
sample equality in equation 7 is

fil + f-'v = f:‘l +f:'v-

When ¢, j £ p, fii = fa = 0 (by equation 8); so that f;, = f., . Equa-
tion 9 indicates that f;, = 0 fory = m + 1, j = 1. Therefore, f,, vanishes
when ¢ < pand y £ m + 1. Equation 7 implies f;. = f;, = 0 and f;, =
fiwforz,y =m+ 1,7 < p <j. Finally, f;, = f.. + f;, whenz < m +
1 <y,and j £ p < 7. Table IV below summarizes the restrictions on
the nonlinear function for systems which exhibit consistent state sums.

TasLE IV
u, U, e Uiy Upn 42 et WUar
v, 0 0 0 Fimee Iin
vy 0 0 ce 0 constant s constant
v, 0 0 0 fl.m+2 fl-lf
Vpir fprin M) foira fp+l.l + fimsz e fp+|.1 + fiur
Un f.v.l M _f.\‘l f,n + f1.m+2 e f‘vl + fl.u

A particular code assignment can be verified by comparing state
transitions along segments of one row and one column with the transi-
tions predicted by the linear equation. If f;, and f,, are found to vanish
forp <j= Nandm 4+ 1 < & = M, respectively, then the code as-
signment is acceptable. The necessary state transition checks number
M+ N —m — p — 1 (compared with MN — p — m — 1 checks if
state sum consistency is not verified before a code assignment is at-
tempted). The implication is that sufficiently large values of m and p
will foree the nonlinear function to vanish over the entire table. While
it is undesirable to inerease m and p (since this requires more memory
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elements) it is certainly possible to do so in principle.* However, in
computing the A matrix it was convenient to construct a nonsingular
matrix of p linearly independent vectors. The state sums (equation 6)
which contain no more than N/2 component sums imply that at most
N/2 + 1 states can be assigned vectors independently.

Therefore, not more than N/2 + 1 of the coded state vectors are
linearly independent with the consequence that it is impossible to
form a nonsingular matrix of coded state vectors when p > N/2 + 1.
Where p exceeds this limit it is possible, in some cases, to express some
elements of the A matrix in terms of the remaining elements. This
method for finding A is far less attractive than forming a nonsingular
matrix of coded state vectors; accordingly, the bound p = N/2 + 1
will be enforced. The development which follows demonstrates that
the limitation on p does not obscure a system’s linearity. Similar con-
siderations lead to m £ M.

Turning to the state coding problem, the state sum will play an im-
portant role in the generation of equations which lead to the linear
coding of states. First, attention will be concentrated on nonsingular
systems, then a later section will treat singular systems.

3.1 Nonsingular Systems
Consider the sum of two component sums
Ve + vy + 05 + v = 0;
it 18 true that

A(v.', + Viy + Viz + U:‘u)
= Vin + Vit + Vinn + Vi1 + finn + fin + fim + fin
= 0.

(The additional subseript indicates that vy, is the present state which
goes into Vi, under the null input, u,.) Taking v, viy, and v;, among
the p independent vectors implies fiz1 = fiyn = fim = 0. Furthermore,
assigning vectors such that

Viet F+ Vi + Via + Vi = 0 (10)

forces f;,; to vanish. The sum (10) must be consistent with the state
sums (that is, no state sum can contain an equality of component
sums which contradicts equation 10).

*When the input vectors are given as coded it is possible to increase their
dimension by a translation,
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By similar treatment of all component sums of a state sum, the
nonlinear function can be made to vanish in the first column (and
therefore, over the first m + 1 columns) provided that the attendant
increase in the value of p (owing to the designation of independent
vectors) does not cause it to exceed its bound.

If all component sums are treated, it is possible to generate an
equation of the type 10 in which all four of the vectors have been
previously designated linearly independent. Clearly, the equation con-
tradicts the independence of one of the vectors; then, any one of the
vectors must be deleted from the set of linearly-independent vectors.
The nonlinear funection corresponding to the deleted vector can be
made to vanish by satisfying the type 10 equation which is obtained
when the 4 matrix operates on the generated equation in question.
Consider the following process for treating a single state sum.

(7) Select a component sum as a reference sum. Add another com-
ponent sum to the reference sum.

(i) Operate on the resulting sum with the A matrix to obtain an
equation of the type in equation 10. Designate linearly-independent
vectors as required and mark the vectors for which the associated
nonlinear function has been forced to vanish.

(#1) Verify that the equation obtained in step i is consistent with
the state sum and the other equations obtained in . If all vectors
in the equation generated in 1 are linearly-independent, delete one
of the vectors from the set of linearly-independent vectors and repeat
step 71 using the generated equation as the sum upon which A operates.

(1v) If one of the type 10 equations has three linearly-independent
vectors, use it as the sum in repeating step 2. Otherwise, add another
component sum to the reference sum and repeat step 1i. Repeat i and
1z until an inconsistent equation is generated (the system is no-
linear), or until all vectors have been used (the system is linear).

The first time the process passes through step iz, three linearly-
independent vectors are required; in subsequent passes at most one
additional independent vector is needed. After the first pass through
the process N/2 — 2 unused component sums remain. Therefore, not
more than N/2 4+ 1 independent vectors are required for the process,
precisely the upper bound on p. If the state vectors were coded using
this process, the system would have an undesirably large number of
memory elements. Therefore, this process is not an efficient design
procedure. However, completion of the process implies linearity of the
first m + 1 columns with the result that the A and B matrices can be
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determined. Linearity of the table over the remaining columns is
dependent upon the coding of the input vectors.

As previously indicated, linearity over all of the columns can be
attained, in the worst case, by increasing the dimension of the input
vectors. In this case, m = M — 1 would yield a linear system. If it
is assumed that the input vectors are uncoded, or can be recoded,
then it follows that completion of the process is a sufficient indication
that the system is linear. (The problem of coding input vectors is
treated in a later section.) The process will be referred to as the
maximum memory process.

In order to illustrate the maximum memory process consider the
reduced table, Table V.

TasLe V
0 1
S, 8, Sg
S5 87 Sg
83 S Sy
Sy 8y 8y
85 Sg 8q
S 84 8a
87 S 8,
Sy 84 S5

In terms of the coded vectors the state sum is

v, F v =0+ 0 =0+ 0 =0+ 0 (11)

(which is consistent over the table). Using v, + vg as the reference
sum,

A, + vs + v7 + vg)
= fi.0+ fo.o + fr.0+ feo + 01 + 04 + v + v; = 0.

Designating v, , vg, and v; as linearly-independent vectors and satisfy-
ing the equation

vl+v4+yﬁ+”a=0 (12)
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yields

jl.n = fo.0 = fr0 = fa.o = 0.

However, vectors vy, vg, and vy appear in two component sums of
equation 11, the first and last; this implies

v+ ve v+ v = 0.

Adding this to equation 12 leads to v» = vs. This contradicts the re-
duction of the table; therefore, equation 12 is inconsistent with the
state sum. The system is nonlinear.

As pointed out, the maximum memory process is not a suitable
vehicle for the economical design of linear sequential machines. The
process extracts a limited amount of information from the state
transition table. This can be improved by considering all of the unique
state sums (that is, from the M — 1 state sums by pairing the first
input with every other input), and using such equations as 10, which
the process generates, to better advantage.

Consider the following procedure:

(7) Form the M — 1 unique state sums.

(7)) Select a reference sum from one of the state sums. Add another
component sum (from the same state sum) to the reference sum.

(i) Operate on the sum with the A matrix. Designate linearly-in-
dependent vectors as required. Obtain an equation like equation 10
and verify that it is consistent with the state sums. Mark the vectors
in all state sums and equations of this type which have been guaran-
teed a linear state transition under the null input by this step. If all
vectors in the equation obtained have been designated linearly in-
dependent, delete any one of these vectors from the set of linearly-
independent vectors and repeat this step using the equation as the sum
upon which A operates.

(7v) In the state sums where at least one component sum has had
both vectors marked in step 7, search for a component sum which has
one vector marked or, search over the type 10 equations for one
which has three terms marked. If such a component sum or equation
is found, use it in repeating step #i. (Since three of the vectors make
a linear transition, the nonlinear function which is associated with
the fourth vector can be made to vanish in step %2 without designating
another linearly-independent vector.) Otherwise,

(v) If the sum of the type 10 equation is unique and has two vec-
tors marked, then use it in repeating step 4ii. Otherwise,



358 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1968

(vi) Form a new sum for use in step iit by adding the reference sum
to another component sum (from the same state sum). Repeat step .

The process is repeated until all of the vectors have been marked
in step i (the system is linear) or until an inconsistent equation is
generated in step @i (the system is nonlinear). The coding process for
the state vectors is initiated by assigning arbitrary, but linearly in-
dependent, vectors to the state vectors so designated by passes through
step ##i. The remaining state vectors are coded using the type 10 equa-
tions which were generated in step i in conjunction with the state
sums.

The application of this synthesis procedure is more straightforward
than its description would indicate. This is best illustrated by an
example. Consider Table VI.

TasLe VI
6 @ G

0 0 1
8 s 84 8,
82 8 Sa Ss
83 8s 8y Sg
8y S; 8, Ss
85 Sy 85 87
85 S; Sg 83
Sz Sg 85 81
Sg 87 Sa 81
8y S11 812 8o
810 Sg 810 S
S S10 So 812
812 812 Sn S10

In terms of the coded vectors, the state sums are: from inputs (g) and

(o)

ve oy = F v = Vo + v, =05 F s = Uy V12 =V + Va0, (13)
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: 0), (0)
from inputs (O and e

v F v, =0, Fvg =03+ v =0 F v =0 F 00 =00t V2. (14)
Equations 13 and 14 are mutually consistent, and both are consistent
over the table.

The observation that Avys = vy5 leads to the assignment of the null
vector* to vy (therefore, fi20 = 0). Then in step @ of the synthesis
process, take vy; + v of equation 13 as the reference sum, and add
it to vs + vs of equation 13. In step i form

Ay + vy + v5 + v9)

= flz.o + fu.o + fs.o + fso + 02 + 000 +vs + 07

Since fiz9 = 0, taking v;; and v; among the linearly-independent vee-
tors and the satisfying equation

Vi + V0 + vy + v =0 (15)
leads to fi1.0 = fs50 = fso = 0. Also, the set of vectors for which the
nonlinear function vanishes, denoted by L, is

L = {vi2, 011, s, Vs}.
Equation 15 is the sum of two component sums of equation 14. There-
fore, equation 15 is automatically satisfied.

At this point, component sums do not satisfy the conditions of step
iv. In step v equation 15 is not unique. In step vi taking v» + v; with
the reference sum yields

A@ + vy + 02 + v7)

= fi2.0 + firo+ fao + fro + 002 000 + 00 + 05 .

Since fi20 = fi1,0 = 0, designate v, as a linearly-independent vector.
Then,

fz.a = f?.o =0
if
Vs + o+ v, + 15 = 0.
The last equation is a rearrangement of terms in state sum (14) and
therefore it is automatically satisfied.
* The assignment of the null vector is somewhat arbitrary. It has been shown

(Yau and Wang’) that the null vector can be assigned to any state which is
mapped into itself under the null input.
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Updating the set L,

L= {%z;”ll:vs,vvaysxvz}'
The conditions of steps iv and v are not satisfied; in step vi, adding
v, + vg and the reference sum yields
A(Uw + o, + 0 + U.’s)
= f12.0 + fu.u -+ _fl.,O + fa.u 4+ vy + Vo T+ Vs v

Since fioo and fi;,0 have been shown to vanish, including v; among
the linearly-independent vectors leads to

fl,u = fs.o =0
if
Vig + o + Vs F V. = 0.

The last equation is the sum of two component sums of equation 14.
The set L becomes

L= {7)12,vu:”a:”‘h”s;”a:”z;”nl-

In equation 14, v; + vs, and vz + vs have both vectors marked in
step 1t while vg + v, V4 + V7, V11 + Vg and vy + V12 each have one
vector marked.

In step 7v, forming

A@, +vs + 0o +v) = fiot+ fs.o + fo0 + foo 06 +v7 +vs + v, .

Since f10, f2.0, and fgo have been shown to vanish, fso = 0 if

vg + v v+ v =0 (16)
Equation 16 is unique and consistent with the state sums.

L = {Ulz,b’u,L’a,l’rsvsgvs,vay?}z;”l}-

Proceeding more quickly, 4 operating on vy + vs + v4 + v (from
step 1) yields f4,0 = 0 and

vg + v +va +vs = 0. (17)

The last equation is unique and consistent with the state sums. Up-
date the set L; let A operate on vy + vg + v11 + vp (from step ) to
obtain fg o = 0 and

Ve + V7 + Vo + v =0 (18)
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Equation 18 is unique and consistent and also has three vectors in the
set, L. Update the set L.

From step 1, A(ve + v7 + v + v11) yields fio0 = 0 and v5 + vs
+ vy 4+ 210 = 0 (which is the sum of two component sums of equation
14). Update the set L. Step iv gives vi1 + v1a + vg + V10 Which, when
operated on by A, yields

fw.u =0 and Vip + 2 F v vy = 0
(which is the sum of two component sums). L contains all of the
state vectors; therefore, the system can be coded.

There are four linearly-independent vectors (p = n = 4). Make
the following assignment of the linearly-independent vectors:

0 0

vy =

i

===

1 0
0 ? 1 ’
0 0

S oo -

Since v,, = , all of the component sums in equation 13 equal

===

vy F v =

o e R

Then, from equation 13 it follows that

1 1

0 1
1'h=1'5+0=0,

0 0

1 1

B o |0

re= gl =l

0 0

and

(=

— e )

o
o o -

(
v3:v1+t0 =
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Similarly, the component sums in equation 14 are each equal to v, +

1
v, = (1) with the result
1
1 1
1 1
vg =12 + ol = |1
1 1
1 0
1 1
v, = v + ol = h
1 1
1 0]
1 1
vg = v + 0 = 0
il 11
1 1
1 1
Vio = Uz + 0 = 0
1 1

To calculate A consider

A[”n ‘Us |”2 |U1] = [vlﬂ ‘U+ |Ul |Un]

1 00 0 [1001
Jotr o0 _ 1 1oaf
00 1 0 010 1
000 1 111 1]

The matrix B satisfies

1
B{' 0‘{ = [1'4 + vy i"z + i'n];
0 1
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with the result

[1 1
p_|0 1]
0 0
0 1

Since equation 16 and 18 are consistent with the state sums and
since they were not used in the coding process, they are redundant.
It is easy to verify that the equations are satisfied by the code
assignment.

The process produced a code assignment for which the coded state
vectors had the minimum number of components. This will not be
true for all tables. Considering the way the process extracts infor-
mation from the table leads to the coneclusion that the attainment
of the minimum component coding vector depends upon the con-
nectivity of the sequential machine. In a case where the machine is
not strongly connected there is a possibility the process will require
p > n* (The last example involved a machine which was not
strongly connected.) In order to illustrate this consider Table VII.

TasLE VII

0 1 0 1
8 86 84 Sq 511 S12
Sy 8 Sy S10 Sq S1o
Sy Sa 87 S Sto So
Sy S 8y 812 S12 S
S5 8y 84 S13 Si4 S1s
Sg 85 Ss Si4 S15 S14
Sq S8g S5 S5 Si3 S18
Sg Sz Sa S S16 Si3

The coded vectors obey the state sum:
vy Fve =0+ v =1+ v =15+ s
=0y F V2 =0+ Vo =03 + Ve = Vs + Vg5 . (19)

* A sequential machine is said to be strongly conneected if it is possible to reach
any state of the system starting in any initial state.
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Taking vys = 0 leads to the seection of v;3 + 56 as the reference
sum sinece it is an advantage to exploit the fact that fige = 0. For
brevity, the results obtained from step i of the synthesis process are
shown in Table VIII.

TasLE VIII
Additions to
The Set Linearly
The Sum A Operates The Equation L Inde-
Upon Obtained pendent

Vs + 0y s F e Vet UrF v v =0 0,03 ,0s,0s Vs,V

Vo Fvr vt vs veFvetosto;=0 Vig , V7, 04 V7 , V14

Vg v tvetos v tvto; ;=0 Vg
Vg F s F o F 005 Ve F Vs F v+ =0 U1s
Ve + v + 07 + 0 ”1B+Uu+l?1+vg=0 Uy
o F oo Fvs vt v tv, =0 Uy
Vo F ot dvs vt ot vetv.=0 Uy

At this point it is observed that vy, vig, v11, and vy are not in L,
and more importantly, it is not possible to involve these vectors in a
relationship by application of step 7 without introducing another
linearly-independent vector. By continuing the process it can be
demonstrated that the system is linear.

A, + v3a + 00y + v) vields [0 = fi2.0

when

vy + vy + o + 2 = 0. (20)
Then, A(vig + vis + vio + vi2) leads to fioo = fizo
when

Ve + U5 + Vi + vy = 0. (21)
A, operating on the last equation, gives fy o = fi2.0
when

e + s+ 02 v, =0 (automatically satisfied). (22)



SEQUENTIAL MACHINES 365

The system is linear since designating vy» as a linearly-independent
vector leads to

]’12.0 = fn.o = fm.n = 111.0 = 0.

It is also of interest that the set L which was obtained by the process
can be coded using the four linearly-independent vectors. This will
be true in general.

In order to insure realization of the transition table with the least
number of memory elements, it is important to develop a means for
keeping p at its minimum value, n. First, a general method for the
reduetion of the number of vector components will be developed. Then,
the method will be applied to the problem at hand.

Let the set L, denote the largest set L generated by the synthesis
process using n linearly independent vectors; let L, denote the set of
vectors which require additional linearly independent vectors in order
to become members of L. The n-component vectors y are members of
L, , and the n-component vectors 7 are in L..

The members of L, can be coded. Taking the first n vectors of L, as
linearly independent (since order is unimportant), the calculation of 4,
after the coding, leads to

Ay [ ye | oo Lyl = [0 | Yao | -+ [ Yol
This can be simplified by coding the linearly-independent vectors such
that (1 | ¥2 | -+ | ¥a] = I. (the n X n identity matrix). Then,
A= [y | Yo | = | Uuol-

Suppose the set L,., is tentatively formed by designating another
linearly-independent vector. It is clear that the vectors in L,,, (and
L...) have n + 1 components. In order to preserve the coding of L,
take (g) ¢ L., where y ¢ L,. That is, the vectors which have been
coded over n linearly-independent vectors are increased by one com-
ponent (which is taken as zero. Members of L, which become members

). Let (g'i“) denote the (n 4+ 1) linearly-

of L,., will be denoted as (?IJ

independent vector where ... is any coded vector not in L,. The
(n + 1) X (n + 1) matrix A is given by
Lﬂ_yl Y2 Yn I;'nn-]; _ ’7?1'10 Y20 Yno :t?,.ﬂ.ow‘*.
. | = |

01lo 0] 1 L0 ] O 0 1

* If §us1 and Fayr,o are in different sets (Ln or L,), then the known A matrix can be
used to determine the coding of the vector which is in L, .
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From the previous coding of L, , it follows that the left side of the last
equation can be written as
I yn+l
i L]

Therefore, it can be verified that

1 — £ AgnJrl + gn+l.0]
4= [0 S e (23)
Observe that if A has the form
- A0
A= I:O_‘_ljl ) (24)
then A operating on any vector which has the form (?17) will yield a

y
0

another vector where the last component is zero. Since all of the n
component vectors y (of L,) and all n component § vectors have different
codes, then the last component of the vectors in L,., can be deleted.
Also, the matrix A (in equation 23) is the required matrix.

In view of the foregoing, a code transformation, acting on the coded
g, must be found such that 4 has the form of equation 24. It is well
known (for example, Cohn and Even') that the code transformation
y' = Ry, where R is a nonsingular matrix, cannot alter the linearity
of a system. From the state transition equation 1 it is easy to show that
this type of code transformation produces a new matrix of the form
RAR™.

It is required to find an R such that

vector of the same form. Similarly, all vectors ( ) are mapped into

R = |4 _0]_
RAR™ = [O ’ 1 (25)
Comparison of equations 23 and 24 indicates that E must have the form

R = [f) T]- (26)

1
Using equation 26 in equation 25 leads to the following restriction
on the vector 7"

Agn+l + gn+1.0 = (‘A' + In)T- (27)
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Also, applying the coding transformation yields

w(t) - (&)
#(0) - (717)

7 + T cannot be a member of L, if the (n 4+ 1) component is to be

deleted.
Therefore, the process of reducing the vector components by one is:

and

(#) Determine the vectors T which satisfy (27).
() Of the vectors obtained in ¢, select one which preserves the
identity of L, .

Returning to the example, it can be verified that the following is an
acceptable code for all of the states except vy, v1o, 11, and vy, :

-

1 0 1 0 1
1 0 1 1 0
0 0| 1 0
S R
L1 0 L0 0
0 0 0
Uy = g , V1 é , and »;,; = g .
1 1 0

The corresponding A matrix is

0010
L0001 1]
100 0
| |
1 1 0 1}

The set L, is {vo, vi0, V11, 012}. Set v, equal to any vector not in L, ,
for example
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~

Vg =

(= =]

From the table vg o = v11. To determine vy;, add equations 21 and
22. The result is

v, = s t Ui + v =

00 1 0t 1 0

00 1 110 0 1

Avy + o0 = + = P
1 00 01 1 0

] 0

—_——

Then,

and

—
-0 = O
(= N
o o = O

Substituting in equation 27 yields

1 010
1 1 1
010

— = O
(=T == R e

An acceptable solution is

—occ o
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1 0] 1
d 0 0 0 .
since the new v, , 1 + ol = 11| is not a member of L,. From
0 1) 1
equations 20 through 22,
1 1) 1 1
L= |0 o |1 =0 nd - |1.
Iy = 1 L] U= l 1 'y = 1 , Vya 1
1 L1 0 0

It ean be verified that this is an aceeptable coding.

3.2 Singular Systems

The synthesis procedure which was developed in the last section
can be readily extended to treat the coding of singular systems.

Consider a state transition table that has d (d < N) distinct rows,
For linear systems, tables of this type have columns of next states
comprised of sets of d distinct entries. Therefore, the state sums
(with respect to the first column) have the form

by F V= =0y 0= = vy + Vu,
forx = 2,3, .-, M. (28)

In general a given table ean have columns that are disjoint sets of
states. Also, when 2d < N, these columns can generate state sums such
that the only state vectors two state sums may have in common are
from the first column. State sums of this type will be called distinct
state sums.

An attempt to apply the synthesis algorithm of the last section
to a table which has distinet state sums can lead to undesirable
results. Since the equations determined in step i of the algorithm
can contain only the d distinct vectors of the first column, and since
all state vectors must be guaranteed a linear transition to column
one, it is clear that in step v at least one linearly-independent vector
must be designated for each distinet state sum. As a consequence, a
system coding that requires a large number of components may re-
sult. In order to avoid this situation it is useful to introduce the
concept of independent inputs.

The set of independent inputs is the set of input vectors that spans
all of the input vectors. That is, if #s, . . ., w4, are the independent
inputs (the set of linearly-independent input vectors), then any other
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vector, say u,, can be written as

m+1
Uy = E Ay:Us

z=2

where the a,, are constants which can be arbitrarily assigned when
the inputs are uncoded, or they can be determined by inspection of
u, when the inputs are coded.

Recall that Bu, = vy + va, for any 1; allowing B to operate on
the expansion for u, yields

m+1

Viy +0in = Z aa:(v,'m: + U,-(m), (29)

r=2

where each j(z) can assume any row index.

The state vector v,, can be forced to make a linear transition under
the null input if all vectors in column one and all of the vj,)x have
been guaranteed a linear transition in step 7, and if (29) holds. To
demonstrate this, use the 4 matrix to operate on the sum of vi, + va
and another component sum; then, compare the result to that obtained
by repeating the operation after vy, + i has been replaced by its
expansion. The equations of the type (10) which are generated are
required to meet the conditions of step . Since each distinct state
sum not associated with an independent input can be treated in this
way, these state sums meet the conditions of step i without the desig-
nation of a linearly-independent state vector. Also, since all vectors
in column one make linear transitions, all other vectors in the state
sum can be treated via step 1v.

After the independent inputs have been identified (for coded inputs),
or designated (for uncoded inputs) the synthesis procedure of the last
section* can be applied over the state sums associated with inde-
pendent inputs. The remaining vectors could be treated by employing
equations of the type (29) and entering the synthesis process at
step .

A modified synthesis procedure of this nature would require con-
sideration of the equations of the type (29) in the coding process.
The modifications are compatible with nonsingular systems.

The remainder of this section develops an alternative synthesis
procedure that is better suited to capitalize on the redundancies found
in transition tables of singular systems.

* It is necessary to provide for the selection of another distinct state sum
after all component sums of the state sum under consideration have been ex-

hausted. This can be accomplished by selecting the reference sum in step vi from
another state sum.
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When, for example, columns 1 and 2 are disjoint sets of states,
(28) contains 2d distinet vectors. It is asserted that the 2d vectors
of this distinet state sum can be coded over the » + 1 components
(where r is the rank of the A matrix) by a modified form of syn-
thesis procedure of the last section and that the remaining vectors
can be coded by a simple relationship. Since only one distinct state
sum is to be considered, the information concerning the designation
and deletion of linearly-independent vectors (in step 1) which is
implicit in the other state sums must be incorporated. This is readily
accomplished by generating equations of the type (10) over the re-
maining state sums and equations like (29). Then, the unique equa-
tions, which must be compatible with state sums, are used to augment
the state sum; that is, these equations, as well as the state sum, are
used as state sums in coding over » + 1 components. (Notice that the
equations in question contain only vectors from column one.)

Partition the vectors such that the upper partition contains r 4+ 1
components. That is,

Then, using the augmenting equations,
'v;l +y{2 P I':1+Uf2 = ... =L|(;l +pr';2

and the state sums formed by columns which may appear in the table
that are permutations of the first or second columns in the synthesis
process, will yield a coding of these vectors and an (r+1)x (r+1) A
matrix. Let A’ denote this matrix of rank r. The relations

N2™=d=2
(from Section 11) and
< N=2
imply
2" <2 £ 27 (30)

which verifies that » 4+ 1 components are required to code the vectors
in the first two columns.

Before continuing, it is convenient to separate the present states
into sets such that all members of a particular set give rise to identical
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rows of next states. Let V; denote the set of present states which are
associated with the jt row. If one or more members of the set has been
coded over r 4+ 1 components, then select one such » 4 1 component
vector as the characteristic vector of the set. Denote it by the symbol
evt . If no vector in V; has been coded over » + 1 components, the
characteristic vector can be determined from

! — nt
Alevy = vl .

This last equation has at least one solution for ev] since the columns of A’
must span all of the v’ vectors of the first eolumn. Also, the ev} so deter-
mined is not a characteristic vector of any other set. Then, taking the
system A matrix (n X n) as

A'10
o= [54]
will make the linearity of the transitions in the first column depend-
ent only upon the coding over v”. For the vectors which have been

coded over ©’, set the remaining components, the v”, equal to the
n—r—1 component null vector. (This is necessary, if u; = 0.) That is,

vl =0l =0 for i=12 ---,d

Thus, all vectors in the first two columns are completely coded.

The remaining vectors can be coded by the following process. Con-
sider the column of uncoded vectors under an independent input u,.
From the state sum of u, and u,, it follows that

v, = vy + 0, + 05, for =23, ---,d (31)

Since v,, and v;, are known, once v,, is coded, the coding of all other
veetors in the column is determined by equation 31. v{, can be set equal
to the characteristic vector of the set 7 in which »,, (as present state)
belongs. This will insure that the present state »,, makes a linear transi-
tion under input u, . v} can be set equal to any n — r — 1 component
vector that has not been previously used as a v"' vector. When wu, is
not an independent input, »,, can be obtained from equation 29 after
the independent inputs have been treated; then equation 31 gives the
the coding of the remaining vectors in column y.
To illustrate the process consider Table IX.
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S1o

The state sums are
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TasLe IX

1 0

0 1

0 0

8y 85

8, Sa

83 85

Sy Ss

S S5

8y S

Sy 85

8, Sg

Sy S5

8y g
v vy =0 o0y,
U +l'5=U2+Ua:
vt v, =0 s,
Uy + vy = 02 + Vig »

Sg

Sz

Sg

S7

Ss

373

The state sums are consistent over the table. Take the second, third,
and fourth inputs as independent. All state sums and equations like
(29) generate augmenting equations identical to the null vector. To
determine r, note d = 2; therefore, from equation 30, » = 1. The vec-
tors in the first state sum are coded over two components using the
synthesis process. The result is

, 0
w=0),

and

() e

0
1

r
) ! 1}4
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The sets V are:

Vi=lv,,03,05,0; ) Vol

Ve = {va,0s,0e,0s ,Ulﬂ}-

The characteristic vectors are taken as »] and v} , respectively; that is,

0 1
oy, = (0) and o) = (0)

The vectors in the first two columns are fully coded by setting the
last two components of each vector to zero:

0] 1] 0 1
|0 _ |0 ) b= |1
l—lox L) ol 3 ol 'l ol

L0 0 0 0

and
ﬁooﬂ
4=0000
ooooJ
0000

From the second state sum,

Vs = U + V2 + Vg .
Take

Since vg ¢ Vo,

therefore,
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and

oo O -
o= OO

Similarly, taking

and observing that

vi =cvs and v; = v, + v. + vs
lead to
(1
0
1 and v, =

vy = )

0
0
1
1 1

respectively. Since the last input is the sum of the third and fourth
inputs, vy + vy = v1 + vs + v1 + v7. Then,

0 [1'
' 0 nd v, = 01,
vy = 0 a Vo = ‘0
1 Ll
Finally,
[000
\
B = il 0 0}
010
00 ].J‘

IV. CODING THE OUTPUT VECTORS

4.1 The Mealy Model

Let z;, denote the symbolic output vector for input u, and present
state s, . Let the output table contain I distinet vectors; then, z,, is an
l-component vector (L = 2") over GF(2). A k-dimensional vector
(I = k), w,;, is to be assigned to each symbolic output vector,
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If the output is linear,
w;, = Cv; + Du, . (32)

This equation implies that all of the equations obtained in terms
of the coded state vectors (state sums and equations derived in the
coding process) can be converted directly into relationships involving
the coded output vectors. For example, if v;+vs = v3+v4, then from
the output table, for any u,,

Wy + Wey = Way + Way

Let the equations obtained in this way be referred to as state derived
equations.

From equation 32 it follows (by the same reasoning leading up
to equation 6) that

Wy F Wy = <00 = Wi Wiy, = 200 = Wy + Wy, (33)

Such equalities will be denoted by the term output sum.

Clearly, output sums, and state derived equations must be con-
sistent if the output is linear.

It is known that N = 2" for a reduced table of a fully linear sys-
tem.* Therefore, if N < 2" for a reduced table, the output is non-
linear. On the other hand, where N = 2", the set of coded state vectors
forms a complete set of n component veetors. Then, when I > n and
there is a null input, say u,, it is easy to show that the output veetors
in column 1 are a subspace of the space of all output vectors. This sug-
gests that the output vectors in column 1 can be coded over n compo-
nents setting the remaining I — n components to zero (that is, code
over the subspace only).

The upper submatrix of the partitioned C' matrix,

[C(" ](C’ is an n X n matrix)
l—n

can be determined by considering the outputs associated with the
independent coded state vectors. Then,

Clos | = [va] = [wfy [ -+ [wn]

where the w’ are n component vectors. Recalling that [vq | ... | v.]
= I, (for convenience in the state coding process) leads to

*Cohn and Even®
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Co=lwi | -+ [wl].

Since the subspace property of the first column must be preserved,
it is true that C,_, is the n X I — n null matrix. Furthermore, C, and
the code assignment over n components can be determined by designat-
ing n independent output vectors in conjunction with the state derived
equations and outputs sums.

For all columns which are premutations of the first column, the
corresponding Du, must have zero as components [ — n through !
(again, to preserve the subspace property). More generally, the
entries in the first n components of Du, generate permutations of the
first column, while the entries in the remaining [ — n components force
the output vector out of the n dimension subspace.*

In order to code the output vectors which are not members of the
first column, notice that an output sum which involves such a column
and the first column has N distinct sums and 2N vectors. N of these
vectors have been coded (the members of the first column) and one
of these vectors appears in each sum of vectors in the output sum.
Therefore, if a linearly-independent vector is designated, by assigning
a nonzero entry in [ — n components, then all of the remaining N' — 1
vector codes are determined.

For example, if, in equation 33, * = 1, then wy,, fort =1,2,...,
N are vectors in the subspace (and can be coded), then setting w,,
equal to a linearly-independent vector or any vector not in the sub-
space gives the code assignment for all other vectors in column y
since wy, = Wiy + Wiy + Wi for any 7. The procedure is basically the
same as in coding state vectors of a singular system.

The case where L < N can be treated as an obvious special case of
the above.

4.2 The Moore Model

In the Moore model of a sequential machine the output is a fune-
tion of the system’s state alone. That is, D = 0. It is then obvious
from equation 32 that the number of distinct output vectors cannot
exceed the number of state vectors. Therefore, the method for coding
over the nm-dimensional subspace introduced in Section 4.1 can be
applied directly, using the state-derived equations.

* This property is the identity or disjointness of sets of vectors which can be
rigorously proven by an argument parallel to the proof of theorem 3.
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V. CODING THE INPUT VECTORS

5.1 The Mealy Model

In the Mealy model of a sequential machine it is possible to have
inputs which do not generate distinct columns in the state transition
table and yet give rise to distinet output columns. Such cases require
an interaction in the determination of the B and D matrices.

Let there be M different inputs, and K(K < 2°) distinet columns
in the state transition table. Take one input as the null input, say
u, = 0. Considering one component sum from each state sum, it follows
that

Bu, = vy, + v

for each u, that generates a distinet column. For convenience number
such inputs u; through ug. Similar to the approach of Section 4.1,
code the input vectors over the first k components. That is, from

B = [B; | Bnil (where By has & columns)

select

B, =[va +via | -+ [on + vipn][us | - lu£+1]—11 (34)
where the ' are linearly independent vectors formed by the first k
components of the input vectors, and where vy + v12, . . ., V11 +

v1,x4+1 are the k vectors that span the set of the K distinet sums
of the form vi1 + 1. Sinece it is only the first k components of the
input vectors that influence the state transitions, it must be true that
B, is the n X (m — k) null matrix. The remaining & component in-
put vectors can be obtained by solving the set of linear equations* (in

matrix form)
B! = vy + vy,

At this point k components of all input vectors have been coded.
Considering the output table, the D matrix can be determined from

Dlug | -+ |u] = [wiyy + wia | wyy +wy | -+ | wyy + wy,] (35)
where the columns of the matrix on the right side span all sums of
the form w,; + Wiy, and where u,, . . . , 4, are m inputs which are
assigned as linearity independent vectors.

* These linear equations must be coqsistent since the columns of By span all
vectors of the form vu 4+ v1y. (See equation 34.)
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Consider the example in Table X.

TasLE X
U, Uy Uy Uy Us Uy Us Usg
8 &/2 81/7a 8)/25 8125 S2/2:  So/2s  Sa/Z0 Sa/Zi0
Sy 83/22 83/2, Syfz  S3/Z; Si/2s Si/zr Si/Zie S4/Z
8y 84/2a Si/2y Si/zn 84/212 S3/Z13 S3fZi Safzis S3/Zia
8y 87y Su/zZ3 Su/za Sofzn S /2 S1/Za Si/Ze $i/%s

In order to code the system states, consider u; and ug which generate
the only distinet columns. Take u; = 0. It can be verified that an

acceptable coding is

@ @m0

A= (1 1]_

(1 0

For the output table, . = 16, I = 4. Calculating the upper partition
of the C matrix, C.,

giving

Csfvy |!'2] = [w; | ws],
or

Take

then, C, = I, or
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From the state sum, w} = G), and since », = 0, it follows that w] = (g)

Clearly, w, , w, , ws , and w, are given by including two additional zero
components. In order to code column 3 consider the output sum

w4 ws = We + ws = Wz + Wy = Wy + Wia
0
Taking ws = ‘i’ leads to
0
0 0 0 0
0 0 1 1
wﬂ=w1+wa+w2=0+l+0=1
0 0 0 0
Similarly,
1 1
_ |0 _ (1.
wy, = 1l Wy = 1
0 0
By taking
0 0
0 0
we = |y and 1w, = 1
1 1

the remaining output vectors can be coded.
Coding the first component of the input leads to

M1
1
Bl = ‘ !.
0
With the results
r .
B = 1 0 01’
0 0 0
ul =ub =uj =ul =0, (36)

and
w, =uj =uj =ul=1. (37)
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The output vectors w, , w; , and w; span all sums of the form w, + w,
(notice w, = 0) z = 2, 5,6, 7, 8,9, 10. Then,

0 0 O
Dluy | uy |us) = [ws | ws | ws] = 1.0 0

01 0

0 0 1

Considering equations 36 and 37, make a linearly-independent assign-
ment of u, , u; , and u; . Say

(0 0 1
u, = |0}, uy; = (1|, and wu, = |0] ;
1 0] 0
which leads to
0 0 0]
D= 00 1|
01 0
(1 0 0

To determine uy, for example, set up the linear equations

Du, = wy (recall u; = 0)

(0 0 0 0)
00 1 1
wy, = ]
o1 0 1
I,I 0 0 0
or
0
u, = [1/-
1
Similarly,
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5.2 The Moore Model

For the Moore model all columns of the state transition table are
distinct; therefore, the method for coding over k components of wu,
introduced in the last section, can be applied directly.

VI. LINEARITY AND INCOMPLETELY SPECIFIED SYSTEMS

This section considers the problem of specifying “don’t care” entries
in the state transition table in a way consistent with linearity; the
results can be extended to the output table.

It is obvious that if an incompletely specified table is to have a
linear realization, then the entries in the table must obey the same
relationships which were developed in the preceding sections. For
example, the table must exhibit consistent state sums, and allow
completion of the maximum memory process. The resulting restric-
tions on the unspecified entries may be used to deduce their appro-
priate assignments,

Consider Table XI in which the “don’t care” next states are de-
noted by the symbol £.

TasLe XI

0 1
8, ty Sz
S5 8, 8
83 Sg Ly
Sy g 84
8s 83 8,
Sg 8 83
87 t, Sg
Sg iy S5

The state sum is
et = tvs=titvs=v,Ftvs=1l+vs=18+vs. (38
From the third and fifth terms, it follows that ¢, = {, . Forming
A, + v3 + v4 + 26)
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leads to

ve v, v+t = 0. (39)
Also,

Ay, + vy + va + 1)
yields

vo+ v +vs+ 4L =0,

where #, = At, . Locating vy, v, , and v, in the state sum leads to the
conclusion 7, = v;. The present state which gives s, as its next state
under zero input is s5 . So that, {, = v, . The first and last terms of the
state sum imply that ¢; = v, . From A (v, + v, + v + ¢.) obtain

”ﬁ+”1+ta+lz=ve+v1+v2+zz = 0.
Adding the last equation to equation 39 gives
vs + U v+ L =?J3+U5+?J-;+i2 = 0.

However, equation 38 indicates {, + v = v, 4 v; ;so that #; = ¢, . From
the table, {, = »; . Table XII shows the fully specified table.

TasLe XII
0 1
8, 85 s
82 8y Ss
83 Ss s;
Sy Ss Sy
S5 S5 8
g s, 85
87 87 8s
Sg Sy S5

APPENDIX

An Addition to Theorem 2

For N not equal to 2" there is a set of 2 — N vectors that cannot
be used as state vectors, However, when the system is linear operaf-
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ing on any unused vector with the A matrix, and adding Bu. must
produce a vector which is also an unused vector. If this were not
the case, there would exist a state vector which would give rise to
one of the unused vectors as a next state for some input. It follows
that a transition table can be constructed containing only the 2* — N
unused vectors. Let this system be called a virtual system. From the
foregoing, it is clear that the states of the virtual system must obey
the restriction of Theorem 2; that is, the number of distinet inputs
cannot exceed

2+ @ - N 227,

=2
where ¢t is as before. Since the virtual and original systems must re-
main disjoint, the original system must observe the bound. This is a
smaller upper bound than obtained in Theorem 2.
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