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In connection with the design of transistor circuils, for example, it is
frequently mnecessary to obtain a numerical solution of a system of non-
linear ordinary differential equations. In some cases, these equations
possess a property that leads to intolerable computational requirements
relative to the use of standard predictor-corrector techniques or general
linear multipoint formulas of open type.

Here we describe an alternative approach which has been used to solve
some practical problems by permilting dramatic step-size increases (for
example, a factor of 10"). The approach is developed in a way which
provides some detailed understanding of why it is useful.

1. INTRODUCTION
In connection with the design of transistor cireuits, for example, it

is often necessary to obtain a numerical solution of a system of non-
linear differential equations

z + 1(27: t) = 0: t g 0! [1(0) = on (1)
in which x and f(z, ) are N-vector-valued functions of ¢. The sim-
plest numerical-integration formula which ean be in principle used
for this purpose is Euler’s formula:

Ynir = Un + by}, nz0 (2)

in which %, a positive number, is the step size; 9o = 2y;

Yn = —f(@n,nh) for n = 0;

and ¥, is of course the approximation to z(nk) for n = 1.

It is frequently the case that f(x, -) possess a property that leads
to computational requirements consistent with the use of (2) that are
intolerable. To see clearly how this situation can arise suppose that
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the solution of (1) is desired over some finite interval [0, ], and con-
sider the very special case in which f(z, t) = Az with A an N X N
matrix possessing distinct eigenvalues {a;} all of which have positive
real parts. Then using the fact there exists a nonsingular transforma-
tion T such that

A =TDT-,: D':djag(al:az?“'!aﬂ) (3)
we have
yn+1 = T(]-N - hD)T-)yn, n g O: [yﬂ = xﬂ] (4)
in which 1y is the identity matrix of order N. From (4)
v = T(ly — hD)*T 'z, , k= 0. (5)
Since
z(kh) = Te ™" T 'z, , k=0 (6)

it is evident that the numerical solution is “acceptable” if & is so small
that (1 — ha,)* is an “acceptable”’ approximation to e¢™**** for all 1
and all values of k for which 0 £ kh < 7. On the other hand if for
some value of ¢ '

|1 —ha;| =1, or |[1—ha;|>1

then for at least one initial condition vector xy, {|| v: |} (/||| denotes
the usual Euclidian norm) does not approach zero as k — o or is
unbounded, respectively [that is, (2) is numerically unstable]. Therefore
if the sequence {1} defined by (4) is to be a good approximation to
the samples of the solution of (1) with f(z, {) = Az, it is certainly
necessary that

|1 — ha; | <1 foralld, (7

Moreover, in order to fully determine the character of the solution of
the differential equation, it is reasonable to assume that r, the length
of the interval over which the solution is desired, is proportional (by
some factor ¢ such as 3 or 10) to the reciprocal of min; Re(a;) (that
is, proportional to the largest time constant of the system). Thus in
addition to (7) we have

7 = ¢[min Re (@a)™*. (8)

A lower bound on the number of evaluations of (2) necessary to
compute the solution is r/h where h satisfies (7). If all of the a; are
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real, the smallest lower bound is simply

max (a;)

(9)

b=

¢ min (ay)
It is a simple matter to give examples of, for instance, positive-element
linear RC networks governed by a state equation of the form & + Az = 0
for which the bound (9) can be made arbitrarily large by choosing the
value of one capacitor to be arbitrarily small. Thus, from the practical
viewpoint, computation based on (2) can be impossible as a result of
the presence of parasitic circuit elements that have no really signifi-
cant effect on the circuit performance! It is not surprising therefore
that a more complex and pressing problem of the same type arises in
connection with the numerical solution of the nonlinear differential
equations of transistor circuits, as a result of, for example, the para-
sitic capacitors associated with the models of transistors. For many
practical circuits of this type, computation time estimates, based upon
use of (2) and a modern high-speed computer, are about 1000 hours.

The well-known basic problem described above arises not only in
connection of the use of (2), but (as can easily be shown) is en-
countered also in attempts to use more general integration formulas
of open type 2

v pid
Yori = 20 Qs + b 2 by, (10)
k=0 k=0
or predictor-corrector techniques®: 2 such as

(») __ ’
Yn+1 = Yuy + 2hy, (11)

yn+1{e) = y. + $h(y; + yw’nl(p})-

The fundamental difficulty associated with the integration of “stiff
equations” results from the restrictions that must be imposed on h in
order to insure numerical stability.

The purpose of this paper is to consider the properties of alterna-
tive numerical methods for obtaining solutions of equations of the
form (1). Our principal objective is to present some analytical results
that shed some light on the properties of a class of numerical-integra-
tion techniques that have been used to solve practical transistor cireuit
problems by permitting dramatic step-size increases (for example, a
factor of 10*) relative to the methods defined by (10) and (11).

More explicitly, attention is focused on “large-h algorithms” based
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on, or derived from, the standard formula of closed type

Yns1 = Yn + AYhsr (12)

which is a special case of the general multipoint formula

Yn+1 = Z Yn—r T R Z by (13)

k=—1

with b_, 5 0. There is an extensive body of information concerning
(12) in the numerical-analysis literature only for the case in which
h is “sufficiently small.”

II. INTEGRATION FORMULA

If we use the numerical-integration formula

Ynsr = Yn + AYhi (12)

in an attempt to compute the solution of (1), then ¥,1 is defined
implicitly in terms of y, through

Ynsr + BflYnsr, @+ DR =90, 720,  [yo= 2] (13)

For the special case considered in Section I, in which f(x, t) = Az
and A = TDT-*, we have

Yoir = T(ly + kD) 'T7'y,, nz0 (14)

aih

and to the extent that (1 4+ ha;)™" is a good approximation to e™**,
(13) generates an acceptable numerical solution of the differential
equation. More explicitly (13) generates the ezact solution of the
differential equation

i+ Az =0 t=0, [2(0) = m] (15)

in which A = TDT™" and ¢ ®* = (15 + AD)™".

Let us suppose now that all of the a; are real and that ha, is very
small relative to unity for 7 belonging to a proper subset § of 9 =
{1, 2, , N}, and that ha, is very large relative to unity for 7 belong
to the complement 8 of § with respect to 91. Then for all ¢ ¢ §, @ , the
ith element of D is very nearly a; , while for all 7 ¢ 8, @ < a; and @;
is very much larger than all of the &@; for which 7 ¢ 8.

In other words, roughly speaking, (13) generates a solution to a
differential equation governing a system similar to that governed by
& + Az = 0; the former system has virtually the same low-frequency
performance and less pronounced high-frequency performance. To
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look at the situation in still another way, in using (13) we are able
to (¢) break away from an extremely restrictive requirement on h for
numerical stability, such as (7), and (4) trade step-size tor accuracy
of high-frequency solution components.

The simple heuristic argument given above suggests that the use
of (12) can lead to a considerable increase in permissible step sizes
for a class of nonlinear transistor cireuit problems in which typically
the Jacobian matrix af(z, t)/dx of f(z, t) along the solution of (1)
possesses only real eigenvalues which are widely separated. This argu-
ment is supported by a proposition, proved in Seetion IV, which is
concerned with the case in which there exists a constant m > 0 such
that (with (-, ) denoting the usual inner product)

for allm = 0 and all y. If this condition is satisfied for all A > 0, which
for the sealar ease is true if

af(y, t)
dy

= m

for all ¢ and all y, if || /0, ¢) || — 0 as ¢ — e orif || (0, £) || is uniformly
bounded on [0, =), then (as can easily be shown) || z(f) || > 0as¢— =
or || z(t) | is uniformly bounded on [0, =), respectively. The Proposition
asserts that if (16) is met and y,,, is defined for n = 0 by (13) ,then

IIA

n=1

oy [l = X +mh)™ || 2, || + E 1+ mh)™ " || [0, (n — k)R] ||
for all n = 1, which implies that (13) is numerically stable for all k
in the sense that for all &, || (0, nh) || — 0 as n — o implies that y, — 0
as n — e and {[| f(0, nk) ||} bounded implies that {y,}% is bounded.

Although the result stated above does not provide quantitative in-
formation concerning the errors incurred in using (13), it does show
under a reasonable assumption concerning f(z,t) that unlike all for-
mulas (10) of open type and unlike predictor-corrector methods such
as (11), (13) defines for any step size a sequence {y,} which is con-
sistent with either or both of two possible basie properties of the true
solution.

The discussion above does not take into account the fact that at
each step errors are inevitably introduced in solving the equation

Ynsr F+ Mlynsr, (0 + DA = g, (7).
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for ya,1. Consider the result of using the iteration scheme

Ui’ = g — By, (o DR, Yt = Yn

which is the usual method described 2 in connection with the theory
of integration formulas of closed type. For the linear case [that is,
for f(z, t) = Ax],

k
y:ti)l Z=:0 (_hA)’yn

k
T 3 (—hD)'T 'y, . (18)

i=0

Therefore, if 7, denotes the approximation to y, computed from ¥,
after k, iterations, and if #, denotes the approximation to y, computed
from ¢, after &, iterations and so forth, then

g = TOwOsg_, -~ 0.,0.T 'y
in which
kp

0., = diag (E (—ha)', -+, g (—hazv)i)'

i=0
Since (assuming now that all of the a; are real)
ks

E (_hai)i

i=0

> 1 (19)

provided that ha, > 2 and k, Z 1, if ha; > 2 for some 4, then || i || —
as k — o for some initial condition y, , independent of the sequence
ky , ko, -+ . Therefore the usual iteration method will reintroduce
the numerical instability for insufficiently small  which it is our objec-
tive to avoid.*

Let us consider now a different and more general approach of solving
(17) for y,,, . Assume that there exists a positive constant such that
f(y, nh) satisfies the Lipshitz condition

I fys , nh) — §lyz, nb) || = U]l 92 — 2 ||
for all n = 0 and all , and ¥, . Suppose also that the smallest eigen-

value of the symmetric part of the Jacobian matrix df(y, nh)/dy of

*Similar instability results for the nonlinear case can be proved. But since
this is hardly surprising, we shall not consider the matter further.
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f(y, nh) is bounded from below by m, a positive constant, for all y
and all n.

Ideally, we would like to determine the sequence {y,}% defined by
yn+l + h.f[ynd-l y (n + I)h] = yn: n g 0‘

Suppose that we determine instead a sequence {f,}% such that
o = %o

N7 =yt || = e
and
Y + Wflyd, , (n + 1A] = .

for n > 0 in which e is an arbitrary positive constant independent of
n. In other words, suppose that at each step the local error in solving
for Y41 is at most e. Then, according to Theorem 1 (Section IV)

n—1
G0 — v || =@ + RD)A + hm)™ 2 (1 + hm)™

k=0

for all n > 1, which of course implies the uniform bound

150 = vl S el + W)0m)™",  nz 1. (20)
Our assumption concerning af (y,nk) /ay implies that the condition

(, f(y, nh) — f(0, nh)) = m ” ynz

of the Proposition is met. Thus it follows from the Proposition and (20)
that if the local error in solving for 1, ., is held to within e at each step,
then the algorithm is numerically stable for all % in the sense that
for all () {|| /(0, nk) ||} bounded implies that {#,}% is bounded, and
(@) || (0, nk || — 0 as n — e implies that for any & > 0 there exists
an no such that || 7, || = (1 + k) (hm)™ + s foralln = n,.

The combination of this stability result and the heuristic argument
of Section I strongly suggests that the following approach should per-
mit the use of considerably increased step sizes with acceptable accu-
racy, for many of the “widely-separated eigenvalue” problems de-
scribed earlier. Referring to (17), solve for y,.; at each step using,
say, the Newton-Raphson technique;* iterate until some norm of

* After the work reported here had been completed, A. N. Willson, Jr. brought
to our attention a preprint of a paper by R. Willoughby and several of his col-
leagues at IBM, in which an approach of this type is suggested. The preprint
does not contain the principal results of this paper, the material of Section IV.
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the difference between the last two iterates is not greater than some
small preseribed constant.

In particular, notice that for f(z, {) = Az, this approach, using the
Newton-Raphson iteration procedure, reduces to the use of the for-
mula y,,; = (ly + h4) 7y, (that is, to equation 14).

The technique described above has provided a significant reduction
in total computation time for several types of practical problems. It
was used, for example, to solve the system of differential equations
governing the cirecuit of Fig. 1, an oscillator designed to supply a 1
ke signal. The 16 G Western Electric 100 Me. silicon transistor of
Fig. 1 was represented by a charge-control model (see Section 6.2,
pp. 556-557 of Koehler®) using two nonlinear charge-controlled voltage
‘sources, with the result that the system of equations for the circuit
is of order 5.

Motivated by the fact that the local-truncation error for formula (12)
is 3h%i(t) for some £ e[nh, (n + 1)h], the following method was used
(for this problem as well as for others) to control the step size. Let e
denote the largest of the magnitudes of the elements of the vector
of second differences associated with the most recently computed point.
If ¢ e [1¢, €] (for this problem & was taken to be 107), then the point
is accepted; if e > & then the point is rejected and the calculation
is repeated with h replaced with $h. If e < 1, then the point is accepted
and h is replaced by 2k in the computation of the next point. Average
step-size increases of about 10* (relative to, for example, the use of a
forth-order predictor-corrector method) were obtained for this problem
(see Fig. 2). -

0.0IF 0. om. F
i

31.6K —i¢ 166G
e Ne

31 6K
3.83K
0.0IF .
( . OUTPUT
[ e *
8.25K

Fig. 1 — One-kilocycle oscillator using a 16G “100 megacycle” transistor,
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Fig. 2 — Comparison of computed and experimental response of the oscillator
shown in Fig. 1.
III, AN EXPLICIT INTEGRATION FORMULA

Of particular interest in connection with the approach described
above is the numerical-integration formula

Ynir = Yu — {1x + Bf'[y. , (n + )R]} "'Rfly. , (n + 1)A],
n 2 0, [0 = 2ol (21)

which is obtained from

Vio + MYair, (n + DR] = ¥, (22)

by replacing Y, by y, and using as the approximation Ynt1 1O
Y.41 the result obtained by using one step of the Newton-Raphson
iteration scheme with y, the initial point. That is, with

Q@ =z + hflz, m + Dh] — y,,
Ynt1 = Yn — [Q'(z)lmvn]ulQ(z)[z—y. .

In spite of its relative simplicity, it has been found that formula
(21) is useful for solving problems of the type that we have been
considering. For the problem of Fig. 1, it has led to an average step
size increase of about 103,

(23)
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In view of the simplicity of formula (21), and especially in view of
the fact that 1, is defined explicitly in terms of yy, it deserves
special consideration.

Theorem 2 (Section IV) asserts that for any h > 0 there exist
positive constants k; and ks such that k; < 1 and

lw Il S Ko [| 4+ by DRI, 0 — BRI @8

for n = 1, provided that the Jacobian matrix df(y, nh)/dy satisfies
certain conditions. For the scalar case, these conditions reduce to:
(i) there exist positive constants k and m such that

L < af(y, nh) <k
dy

forallyandalln > 1

af(y, nh) _ 9f(ay, nh)
(i7) 2 w ay =0
forally,n = 1 and e ¢ [0, 1].
Clearly, under these conditions, ¥, = 0 as n —> oo if f(0, nh) = 0 as
n = o and {y,} is bounded if {||f(0, nh)||} is bounded.

The function f(y, nh) of Fig. 3 is one for which conditions () and
(i) are clearly met. If condition (i) is not met, then (24) need not
follow. To show this, consider, for example, the function of Fig. 4

f(y,nh)

S~-SLOPE =1

P ISR

~-SLOPE =1

Fig. 3 — Definition of f(y, nh) for all n.
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which meets condition (7), but not condition (ii). We have from (21):

h=1 and y, =1 imply that y, = —1
and
h=1 and y, = —1 imply that 3, =1

from which it is clear that for this function 5, = (—1)"if h = 1 and
Yo = 1, which of course implies [here f(0, nk) = 0 for all n] that (24)
is not satisfied. Thus we see that if condition (i7) is not met, then (24)
need not follow.

f(y.nh)

~~-SLOPE =1

-t ———————

SLOPE =1—_
N\

Fig. 4 — Alternate definition of f(y, nh) for all n.

IV. PROPOSITION AND THEOREMS*
Proposition: If {y,} satisfies

Yne1 T+ Pf[Ynss ’ (n + 1)h] = Yn nz0
and if there exists an m > 0 such that

(y, fly, nh) — 1(0,nh)) Z m ||y ||, mn =0
for all real y, then
e 11 @ )™ [l 1|+ 2 0+ mh™ [ 10, (u — R |

forn > 1.

* Throughout this section, [|+|| denotes the usual Euclidean Norm and (-,-)
denotes the corresponding usual sealar product,
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Proof: Clearly,
(yﬂ+1 y Yn — hf[or (n + 1)h])
= (ynu ) Yntr T hf(Ynsr » (0 + DA] — kfl0, (n + DA])
2 (1 + mh) || youa I
and, by the Schwarz inequality,

(yn+l 3y Un — hﬂO; (n + 1)"’]) = ” Yn+1 ”“ Yn ”
+ || Yasr [I-1] BfI0, (n + D1)A] 1.
Thus

[ Yosr [ < @ 4 mk)™ [ g || + (1 + mh)™ || [0, (n + DAL ]

from which we have

n—1
Ny Il S @+ mh)™ 5o |l + 2 (4 + mh)™ " |[A0, @ — BAT ]
for n = 1, which completes the proof.

Definition: Let \(y, nh) denote the smallest, eigenvalue of the symmetric
part of 3f(y, nh)/dy.

Theorem 1: Suppose that there exists a constant m such that Ny, nh) =
m > 0 for alln = 0 and all y, and that there exists a constant I such that

I 1, k) — fCyz, nh) || S Ul ys — 92 |l
foralln = 0 and all y, and y. . If {y.} satisfies
Ynrr + BflYasr, (0 + DAl = 9., nZ0
if, with e a positive constant, {f§.} satisfies
|G — w4l S e for n=0 with

y¥o, + (k. , (n + DA) = 7.
then

”gn — Yn ” SA+ )" || o — Yo ”
+ (1 + hm)'(1 + hl) e “Z_: (1 + hm)™*

forn = 1,
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Proof: We have forn = 0:
Gosr + hflfass + Wi = Fasr), (0 4+ DA] = G + (fsy — y%2)
and
Ynir T bflyns + ki — Fur)), (0 + DR)
= Yo+ Mlgpes + @1 = Far), 0 + DB = Mlyass , (0 + D).
Therefore
Fnsr = Yuer + Aflfass + (ks — Farr), (0 + 1A]
= hfYnir + Wk — Garr), (n + 1A]
=T = Yo + Fasr — y¥) + 2 Wsr , (n + 1)R)
= Masr + Wi — Fas), 0 + DA]. (25)

With fi the symmetric part of af(y, nh)/dy, the inner-product of
(Fas1 — Yns+r) with the left side of (25) is

1
H Yns1 — Yn+r ||2 + h<§n+1 = Yn+1 j; f:{a[?jnn + (y:l-fl - gn+l)]

+ (1 - ) [Ynsr + (ke — Yar)], (0 + 1)h} da(??m - yn+1)> , (26)

since

Gnsr + (yis — 1), (n + I)h] — fYnsr + (Y — Fns1)y (n + l)h]

f afly, (n ofly, (n + D] da(farr — Yurr)-

v=al 1+(1-a)l ]

Expression (26) is bounded from helow by

(1 + 2m) || Gosr — Yuur |

By the Schwarz lnequahty, the inner-product of (., — %..,) with
the right side of (25) is bounded from above by

H Fntt — Ynia |'|| Un — Yn ||
+ || Fni1 = Ynis “” 1 — Y1 || + Hﬂ,.u = Yns1 H
' || hf[yﬂi-l ’ (n + l)h] - hf[ynﬂ + (yfﬂ - '!?n+1): (ﬂ' + l)h] ”;

which is bounded from above by

“ Pnt1 = Yn+1 ”” Gn — Un “ + Hﬁ..n — Yn+1 ” (E + hle).
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Thus,

| G = Woar || = (U4 Bm)™ | G — wa [| + (1 + Bm)™' (1 + A,
from which it follows that

G —vall =@+ hm)™ || G0 — o |l

n=1
+ (14 hm)A ARl e D 1+ )

forallm = 1.
Theorem 2: If {y,} satisfies
Yorr = Yo — {1y + bf Ty, (0 + DA} "hflya , (0 + 1)A]
forn = 0, if
(?) there exists a constant k < o such that
8f(y,nh) H <k

foralln = 1 and all y

(41) there exists a constant m > 0 such that My, nh) = mforalln = 1
and all y

(¢33) with F = hf'ly, (n + 1)h] and F, L hf'lay, (n + 1)h], the sym-
metric part of {(2F — F.)F .} is* nonnegative definite for all y,
all n, and all « ¢ [0, 1],

then there exist positive constants k, and k» such that k, < 1 and
g Il S K 1w || + By 2 kY[ 10, (0 — AT || forall m = 1.
Proof: We have
Ynss = Un — {1y + Bf'[Ya, (n+ DA} " {Aflyn, (n + 1)B] — Bf[0, (n + 1)A]}
— {1y + kf'lyn , (n + DA TRAO, (n + 1A];

hence

1
“yuu H§‘ IN_(1N+F)_1L F, da

+ 1| (w + B [ B0, ( + DRI (27)

* The superscript ¢ denotes matrix transposition,
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with the understanding that F and F, are evaluated at ¥y = v,, since

Ml s v+ DI = B0, (o + VW) = [ hfflayn , 0 + DA] dar

We now prove that there exists k, £ (0, 1) such that

=k

Iy — (y + P f F. da

for all n and all y,.
From condition (712), with V' an arbitrary N-vector,

(@F' — FOV,F.V) 20
or
@F'V, F.V) = (F.V, F.V) 2 0
which implies that
| FV P = 2F'V, FoV) + [| F'V [P S || F'V |
or
| = FOV (P < 1PV

In view of conditions (z) and (¢%), it is evident that there exists a
£ e (0, 1) such that
—2AFV, V)= —A=9I VI =20 -FV, V)= 1= |[F'V|
for all «, n, ¥, and V. Therefore
| (F = FOV |~ |IF'V | — 2(FV, V)
=-1=9lVIF-20=-dFV, V)= Q=d|FV|"

which is the same as
NVl (F = FOVI* + 2(F — FOV, V)
SENVIP+2FV, V) +E| PV
or
|y + F* = FOV " =& (v + FOV ||
With U = (1y + F*)V, we have
[y + F —F)Qx+FHTUP s E|| UL (28)
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Since (28) is satisfied for all U,

| Ay + F* — POy + FY' | £
with &k, = (¢)!. However,

| Iy + F* = FO(Ux + PO || = || Ay + P)7(Ax + F = Foll,

and

=y + B [ Fode

1
éf |y + )y + F — F,) ||da £k, .
(1]
Consider now || (1y+F-*||. Since for any V

|y + BV = | VIP+2FV, V) + [FV "2 1+ 2km) || VI,
it follows at once that

I| by + P)7' ] = (1 + 2hm)~
Thus with ks = (14+2hm)?

N Ynad I = kol ya || A+ o || B[O, (n + DR] ||
from which we obtain the bound on ||y,|| stated in the theorem.

V. FINAL REMARKS

The algorithm described in this paper is a marriage of two stand-
ard techniques, the use of a well-known closed-type numerical-inte-
gration formula and the Newton-Raphson iteration procedure. It is
clear that the approach is of use in connection with a certain class of
practical problems, and, what is of at least as much importance, we
have some detailed understanding of why the algorithm is useful.

It is also clear that some natural generalizations and extensions
of the approach, such as using different closed-type formulas* or
different methods of solving systems of nonlinear equations, will lead
to more efficient techniques. Finally, since there are several alternate
approaches available which are also of use in certain cases (see Pope,

* For example, for the trapezoidal rule yau = ¥ 4 $h(ya" 1 ynn') and forf(z, t) =
Az, we have ypy_= TET ly,, in which £ = diag [(2 — hai)(2 + ha)7Y, ..., (2 —
hay)(2 + hay)~)(T and the a; are defined in Section I). In view of the relation
between the J{Qcal-truncation errors of the trapezoidal rule and formula (12), this
suggests that for nonlinear problems the trapezoidal rule should permit larger step

sizes for the same accuracy when the ‘“fast components” of the solution have decayed
to a very low level.
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for example)* much work directed toward the comparison of avail-
able methods is needed.
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