An Upper Bound on the Zero-Crossing
Distribution*
By NICHOLAS A. STRAKHOV and LUDWIK KURZ}

Let Q(T) equal the probability that a random process, x(t), does not
cross the zero axis in a given interval of length T. A family of upper bounds
for Q(T') is derived with only weak restrictions imposed on z(t) and it is
shown that for gaussian random processes only one member of the family
provides useful formulae. Specific resulls are obtained for x(t) representing
a number of interesting random processes.

I. INTRODUCTION

Let Q(T) equal the probability that a random process, z(t), does
not cross the zero axis in a given interval of length 7. The problem
of determining Q(7) (and related functions) has important appli-
cations in communications theory and has been investigated by
many authors.*® Reference 5 gives an extensive bibliography of
most of the related work on this subject prior to 1962. Despite all
this effort, Q(7T') is known only when x(t) is a simple nongaussian
process (such as a process whose zero-crossings obey the Poisson
distribution) or a stationary gaussian zero-mean process with one
of four explicit correlation functions.® ® Most of the rest of the results
obtained are either approximate or form upper or lower bounds.®

In this paper, we develop a whole family of upper bounds on
Q(T). For computational purposes, however, only one member of
‘the family has been found to provide useful results for most cases
of interest.

II. DERIVATION OF AN UPPER BOUND ON Q(T)
Consider the transformation

' sgn [x(t)] dt (1)

1
2y =

T/

* An abbreviated version of this paper was presented at the Fifth Allerton
Conference on System and Circuit Theory, Monticello, Ill., October 4, 1967.
T New York University.
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where z(t) is a sample function of a stochastic process,* T is a fixed
observation interval, and zr is a random variable defined by the
stochastic integral (1). The function sgn[xz(t)] is defined as

+1, x>0
sgn[:v]=1 0, z=0
-1, xz <0.

Since zp is a random variable, it has a cumulative distribution func-
tion, P (zr), associated with it. From (1), two properties of P(zr) are
immediately apparent, regardless of the statisties governing z (1) :

(z) P(y) =0 for 2z, < —1
and @
P(z;) =1 for 2z, > 1
(12) lim [P(1 + ¢ — P — o] = Qu(T) ®3)
and
1}3 [P(—1+ ¢ — P(—=1 — ¢] = Q(T) @
where
Qu(T) = Prob {z(f) =2 0 for 0=t =T| )
and
Q.(T) = Prob {z(t) =0 for 0=t=T|. (6)

Obviously, Q(T) as defined previously is related to the last two
quantities by

Q(T) = Qu(T) + Qu(T). )
If z(t) is a symmetrict process, then
Qu(T) = Q.(T) = 3Q(T). @8

As a consequence of properties (i) and (i), P(zr) can be rep-
resented by

Pzr) = G(zr) + QuL(Tulzr + 1) + Qu(Tulzr — 1) 9

* Throughout this paper, we assume that almost all sample functions of the
stochastic pocess are continuous. Thus, (1), (5), and (6) are well defined.

t The stochastic process z(¢) will be called symmetric if the probability meas-
ures that govern it also govern the process —z(t).
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where G(z,) is continuous at z, = +1 and

_ JO for <0
[l for == 0.
We assume throughout that the function G'(zy) is not identically

equal to zero. If it were, then it would be easy to show that Q(T)

is known exactly; that is, Q(T) = 1.
Next, consider the even-order moments of P(zr), denoted by the

Stieltjes integral

u(r)

q2:1= f 2y dP(zr) k=0,1,2,---. (10)
-1

By substituting (9) into (10) one obtains

0= [ ll 2 G + QuT) + Q)  k=0,1,2,---. (1)

Neglecting the first term in the right side of (11) (which is always
positive) and taking (7) into account leads to a family of upper
bounds for @ (T') expressed by

For k = 0, (12) reduces to the obvious result

QT = L

Before discussing the usefuless of the inequality (12), an expression
for the moments will be derived.
From its definition, (10), g2 can be expressed as

Gar = P

where E{-} denotes the expected value of the quantity enclosed in
braces. Substitution for zp from (1) results in

1 . T T T
q2k=,}§xb{fu f f Yyt - - Yt dt, dty --vdzu} (13)
where

y(t;) = sgn [x(L;)] 1=1,2 -+, 2k

Interchanging the order of integration and expectation yields

1 T AT T
92k=fﬁf f f R(l,,lg, ,lzx)d"-xdtz"'dlu (14)
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where
Rty ta, -+, tu) = Efyt)yts) -+ y(ta)}. (15)

We now make some remarks concerning the ordering of the family

of inequalities expressed by (12).
Denote the first term in the right side of (11) by sa, or

= [ 2 d6Gen. (16)

We next establish that s > sappa (k= 0,1, 2,...) which in turn
establishes
1>¢>q¢- > Q0. (17)

The former inequality follows direetly from

1
Sak42 = f 22" dG(zr)
-1

IIA

f_ ll 2 dG(z)

= Sai
with equality if, and only if, G(zr) is of the form
G(zy) = Au(zr + 1) + Bul(z, — 1). (18)
Since G(zr) is continuous at z» = =1, equality is not possible and there-
fore
Sapsn < Su
which, together with (11), establishes (17). We next establish the
readily proven fact that
lim 8y < ¢, e>0 (19)

k—o0
and therefore,
lim g, = Q(T).

k—w

We begin by choosing an «(ke) > 0 such that

—1+al(ko) ¢
f 5 dGE) <5, > 0.
-1

This can always be done because G (zr) is continuous at zp = —1.
Using the definition of su,(16), obvious symmetry properties, and
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the faet that

»
e

14 a(ka) ) s=1+al(ke)
j & dGe) < | 25 dGlzr)
-1

J-1

for each k > kg, it follows immediately that

1 1—a (ka)
lim [ 2 dGz,) < e + lim [ 25 dG(zy).
ko W k—o Y—]+a(ke)

Since the sequence of functions {2%}, & = 0, 1, 2, -+ is uniformly
convergent to zero on the interval [—1 + a(k,), 1 — a(k,)], the limit
and the integral may be interchanged yielding (19).

In light of (17) and (19), it appears that (12) should be evaluated
for as large a value of & as possible. For the special case when z(f)
is a stationary gaussian random process (assumed to be zero-mean
without loss of generality), it does not seem to be possible to evaluate
72 for k& > 1 as evidenced by the following discussion.

As shown by MecIFadden,” the quantity R(¢, , t., -+ , t.), defined
in (15), is equal to the sum of some simple terms plus a quantity P,(r),
which is defined as

P.1) = 2m)" |r|™ dz, - - dx, exp 1 > i
0 ] 2 i

where r is a covariance matrix with elements

ri;o= vt — ;) = Elz@)x()}, L,j=1-,n
[ r|is the determinant of r

> rilx.x; is the quadratic form associated with the inverse of r

LEF]

and

x; = z(ly), 1i=1,2 -+ ,n
In other words, P,(r) is the probability that the n jointly distributed
gaussian random variables, z(;) (z = 1, --- , n) are all positive,

As discussed by McIadden,” and even more thoroughly by Slepian,®
expressions for P,(r) have not been obtained in terms of elementary
functions for n > 3. Because of this fact, it seems unlikely that an
expression for (14) with & > 1 can be obtained for a general gaussian
process, x(t). It should be pointed out, however, that an expression
for ¢, has been derived”® for p(r) = exp (—| = [), but without first evaluat-
ing P,(r). This result is not included because, for this correlation
function, Q(7) is known exactly.’
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III. APPLICATION TO GAUSSIAN RANDOM PROCESS

Assume that z(¢) in (1) is a stationary, zero-mean, gaussian random
process, normalized so that p(0) = 1 where p(r) = E{z(t)z(t+7)}.
The relationship (14) will be evaluated for the case k = 1, that is,
for

1 T T
w=p [ [ R, 6 dud (20)

where
R(t,, t) = E {sgn z(t,) sgn z(l) . (21)

The latter expression has been evaluated by many authors (see page
58 of Lawson and Uhlenbeck’s book,® for example) and the result is

RO, 1) = Zsin™ [o(t, — ). (22

Substituting (22) into (20) and making the obvious simplifications
in integration results in

0 =1 [ (1= wsin [oTw)] v,
or, in light of (12),
am =2 [ @ = wsin™ (o7 du. (23)

This result has been obtained by Slepian,® who states it as Theo-
rem 5.* Slepian’s proof, however, is long and complicated, as opposed
to the simplicity of the proof given here. Furthermore, extensions to
other cases can be obtained using the new method.

IV. APPLICATION TO SINE WAVE PLUS GAUSSIAN RANDOM PROCESS
We now turn to applying (12) with & = 1 to the case where
z(t) = w(f) + A cos 2nft + ) (24)

w(t) is a stationary, zero-mean, gaussian random process with
normalized correlation function, p(7),
¢ is a random phase constant uniformly distributed on [0, 2x],
f  isthe sine-wave frequency, and
A is the sine-wave amplitude.

* Notice that Slepian’s P[T, r(r)]1 equals one half of our Q(T).
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As derived in the next subsection, the result obtained is

QT) < ¢ + ¢ (25)
where
1
P =2 [ (1 — wHT) du (26)
with
g [rinTiewD { A’1 — sin 8 cos 21rbu}
HuT) = - j; eXp\— cos® @
A’sin § — cos 21rbu}
'I"{ 2 cos® § do
27
b= (T

and 7,(z) = modified Bessel function of the first kind, zero order.

The expression given below for ¢;" is approximate, except for T' = k/f,
k= 0,1, 2, --- where it is exact and consequently the function is most
accurate in a neighborhood of these points. In addition, the accuracy
of the approximation improves as A increases. For small 4, where the
approximation is least accurate, (26) dominates ¢{ and so very little
error results in the upper bound, (25) for all values of A. The expression
for ¢V is given by

r

b—n
f (b —n —v)S@) dv, ns=b<n+4i

— ! b—n—34v)Sk) dv

n+}—b
i
+ [ —n-0Se)d, n+isb<n+i

(1) A

b—n—}
¢ X 9= [ —n—1— 086 dv 28)

S

—|—2f.(i—v)S(v)dv, n+isb<n+?

1

f' (b —n—1+0)S6)d

—f'(b—n~1+u)S(u)du, nt2sb<n+1
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where
n=2012 .-
A2
S@) = (1 — 4) — L"";r_— G@) (29)
r—2rv 2wy )
G(U) — f CAK(u) cos T d.’r . [ cR(a) cos T d:ﬂ (30)
and
A2
K@) = 5 cos 2m. (31)

While (28) appears to be a formidable equation, it turns out to be
easily computed, partly because S(v) does not depend on b and hence
needs only to be computed once for each value of A. The expression
(26), on the other hand, turns out to be time-consuming to compute,
particularly for large values of b.

4.1 Derivation of Upper Bound, Given by (25)
The expression for g, (14), with x(t) specified by (24) is
1 T T
w=q [ [ R, )kt (32)
0 0

with R (ty, t,) given by (15). Notice that the expectation in this case
ranges over the three random variables, w (t1), w(t2) and ¢. For con-
venience, define

1 ™
Rt ) =5 [ rlt, ) de (33)
where
r(t, , ta) = E {sgn [w, 4+ a,] sgn [w. + a.]} (34)
ar_ld
w; = w(t,)

a, = A cos 2rft; + ¢) 1=1,2

The latter expectation is with respect to w; and w. only. Writing out
(34) in terms of the definition of E{-} results in

1 o= i
vt ) = o[l — F(ITF f_ 3 f _sen [w, + a,] sgn [w. + a,]

f + ; — 2p(r 1Wa rar
- exp {'_ E 21%;’ — pz?_f)])w w }d'wl dw, (35)

where r = £, — ;.
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Applying Price’s theorem,”® to this equation results in

Aty , L) 2 { ai + ai — 2p(r)a, az}
. = Xp § — 36

oo~ wll = p() P 20— ()] 56)
Integrating (36) and applying the appropriate boundary condition

vields

pir)
ar(t, , t
iy ) = r(t, ) tz)lpmvn + _/; %ﬁdﬁi

or,
r(t, , t) = 4 erf (a,) erf (a,)

2 e 1 { a; + a: — Qaa,ag}
+ w./; 1 - P77 o — o7 do  (37)

where

1 H—
erf (1) = (E‘n'—):fo e dy.

As a result of the natural separation of (37) into the sum of two
quantities, define

7 = q" + ¢ (38)

where, by substituting (33) and (37) into (32), the terms in (38)
may be defined as

g = 1rT f j ell (a,) erf (a.) de dt, dt, (39)

qu) =_.L._[ f fr [n(r) ,,175‘]
? TI'ZTJ-n 0 - Jo (1 _am)’

- exp {-— fli+—]ﬂ§— Zaa, ag} da de di, dt, . (40)

The detailed steps of simplifying (39) and (40) are relegated to
Appendices A and B, respectively. In Appendix A we diseuss the na-
ture of the approximation made in arriving at (28).

Before applying the results just obtained to specific situations, a
power series representation for (32) will be given. The series may be
derived from (39) and (40) by expanding the integrands of these
functions in their respective Taylor series, evaluating the resulting
terms and adding the expansions for (39) and (40) together. This
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procedure results in
4 1
&= {f (1 — w) sin™ p(Tw) du
1]

A* [ (1 — weos 2nfTu — p(Tw)] e }
+ 3 fu N du + 0(A*)

4.2 Numerical Results and Comparisons

We evaluated the inequality (25) with the aid of a digital computer.
For the first case considered, p(r) = ¢”'"', f = 2 Hz, T ranged between 0
and 3.5 seconds and A, the sine-wave amplitude, was either 1 or 10.
The results of these computations are plotted in Fig. 1.

Let us first discuss the A = 10 case. The quantity ¢;"(T) exhibits
a damped oscillatory behavior much like a plot of [sin (fT)/ (=fT)]*
while the quantity ¢{*(T) decays toward zero quite smoothly. For
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Fig. 1— Upper bound of Q(T) for zero crossings of sine wave plus gaussian
noise.
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large A4, the former term dominates except at its zeros located at T' = k/f,
k= 1,2 --- . The values of ¢.(T) are shown as dotted lines on Fig. 1.
Sinee Q(T) is a monotonically decreasing function, its upper bound
can be constructed by drawing horizontal lines between the local
minima of ¢,(7) and the first intersection of this line with g(7T) to
the right of the minimum. This accounts for the step-like curve drawn
in Fig. 1 representing the upper bound for @(7") with A = 10.

The curve representing A = 1, while not exhibiting as fast a decay
as the curve for A = 10, shows some interesting features. As con-
trasted to the last case, the ¢i*(T) term dominates the ¢ (7") term
and consequently much of the oscillatory behavior noted earlier has
disappeared.

Another interesting observation can be made when the A = 1 curve
is compared with the 4 = 0 curve (gaussian noise alone) for which
Q(T) is known to equal (2/7) sin™* (¢”") when p(r) = ¢”'"'. (See Ref-
erence 5.) Notice that for 0 < 7 < 0.25 the A = 1 curve lies above
the A = 0 curve while for 0.25 < T < 0.75 the reverse is true.

This result can be explained by recalling that 7' = 0.25 represents
one-half the period of cos (4t). For intervals shorter than this, the
sine wave is not likely to cross zero and the effect is to cause fewer
zero crossings than would be obtained if the sine wave were absent.
Conversely, for time intervals longer than one-half the period (7' = 0.25
in this case), the sine wave is sure to cross zero and therefore tend to
increase the number of zero crossings over the noise-alone case.

As a result of this observation, it seems reasonable to conjecture
that for T greater than one half the sine-wave period Q(7), for noise
alone, also forms an upper bound to Q(7) for the sum of a sine wave
plus noise.

Additional calculations were made for comparison with Cobb’s
previously reported approximate results.' The quantity that Cobb
derived is an approximate expression for the probability distribution
function of zero-crossing intervals, denoted by Po(T). Rice gives the
relationship between Q(7') and P,(T) in Reference 4 as

Q) = 1 — 2T + 2 f ' f " Py di du 41)

where v = expected number of zero crossings of (24).
As observed in Fig. 1 and 2 of Reference 1,
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for the large sine-wave amplitudes where Cobb’s approximation is
valid. Thus,

2fT

QT) =1 — 2fT + f f " Pu(s) ds dy. (42)

Cobb shows in equation 52 of Reference 1 that

Po(s) 2 1 exp [— -(S%ll] (43)

a
where
__a+ )
A
p = p(2fT).

The approximation (43) is only valid for ¢ < 1.
Substituting (43) into (42), we obtain

Q) = (1 — 2!’1‘)[0.5 + erf (1__—??!2:)]

T T I G A

As in Reference 1, set

p(r) = T (45)
A=3 (46)
2xf = 0.875 rad/sec. (47)

Figure 2 compares the approximate solution based on Cobb’s re-
sults (44), and our upper bound (25). For 2fT < 1, the approximate
solution is somewhat smaller than the upper bound. For 2fT > 1, the
approximation becomes negative and therefore of little interest while
the upper bound gradually approaches zero as T' increases.

V. EXTENSIONS TO OTHER CASES

The specific applications discussed should not be considered ex-
haustive. For example, the case where x(f) is the sum of a sine wave
plus gaussian noise could easily be extended to z(f) being the sum
of a square wave plus gaussian noise. Although the specific formulae
may be more complex, the general result (equations 12 and 14) is
still applicable for x(t) nonstationary or nongaussian.



ZERO-CROSSING DISTRIBUTION 541

AN %
JERANRN
AN

|
f=0875Hz
A=3

A,
UPPER BOUND

— 04

g
APPROXIMATE | ‘ \

02 SOLUTIOE ]
: FROM REF |1 |, TN T~
EQ. (52) \ \

) 0.2 0.4 06 0.8 1.0 12 1.4 1.6

Fig. 2 — Comparison of upper bound and approximate solution of Q(T) for
zero crossings of sine wave plus gaussian noise.

In addition, the derivation of the general result ecan be modified
slightly to obtain a useful upper bound on the conditional probability
that x(t) does not cross the zero axis for an interval of length T,
given that x(f) = 0 at the start of the interval. Slepian has inten-
sively investigated this latter probability. See Reference 5 for his
discussion.
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APPENDIX A

Derivation of qi"

We seek a simpler expression for the term

. 2 T T x
g = -}Tﬁj; j; j: erf (a,) erf (a,) de dt, dt, (48)
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which was first encountered in (39) and where
a; = A cos 2aft; + @), i=1,2 (49)

Substitution of the definition of erf (x) results in

1 T T
" = szf f P(t, , &) dt, dt, (50)
™ 0 0

where
P(t, , k) = f_ j; j; exp [—3(@* + ¥)] dx dy de. (51)

The first step is to notice the following three easily established
properties of (51):

Pty , 1) = P(ty — &) = P(ta — ) (52)
P(s) = P(T +’—;) . omo= 1,2, .- (53)
P(f + %) - —«P(&l—f - 'r)' (54)
As a result of (52), (50) may be written as
P = f (T = DPG) dr. (55)

It is a simple matter to demonstrate that, for any function, H(r),
satisfying the requirements of (52) through (54),

(F+1)/f
[ @ H@ar =0, (56)

We next introduce an approximation to (51) that preserves properties
(52) through (54). It is important to preserve these properties because,
as a result of (56), if they are satisfied, g;"’ = Ofor T' = k/f,k = 1,2, --+;
consequently, an approximation satisfying (52) through (54) will be
accurate in a vicinity of these values of T'. In addition, the three prop-
erties permit fast computation of (50).

The approximation chosen is given by

ay as /2 (a,?+as?)t
f f exp [—3(@" + )] dz dy = f f e”"*r dr de (57)
0 0 0 0
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for sgn [a,] = sgn [a.], and

ay as /2 (a13+ag2) 1}
f [ exp (-3 + ) dway = — f f "rdrda (58)
0 0 0 0

for sgn [a,] = —sgn [a,].

Essentially the approximation results in deforming the region of
integration, as shown in Fig. 3. From this figure, it may be noticed that
(57) is in reality an upper bound while (58) is a lower bound. Of course,
it is easy to conceive of functions that give an upper bound to (58)
and thus result in an upper bound for ¢{"’. However, this results in a
loss of properties (52) through (54).

Evaluating the integrals appearing in (57) and (58) and then sub-
stituting into (51) vields

P, ) =5 [ plet, o)1 = ¥y (50)

where
ple, t, , &) = sgn [a, a,] (60)
and
Bty , t,) = P(t,, t,).

Proving that (59) possesses the properties (52) through (54) only
requires the use of elementary integration theory and will therefore
be omitted. As a result of these properties, (59) may be written as

Plr) = ;jﬁi p6, 1)1 — AR eom bs cont wremly g 1)

where 0 = 27f
p(6, 7) = sgn [cos 6 cos (wr + 6)]; (62)
1

_ _ REGION OF INTEGRATION
——————— FOR APPROXIMATION

a.

1
\ _ REQUIRED REGION
| Y%~~~ OF INTEGRATION

\
\
\«——- RADIUS= 3,2 +3,2
\
\
1 L
] az x

Fig. 3— Deformation of region of integration for approximation in Appendix A,
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furthermore, P(r) need only be evaluated for the range 0 < v < 1/ 4.
Values beyond this range are related to values within the range by
(52) through (54). To evaluate (61), an explicit expression for (62) is
required. After studying this latter equation one finds that for

0<r<1/2f
.
T 3T
1 for 2<0§2—w7
—1 for I;'—w'r<0§g
p(0, 7) = B (63)

1 for —%<3§§—w'r
_ _T _ <« _T
Llfor B wr < 0= 5

with similar expressions for r falling in the ranges

B _k+1
2f = 2f

IIA

k=1,2, .

However, only the expression given by (63) is needed to evaluate
(61) in the required range.
Substitution of (63) into (61) results in

(3r/2)—wr

P =3 [f_(’m_m F(r, 8) d0 + F(r, 6) d6

/2 /2

/2

~x/2
— f F(r, 6) d6 — ] F(r, 6) dﬂ] (64)
—(r/2)—wT (x/2)—wr
where
F(T 6) =1— e_"d’/z)[“!’ 0+ cos? (wr+f)]
! .

With the help of some fundamental trigonometric identities it is easy
to show that

F(‘r, 8) = 1 —_ e—Awfze-Ktt) cos (wr+28) (65)
where
2
K() = & cosar. -

2
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Substituting (65) into (64) and performing obvious simplifications
results in

ﬁﬂ=gmw—hf—%“Wmm (67)

where

G(T) — f e—K(f) cos z dx _ f eK(f) cos T dx- (68)
1] o

For the time being assume n < f7" < n + 3 wheren = 0,1, 2, --- .
Substituting (67) into (55) gives
2 T
o= [ = DS dr
[
where

—-A/2

S(r) =1 — 4fr — ©

G(r). (69)

™

Using the result (56), the latter equation equals

2 T
gV = 7 _/;” (T — 7)8(7) dr.
Setting t = » — n/f,

W 2 fT-(n/f) ( n ) ( n)
~ 2 7" y)s(t+2
Q2 T2 , f + | di

_ %j;r—(nm ( B ? _ t)S(t) it

as a result of property (53). Now substitute ¢t = v/f to obtain

b—n
q:" %’% )
where b = fT.

This equation is the same as the first part of the final result stated
in (28). The equations defined in (69), (68), and (66) are the same
as (29), and (30), and (31), respectively, except for a convenient
scale change. The rest of the results stated in (28), for various
ranges of T, are derived in a similar manner as (70) was, using rela-
tions (52), (53), or (54), as required. Because only straightforward
operations are used to obtain these results, they will not be derived.

b—n—0)SW)dv for n=b<n+1 (70)
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APPENDIX B

Derivation of q5*

The first step in simplifying the expression for g;”, as defined in (40),
is to interchange the order of integration of the two innermost integrals
to yield

o __l_frfrf’m 1 Bl b, ) dadt dly  (T1)
e I A N P (1 —C!E)% o Ty R G @ O

where

E 3 2 2 _
Bla, t, , t,) = f exp [— & 2(‘1‘2_ a%;‘“‘ﬂ de. (72)

Using the definitions of a, and as, (34), and some obvious trigono-
metric identities, it is easy to show that

al + a; — 2aa,a,
= A*{cos [w(t, + =) + 2¢lla — cos (wr)] + [1 — « cos (wr)]}

where we have set w = 2rf for convenience.
Substitution of this relationship into (72) results in

Bla, 1, , t;) = exp [_JL(UMIT)]

: f_ " exp (—Jala, 1) cos [w(t, + &) + 2]} de  (73)

where
I 1) =4 [L:T"%":M] (74)
T ) = A [a g emen] (15)

Setting 8 = w(t; + t2) + 2¢ in (73) and using the periodic properties
of the integrand, yields

Bla, 7) = 2 exp [—Ji(a, 7)] f* exp [—J2(e, 7) cos 8] d6.

This integral is recognized as an expression for the modified Bessel
function of the first kind (see Reference 11, page 181, Equation 4).
And so

B(a, 7) = 2xl,[Jx(a, 7)] exp [~/ (e, 7)] (76)
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where I,(x) is the modified Bessel function of the first kind, zero
order,
Since (76) is only a function of r, one may define

H(r) = B(a, 1) da. 77

2 plr) 1

T v/; V1 —a
Furthermore, it is easy to show that H(s) = H(—r). Consequently,
(71) can be written as

1
@ =2 f (1 — WHT) du.
0

By setting » = w7 in (77) and by making the change of variable «
= sin 6, (26) and (27), which are the desired results, follow.
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