Adaptive Redundancy Removal in
Data Transmission

By R. W. LUCKY

This paper suggests an adaplive filter, similar to that used in automatic
equalization, for use as a predictor in data compression systems. It dis-
cusses some of the applications of this adaptive predictor in digital data
transmission. In the event of redundant data input to the system the pre-
dictor could be used to lower the transmitted power output required for a
given error rate or lo decrease the error rate while maintaining constant
transmitted power. The action of these redundancy-removal and restoration
systems s analyzed in stmple cases involving Markov tnputs.

I. INTRODUCTION

In the design, analysis, and testing of data transmission systems it
is invariably assumed that the input digits are identically distributed,
independent random variables. However, in many actual systems the
input digits may arise from a physical source which imposes signifi-
cant correlations in the data train. In these cases we know that the
entropy of the source is less than when independent digits are pre-
sented. Accordingly, we should be able to use the redundancy in the
input message to provide, in some sense, more efficient transmission.
For example, we could imagine the redundancy being used to de-
crease bandwidth, to increase speed, to lower probability of error, or
to lower average signal power.

Redundancy removal in analog transmission systems was investigated
in the early 1950’s by Oliver, Kretzmer, Harrison, and Elias'~*. Each
of these papers relied on the theory of linear prediction as developed
by Wiener in the early 1940’s.’® Figure 1 shows the basic idea. It is
assumed that the input samples are taken from a stationary time series
{z.}. These samples are passed through a linear filter whose output
£, at time ¢, forms a linear prediction of the sample z, based on all
preceding samples. The prediction £, is subtracted from the actual
sample z, and only the error e, is passed on for further processing and
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Fig. 1 — Predictive system.

transmission. Since the portion {#,} “removed” from the input sequence
is a deterministic function of the error sequence, no information has
been lost and the original sequence can be reconstructed at the receiver
by the feedback loop shown in the figure.

The philosophy of predictive systems has been widely studied for
its application in bandwidth compression of telemetry data and of
television; for example, see Kortman, Davisson, and O’Neal.*® In these
examples the error samples e, are quantized and transmitted by pem.
Because of redundancy, that is, predictability, in the source data,
fewer digits per sample (and consequently less bandwidth) are re-
quired for transmitting the error samples than for transmitting the
original samples for a given fidelity of reconstruction.

One of the difficulties with these data compression systems is in
determining the predictor filter. Although the theory of linear predic-
tion for stationary time series is well known, the practical determina-
tion of the statistical properties of the input data and the realization
of the corresponding optimum filter are nearly impossible. Generally,
an approximate average statistical description is used for the input
data and a considerably simplified version of the optimum filter is
constructed. Most existing compression schemes appear to use only
linear or zero-order extrapolation of the previous sample to form the
prediction of the succeeding sample. More complicated and adaptive
prediction techniques have been confined to computer-processed data.

In this paper we describe a simply-instrumented adaptive filter for
use as a predictor. This filter uses a finite tapped delay line whose
coefficients are continually adjusted to provide a least squares predic-
tion of incoming data. The coefficient settings are based on the sta-
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tistics of a finite section of the past data (the learning period). As
the statistics of the data during this learning period change, the
coefficients are changed to provide an updated version of the predictor
filter.

Although the most obvious applications of this adaptive predietor
would be in the transmission of television or some other very redun-
dant analog signal, we choose here to explore its application in digital
data transmission. In the past, little attention seems to have been
focused on the use of prediction in digital transmission. Presumably
this is because the most effective use of prediction would be in the
compression of the analog wave from which the digits are taken.

However, there do exist situations in which the input digital signal
is not under the control of the transmission systems designer. This
oceurs notably in the design of data communications equipment.
Although it has been common practice to use redundancy in speech
signals to ease transmission system requirements (the TASI system
is a dramatic example), nothing similar has been attempted with
digital data signals. There would seem to be no compelling reason
why any redundancy in digital signals should not he taken advantage
of, as long as the error statistics of the output data were not ad-
versely affected by the procedure. After deseribing a digital redund-
ancy removal and restoration system we shall discuss its possible
benefits to the customer and to the transmission plant.

II. SYSTEM DESCRIPTION

Figure 2 shows a digital redundancy removal and restoration scheme.
For simplicity we assume that the input digits e, are binary, although
the technique obviously extends to multilevel transmission. The input
sequence is passed through a shift-register transversal filter whose tap
gains ¢, have been adjusted so that the filter output d, , where

N
dn = J:Z CiQn—) (1)

is a linear least squares prediction of @, . This prediction is subtracted
from the actual sample a, and only the difference e, is passed to the
modulator for transmission. Notice that, although a, is a binary variable
taking on the values 1, both 4, and e, are analog. Unless the digits
a, are uncorrelated, the error samples e, will have smaller variance than
the unit variance of the input data. Consequently, a linear modulator
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Fig. 2— Digital redundancy removal and restoration.

will put out less line power in transmitting the error samples than in
transmitting the original data.

After demodulation at the receiver, the missing, predictable, com-
ponent 4, must be added to the error sample e, before slicing, in order
to recover a, . This component is obtained by a bootstrap arrangement
wherein the detected symbols are passed through a transversal filter
identical to that at the transmitter in order to form the predictions d, .
The receiver is similar in arrangement to the circuitry used in de restora-
tion.

There are two relatively simple ways in which this system could
be used to improve transmission efficiency. As shown in Figure 2 the
system lowers the average transmitted power without appreciably
affecting the output data error rate. In this mode of operation any
benefit from the data redundancy is used to lower the load require-
ments on the transmission plant. If many data sets were equipped
with such cireuitry, the average power handled by the plant would
be lowered in a statistical fashion. Some sets, transmitting entirely
random data, would require their normal power complement. Others,
transmitting redundant data, would require considerably less. Notice
that this is exactly the type of effect which now takes place for voice
transmission.

As the input data becomes entirely redundant in the limit, the
transmitted power goes to zero. In this case the input data consists
of a periodic pattern. In spite of the zero-level line signal, the pat-
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tern is reconstructed exactly at the receiver (in the absence of noise).
Such an eventuality would alleviate the problems now encountered
with the transmission of periodic data. These data patterns normally
lead to tones, that is, line spectra, in the transmission channel which
cause certain overloading and other system malfunctions.

Currently the problem is being treated in wideband transmission
by the introduction of digital seramblers.? In practice the zero-
level transmitted signal would not be a satisfactory solution to the
tone problem since some signal strength would be required for syn-
chronizing and timing maintenance. However, proper design of the
system could ensure that some minimum signal strength was main-
tained under all circumstances. For example, a nonlinear element in
each predictor could be used to keep the predictions smaller than
unity. As long as the same nonlinearity were used in both transmitter
and receiver, the data signal would be reconstructed perfectly at the
receiver.

The other simple way to use redundancy removal to aid transmis-
sion would be to keep the level of transmitted power constant while
lowering the probability of error. In this case, compensating gain
controls would be placed at the transmitter output and at the re-
ceiver input, These controls would be adjusted to keep the transmitted
power constant regardless of signal redundancy. During periods of
redundancy most of the voltage presented to the slicer at the receiver
would come via the feedback predictor and therefore would be noise-
less (in the absence of errors). Since the small error signal transmitted
would be greatly amplified to keep line power constant, the total noise
presented to the slicer after complementary deamplification would be
much smaller than in normal transmission. Consequently, the error
rate would be diminished during periods of redundant data trans-
mission.

Complementary amplification and deamplification surrounding chan-
nel noise introduction are automatically accomplished in transmission
over compandored facilities. Normally for these channels we would
expect that the error rate would be independent of transmitted power
level. In the redundancy removal system, however, this mechanism
is defeated by using the noiseless feedback in the detection process.

There are further uses of redundaney removal in data transmission,
but they appear to involve more complicated system arrangements.
For example, the bit rate and bandwidth of the data signal could be
lowered for redundant data. This could be accomplished by slicing
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the prediction @, to obtain a closest digital prediction and then sub-
tracting d, from a, in digital form. The resulting error digits could
then be processed by run-length encoding to achieve message com-
pression. Of course we would then need a buffer to ensure a constant
channel bit rate. We will not discuss this type of system further here.

Thus far we have alluded to the possible benefits of redundancy
removal in data transmission. There is also one major drawback—
that of error propagation. Since the estimate d, at the receiver de-
pends on the correct reception of all previous data, the compensation
at the receiver is perfect only in the absence of errors. When an error
occurs, the probability of error in succeeding bits tends to be larger
and an error propagating effect occurs. Notice that this effect does
not depend on the particular circuit configuration for its existence,
but is a philosophical necessity in any redundancy removal operation.
We analyze the effect of error propagation in a simple example in
Section V. Normally we would not expect the error propagation to
increase the entire error rate by more than a small algebraic factor.

III. THE ADAPTIVE PREDICTION FILTER

In the theory of linear prediction developed by Wiener® and others
it is assumed that the input samples a, are taken from a stationary
time series with known covariance function R (n), where

Ela.a.) = R(m — n). 2)
The power output, which is the mean square prediction error, is
N 2
P = Ele;] = F{(a -2 cﬁ.a,,_,,) } 3)
k=1

The coefficients ¢;; k = 1, . . . N, which minimize this prediction
error, can be obtained by the solution of the N simultaneous equations

ickR(n—k)=R(n); n=12 --,N. (4)

In case of an infinite filter (N = co) the coefficients ¢; and the
prediction error are given by a method involving factoring of the
spectral density G (f) of the input process. Under proper conditions
the prediction error P can be expressed in the form

P-co| [  1og 601 i 3)
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(See Doob for the mathematical niceties of this result.?®) Notice that
if the input symbols are independent, G(f) = 1, | f | £ %, and
P = 1. Since the input power is also unity no gain is achieved by
the prediction process. If, on the other hand, G(f) is not flat the pre-
diction error, P is less than unity and power is saved.

While the mathematics of linear prediction for stationary time
series serve as a guide to actual system performance, it is clear that
the assumptions are philosophically inadmissible. Furthermore, since
the data source is outside the designer’s control, it would be extremely
unlikely that the covariance function would be known in advance.
For these reasons, Balakrishnan!! in 1961 developed a mathematical
formulation for a learning or adaptive predictor wherein the form of
the prediction operator was dependent solely on the past data and
not on any assumptions of stationarity or of prior knowledge of data
statisties.

In Balakrishnan’s formulation that prediction operator is chosen
as optimum at time f, which works best when applied at times
tni, . - ., tor. Since all past information is available, we could “try
out” all possible prediction operators on the previous data and select
the operator for which

L
E, = 3 [an; — duiw; (6)
=1

is minimum. The weights w; could be used to assign a relative im-
portance to each past trial of the predictor.
For our finite linear predictor we have

L

N 2
E, =X [a'n—r’ - Zc*a.._,»_,‘] w; . )
k=1

i=1
In order to develop a physical implementation for this adaptive filter
we use a motivation based on a steepest descent approach. The deriv-
atives of the error E, with respect to the coefficients ¢,, are

a]gu L N
= - Zgu’i - — ;cﬁ'an—i—k Apejem (8)

dE, i=1

ok, L
a = - E 2‘[!’,{’,,__j(1,,_j_,,, . (9)
C, i=1

Notice that these derivatives can be obtained by passing the produect
of sample a,_, and the error voltage e, through a filter with impulse
response {w;}. Thus we are led to the adaptive filter configuration
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shown in Figure 3. This configuration is entirely similar to that cur-
rently being used for equalization' and for echo suppression.'s: **

When the input samples a, are digital, the circuitry of Figure 3 is
quite simple. The delay line becomes a shift register and the multi-
pliers become simple polarity switches. However, the circuit is not
limited to digital applications, but could be used in such analog
funetions as telemetry or television compression systems.

In any event, the response of the system, involving accuracy and
settling time as well as stability, is controlled by selection of the
smoothing filters W (w). Basically these filters must perform an aver-
aging followed by an integration. If the data were stationary and
the memory L sufficiently long, the result of averaging the product
of the error and sample voltages for the m'™ tap coefficient would
give (see equation 8)

N

Yu(l) =2 Ela,-ne,) = R(m) — 2 c(R(m — k). (10)

k=1
Then these voltages would be integrated for use as tap coefficients,
so that the governing system equations would be

N
én(t) = A[R(m) — X c()R(m — !c)] for m=1,---,N. (11)
k=1
This system would be stable for all A, since the covariance matrix,
whose nm* entry is R (n-m), must be positive definite (see Davenport
and Root?®). All voltages 1, (t) would be asymptotically reduced to

T T T

an
Y
| ] L=

n
W(w) W(w) W(w)
t t €n
t i {

TFig. 3 — Adaptive prediction filter.
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zero and the filter coefficients would asymptotically approach those
of the optimum (least squares) linear predictor of equation (4).

For nonstationary data and realistic filters W (w) the analysis of
the nonlinear, multidimensional control system is extremely compli-
cated. Let us study the dynamics of the one-dimensional system
formed by using a one-tap predictor as a guide to the behavior of
the system.

In order to put this analysis into proper perspective with regard
to the system of Figure 2 we should observe that when the input data
statistics change abruptly, both transmitter and receiver predictors
undergo the same transients. If the predictors are identical, these
transients cancel exactly at the receiver summer and no loss in noise
margin is suffered. However, the statistics of the transmitted signal
are affected by only the transmitter predictor. Therefore, the proper
design of the adaptive predictor is crucial to obtaining desirable line
power statistics, but not to the performance of the entire system.

IV. THE ONE-TAP TRANSMITTER FOR BINARY DATA

Figure 4 shows a one-tap transmitter with a binary input signal
of the form

s() = 2 ax(t —al)
n=0
a, = 1
r(oz{l 0<t<T (12)
0 elsewhere
The transmitted voltage is given by
et) = s(t) — ct)st — T (13)
where
c(t) = Aw(t)+[s(t — T)e(t)]. (14)
Because of the binary nature of the input s?(¢) = 1 and thus
c(t) = Aw@®)=[s{t)s(t — T) — c(b)]. (15)

Let m(t) = s(¢t)s(t—T); then the Laplace transform solution for
C(s) is*

*Some liberty has been taken with the shift-register starting state.
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Now returning to equation (13) we multiply both sides by s(t—T)
to obtain

C(s) = (16)

e(f)sit — T) = m(t) — c(t). (17)
Combining equations (16) and (17) gives
e()st — T) = m(t)+h(t) (18)
where
1
0O = T4 4@’ )

The output signal itself can be written by again multiplying equation
(18) by s(t—1T")

e(t) = st — TH[m(@)=h(t)]. (20)
Notice that the special properties of binary sequences have been used
in arriving at this solution, so that equation (20) does not hold for
multilevel or analog input.

Figure 5(a) shows the mathematically equivalent transmitter
given by equation (20) as well as its corresponding receiver. Since
the second multiplier does not affect the transmitted power in any
way, both transmitter and receiver can be simplified by its removal
to result in the equivalent represented by Figure 5(b).* This final

* The systems differ in their noise performance, however.



REDUNDANCY REMOVAL 559

equivalent system is amazingly simple and appears to bear little
resemblance to the initial system of Figure 4. It is interesting to
observe that, while the initial system was termed “adaptive,” no
one would seriously consider its equivalent in Figure 5(b) as being
adaptive in any sense.

Figure 5(b) has an intriguing interpretation. The input data is
first subjected to the nonlinear operation of delay and multiplication.
The output of the multiplier is

m(l) = 2 a,a,_w(t — nT). 21)

This voltage has a mean value given by E (1) in the stationary case.
If the filter W(w) has been designed as a low pass filter, then the
filter 1/[1 + AW (w)] in the equivalent circuit is a high pass filter.
Thus the de component of m(f) is removed before transmission and
reinserted via a de restorer at the receiver. In other words, a nonlinear
operation on the input signal has converted the correlation into a
spectral line which can then be removed by a time invariant linear
filter. It would seem that some generalization of this concept should
be possible, but as yet none has been found.

The equivalent circuit can be used for design purposes in selecting

an-
T n-t
1 = an
an THAW(S) I
[1]
awes) | N
1+ AW (S)
(a) t
’ —lan—i
ar}an-l a
1 n
= T AW [ae—] CHANNEL ( I P I
AW(S) T
(b) 1+AW(S) an— I

Fig. 5—Equivalent binary one-tap systems. (a) Equivalent system. (b)
Simplified equivalent.
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W (w), or for caleulating line power or transient response. Here are
the results of a few straightforward examples.

Example 1
Simple RC filter, dotting pattern input applied at time zero:
o 1
W(S)_S—I-cz' * = RC
a, = {-I—l, n even (22)
-1, n odd

A deterministic sequence is to be transmitted. We find that the output
of the equivalent circuit is

— _ — —1_ A —n(tl+1)l]_
e(f)s(t — T) = [A T lu(t) + A+1° (23)
Thus the error voltage transmitted in the original circuit becomes

e(t) =[f; (—1)"r(t —nT):”iA—_ll_—l u(t) + jir : e“"“”']- (24)

n=0

The error voltage does not approach zero because of the lack of an
integration in the smoothing filter.

Example 2
Simple RC filter, markov input:

If the input is a first order Markov process the one-tap predictor
becomes the optimum linear predictor. (We study this case more thor-
oughly in the next section.) The covariance function of the input time
series is taken to be

R(n) = R"™. (25)

Since we now are dealing with a random input, our concern is with
the transmitted power level rather than the exact waveform as in
the previous example. The transmitted power is the same in Figures
4 and 5b, so we use the simpler structure of the latter diagram for
analysis.

When the input Markov process is subjected to delay and multipli-
cation, it can be shown that the resultant symbols (a,a,) have
mean value R and are uncorrelated. The spectral density of the
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multiplier output m (¢) is given by

Syl = R® 8(w) + (1 — BT (26)

)
2
This spectral density can be multiplied by | H () |? and integrated to
give the transmitted power. The power becomes

RE
1+ 4)

b -Fwlasmlt @

Ideally, of course, this power should be (1—R2), but the erude RC
filter is unable to approximate this result unless the gain is high
and the time constant (1/«) is large.

Better results in both examples could be achieved by an improved
selection of the filter characteristic Wi(w). We can see from the
equivalent eircuit that the best choice of W(w) makes 1/[1 + AW (o) ]
an efficient high pass filter with a transmission zero at o = 0. Of
course this must be compromised with any requirement on the filter
response time.

In this section we stress the use of the equivalent circuit as a
method of analysis rather than as an implementable system. Clearly,
if one were to build a one-tap binary predictor, the circuit of Figure
5(b) would be preferred to that of the original system. However we
believe that such a restricted system would not be of great practical
interest.

While the implementation of the simple equivalent eircuit cannot
be extended to wider application, it is hoped that the easy analysis
of the simple system conveys some insight into the performance of
multiloop systems. This would be particularly true if there were
small interaction between taps on the multiloop system. Such a
situation would occur if the covariance B (n) decreased rapidly with n.

P=r—F—+ (1 —R)

V. ERROR PROPAGATION

When noise is added in the transmission channel there is some
probability of the received digits being incorrectly detected by the
slicer. Even though the transmitted power might have been substan-
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tially reduced by the redundancy removal, the probability of an
initial error is identical to that of a full power system. Once an error
has been made, however, the probability of making subsequent errors
is increased because of the incorrect symbol being used in redundancy
restoration. Thus, errors tend to bunch together in the received data.
Besides increasing the average probability of error this error propaga-
tion considerably complicates the problems of error control in the
entire system.

Error propagation in de restoration circuits has been examined by
Zador, Aaron, and Simon.'® " It appears to be a very complicated
problem, in general, which is even more confused by the presence of
the adaptive, pattern sensitive filters in the redundancy removal
system we are considering here. Therefore, we shall attempt the
analysis of only the simplest meaningful theoretical model. Both
transmitter and receiver will have one-tap transversal filters as shown
in Figure 4. The input data is taken to be a binary first order Markov
process, with zero mean and covariance

R(n) = R™.

The transition matrix for this process is:

(2981
+1 —1
1+R|{1—R
LR 3
a,
L |1=R|1+R
2 2

The ideal linear predictor for this time series is simply d, = Ran
and the average transmitted power using this predictor is 1 — E*
Since the ideal predictor uses only a single tap filter, the assumption
of single tap filters in the actual system is not particularly restrictive.
If additional taps were used, their gains would be small and their
effect on error propagation would not be significant.

We will assume that noise samples &, uncorrelated Gaussian
random variables with zero mean and variance o2, are added to the
transmitted symbols in the channel. We further assume that suf-
ficient smoothing is done at the transmitter so that the tap gain may
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be fixed at its optimum value, E. Thus the transmitted samples are

€, = a; — Rak_l . (28)

Now at the receiver we shall write the received symbols as Bra;. The
parameter 8; = ==1 indicates the absence (+1) or the presence (—1)
of an error at time t;. If the tap gain at the receiver is denoted by
the parameter c, the detected symbols can be written

Biar = sgn [ay — @i (R — ¢Bimy) + &l (29)
Thus the error parameter g; is
Br = sgn [1 - akﬂ'k—l(R - Cﬁk-:) + 771] (30)

where »n, = £ has the same statistical properties as &. The proba-
bility of error at time ¢; is the probability that g = —1, which is the
probability that ;. is such that the term in brackets is negative.

Now we must turn our attention to the behavior of the receiver tap
gain ¢. If no errors are made, then this gain is identical to the trans-
mitter gain and as k — o, ¢ = R. However, because of the presence
of errors, the receiver tap gain tends to be different from the trans-
mitter tap gain. At time £, the output voltage of the multiplier at
the receiver is

Vp = BriPr-1tr- — €. (31)
The random variables v, are averaged to determine the movement of
c. Notice that, since | rarfiaa;y | = 1, the magnitude of ¢ cannot

exceed unity except as a transient starting state. This eliminates any
possibility of a runaway in ¢ resulting from unusual error patterns.

We assume that the action of the loop at the receiver is to reduce
to zero the expectation of the multiplier output voltage at time
infinity. Thus

Ep,] =0 = lklm E[BaBi-18i-1] — € . (32)
This type of final behavior would be exhibited by systems in which
W(w) consisted of a long term averaging followed by an integration.
The expectation of the term in brackets in equation (32) depends on
¢ itself, so in general we end with a fairly complicated equation requiring
a trial and error solution for ¢, . By taking the limit as k¥ — o« of the
expectation we eliminate the dependence on time and on the initial
probability distributions for the random variables involved.
Define a vector random variable & = (@, ) taking on the four
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possible states (+1, +1), (+1, —1), (—1, +1) and (—1, —1), denoted
by states 1 through 4, respectively. Because a, is Markov and since the
expression for §, in equation (30) involves only ax, @-1, Bi-1, and
n, we conclude that & is also Markov. The four-by-four transition
matrix = for @ has entries p,; which may be calculated from the original
transition matrix for the input symbols a, and from equation (30) for
the probabilities of error in various states. Table I lists these transition
probabilities. If the 4-entry row vector @ gives the probabilities of
&, assuming each of the four possible states, then

w(k] = 11)”‘_”#. (33)
In terms of the initial state distribution %‘”
o = O (34)

For |R| < 1 it is clear from standard Markov chain theory (see,
for example, Reference 18) that steady-state probabilities exist for

TaBLE I — TRANSITION PROBABILITIES FOR & = (G, i)

2
po = = (L5 E)o( =)
o= = (551 - o))
= o = (5 )o(HE)
p = = (51 - o2
o = = (L)1)
po = o = (551 - o))
= o = (L5 E)o( )
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the transition matrix =, that is, "™ approaches a constant vector 1 as

n — « independent of %‘”. The steady-state probabilities of the four
possible states can be obtained by the solution of the equations given by

wr = 0. (35)

Some algebraic manipulation yields the probabilities

b= Plax = 4L g = ) = g e @
Wy, = Pla, = 41,80 = —1) = § — w, (37)
wy = Pla, = —1, 8, = +1) = w, (38)
wy = Pla, = —1,B8, = —1) = 3 —w (39)

where the transition probabilities py2, P14, Po2, and psy are given in
Table I as functions of ¢, R, and o.

The expected value of the multiplier output at time infinity can
now be written in terms of the steady-state probabilities w; and the
transition probabilities py;.

E[’”w] = ’w:[pu — P12 — Pz + 1014] + 'wz[Pzz + P2z — P — Pu]
+ walpaz + Paz — Par — Pas] + WilPar F Dag — Pu2 — Pua] — ¢ (40)

Again some algebraic manipulation yields the result

_R[l —P1a—Paa—Pa2a—D12] F2[p1s —Pr2] F4[Poopi2 —PoaPra] _
E[ﬂm] B 1 —p22+p12_p24+p14 e (41)

The value of the tap gain at time infinity can be found by trial and
error. A value of ¢ is assumed, the transition probabilities are computed
and E[v,] is found. The value of ¢ for which E[v,] = 0 is ¢, . Notice that
under suitable assumptions E[v,] gives the rate of change of the coef-
ficient ¢ in the dynamic action of the system.

The probability of error after the system has settled is simply the
probability that &, is in a state where 8, = —1, which is simply (w. +
wy).

Pz + P
Pe= 1 - P2 + P2 — Pas + Py (42)
The transition probabilities here must be computed using c...
Expressions (41) and (42) have been written in terms of only
those transition probabilities which involve errors. Thus, as ¢ — 0,

each of the transition probabilities in (41) and (42) approaches zero,
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¢, = R, and P, = 0. Each of these probabilities can be visualized
as the probability that the noise (zero mean, variance o2) is greater
than the one of these four thresholds:

(multiply by -H'TR) (multiply by * 3 R)

Paa D2 Py D2
[+ <]
Io""A“ —

0 1 —R 1 14 R

Thus pqq is the smallest transition probability, while ps. is the largest.

If the transition probabilities are small, it can be seen from equa-
tion (42) that P, is principally determined by (pi2 + p14), which is
minimized by ¢ = R. Also we notice from equation (42) that the tap
gain ¢ approaches R very closely for small transition probabilities.
In general, however, ¢ = R will not be the best setting to minimize
the error probability in equation (42), nor is it the setting to which
the loop settles. Unfortunately it appears that these are not compensat-
ing offsets. For example, in Figure 6 we have plotted P, and E[v,]
against ¢, for a case in which B = 0.4 and ¢ = 0.4. Although neither
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Tig. 6 — Probability of error and E[veo] vs receiver tap gain ¢,
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effect is very significant, it can be seen that the system settles (E[v,]
= 0) for a value of ¢ somewhat smaller than R, while the minimum
error probability is obtained at a value of ¢ somewhat larger than K.

In all but the most severe noise conditions the approximation of
c» = R would be satisfactory and we would have

_ 2 |
(I - (5 ) 4 o)

But Q(1/¢) is the probability of error in the original system (no
redundancy removal). If this probability, called P, is small, then
Q(1 + 2R/o) is much smaller and we have the very good approxi-
mation

Pef)

Pl r e amatt &2 [1 - JgR)Q(l ZzR)]

The factor in the denominator gives the amplification of the original
error rate due to error propagation. Finally if R > 1/2, then Q(1 —
2R /o) approaches unity and we get the severe dependence upon R

: (44)

2Pcﬂ

Pa'PuR;r;lnll o 1 _ R' (45)

The most significant aspect of the error propagation behavior of
the circuit is that the redundancy removal and restoration system
has impressed the statistics of the input data (Markov here) upon
the error statistics of the output. Tt is clear that this philosophy
would hold in general. In the case of highly correlated input we would
end with highly correlated errors. The problems of error control could
be made quite severe in this manner.

VI. EXPERIMENTAL RESULTS

A three-tap, adaptive transmitter and a similar receiver were de-
signed and constructed by V. G. Koll. The system was designed for
binary data transmission so that the multipliers in Figure 3 became
polarity switches, while the delay line took the form of a shift register.
The filters W (s) consisted of simple RC low pass sections followed
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by integrators, that is,

Wi(s) = (46)

———a .
s(s + @)
With this choice of smoothing, the steady-state error for a periodic
input (period 3 or less here) was zero. It was in fact observed that
during the transmission of periodic data the transmitter could be
disconnected with no effect on the received data pattern.

The input data for the system was obtained by passing white Gaus-
sian noise through a variable cutoff, low pass filter. If we assume an
ideal low pass filter, with cutoff frequency W Hz, then the autocor-
relation function of the filter output is

sin zwwr].

20 Wr 47)

Ri(7) = 2N0Wl:
This voltage is then sampled at rate (1/7) and subjected to infinite
clipping so as to produce the correlated input bits. Van Vleck and
Middleton® show that the resulting autocorrelation is

sin 21mWT] .

2 WT (48)

Rn) = 2sin™ [

ki
For a filter cutoff of 1/2T Hz the data is uncorrelated. By decreasing
the filter cutoff frequency the redundancy in the data can be increased.

The action of the adaptive redundancy remover is shown in Figure
7 for two different values of filter cutoff. Notice that as the redundancy
is increased the transmitted waveform has longer periods of near zero
voltage where predictability is good and occasional peaks where the
predictor is “surprised.” Except for a few minor discontinuities the
reconstructed signal before slicing at the receiver is the same as the
original input waveform at the transmitter. The relative power saving
as a funection of filter cutoff is shown in Figure 8.

In order to predict system performance in Gaussian noise we make
the crude approximation that the input process is Markov with R (1)
as given in equation (48). According to this approximation the trans-
mitted power should be 1 — R (1) This value is also shown in Figure
8 in comparison with the actual measured power output. Since the
exact correlation function is known, the theoretical signal power output
could be computed precisely through equation (4). However, we have
no corresponding means of computing the degree of error propagation
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Fig. 7— Transmitted and reconstructed signals. (a) Filter cutoff o7 = 04
[little redundancy, R(1) = 0.15]. (b) Filter cutoff 7" = 0.1 [moderate redun-
dancy, R(1) = 0.77].
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for the non-Markov source. The approximate curve of signal power
in Figure 8 is shown only as a way of evaluating the Markov ap-
proximation for later use in predicting error propagation values.

Bandlimited white Gaussian noise was added to the transmitted
signal, and error rates were experimentally determined by V. G. Koll
at a number of filter cutoff (redundancy) positions. The results of
these tests are shown in Figure 9 in curves of probability of error
versus signal-to-noise ratio. Beside these measured curves have been
plotted theoretically computed curves which are based on the Markov
approximation and on the use of equation (43) for P,.

Although all necessary information for performance determination
is contained in Figure 9, it is instructive to plot two additional curves
of probability of error versus filter cutoff. These curves are shown
in Figure 10. In one curve the transmitter and receiver gains are held
constant so that the line power decreases according to the curve of
Figure 8 while the probability of error increases with inereasing re-
dundancy because of the effects of error propagation. In the other
curve of Figure 10 the transmitter and receiver gains have been
adjusted with increasing redundancy so as to hold line power constant.
In this case the probability of error decreases with increasing redun-

dancy.
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Tig. 8 — Signal power saving by redundancy removal,
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Fig. 9— Performance of redundancy removal system at various values of
normalized filter eutoff w7,

VII. CONCLUSION

We have advanced two main points. First we suggest the possibility
of using an easily-implemented adaptive predictor for data compres-

sion systems. Second, we investigated the use of this adaptive predictor
in digital transmission.

We have seen that the predictor can be used to increase transmission
efficiency for redundant data either by decreasing signal power for a
given error rate or by decreasing probability of error for a given signal
power. Although the required circuitry for the digital application is
quite simple, it is nearly impossible to make an economic evaluation

of the system because of the complete lack of knowledge of the prev-
alence and degree of redundancy in customer input data.
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Fig. 10 — Probability of error vs filter cutoff for constant and for free S/N.
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