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A class of codes for use on the Gaussian channel, called group codes,
is defined and investigated. Roughly speaking, all words in a group code
are on an equal footing: each has the same error probability and the same
disposition of neighbors. A decomposition theorem shows every group code
to be equivalent to a direct sum of certain basic group codes generated
by real-irreducible representations of a finite group associaled with the
code. Some theorems on distances between words in group codes are demon-
strated. The difficult problem of finding group codes with large mearest
neighbor distance s discussed in detail.

I. INTRODUCTION

In a communication model first introduced by Kotel’nikov' in 1947,
and independently by Shannon® in 1948, and since studied by many
authors,” ™ messages for transmission are represented by vectors in
a Fuclidean space, 8,, of n dimensions called signal space. In this
model, known as the Gaussian channel, when X is transmitted, the
received signal is represented by a vector Z = X 4+ Y which consists
of the sum of the sent vector and a noise vector Y whose components
are independent Gaussian variates with mean zero and variance o°.
Some physical circumstances that lead to this model, as well as further
details, ean be found in Refs. 3, 10, and 13.

An equal-energy block code of size M for use on this Gaussian channel
is a collection of M distinct vectors X, , X, , ---, X, in signal space
all of the same length. We shall always suppose M = n and that the
vectors span §, . The length of the vectors serves to define an important
parameter S called the average power of the code through the equation

?IS = IX‘.IZ’- (1)

The vectors of the code are called code words or code points, Their
termini lie on the sphere of radius v/nS centered at the origin of §, .
Associated with each code point X; of an equal-energy block code
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is a region ®, of signal space called & maximum likelihood region and
defined by

- {x

That is, ®; is the set of all points in §, at least as close to X; as to any
other code word. These regions are convex flat-sided cones with apex
at the origin. The interiors of ®, and ®; are disjoint for 7 # j: the
union of the ®; is all of §, .

The capabilities of equal energy block codes for communicating over
the Gaussian channel are well known. If the words of a code are presented
equally likely and independently for transmission over the channel,
the communication rate is

|X—X.-|§lX—X,-],j;éi}- (2)

R = g log M (3)

natural units per second where a (measured in numbers per second)
is the rate at which vector components are transmitted. The receiver
which minimizes the average error probability®''* operates by asserting
that code word X; was transmitted when the received vector Z lies
in®,,7=1,2 -+, M. (The received vector lies in the boundary
of some ®, with probability 0.) When X; was transmitted the error
probability of this best receiver is

1 1
e i PR LI G L S LA A

where ®’ is the complement of @, . The average error probability is

1 M )
Po= g5 L P (5)

Upper and lower bounds are known**""**"'" for P, ,;.(M, n, S), the
smallest attainable value of P, for an equal-energy block code with
the indicated parameters. In the limit as n — o, these bounds lead
to the famous capacity formula C = a/2 log (1 + S8/c") whose in-
terpretation we suppose known. For fixed finite values of M and n,
however, little is known in the general case about codes for which
P, attains its minimal value (optimal codes). The cases M = n + 1,

n + 2, --- , 2n have been studied in some detail."*""* For n = 2,
Weber'* showed that the regular -gon is globally optimal: for M =
n+1n =23 -, it has been shown™ that the regular simplex

is optimal. No other optimal codes with n > 3 are known.
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Recently Wyner'* has investigated the capabilities of equal-energy
block codes when a suboptimal receiver, known as a bounded distance
decoder, is used. Here the regions ®; of the maximum likelihood receiver
are replaced by spheres of radius d/2 centered on the termini of the
code vectors X;, where d is the minimum distance between any two
words of the code. If the received vector is not in one of these spheres,
a decoding error is assumed. Wyner established upper and lower bounds
on the smallest error probability attainable with an equal-energy block
code using bounded distance decoding. In the limit as » — = he ob-
tained coding theorems and a capacity analogous to the usual ones.
T'or finite A/ and n, the error probability using bounded distance
decoding is a monotone decreasing function of the minimum distance d
between code words of an equal-energy block code. In the general case
little is known about equal-energy block codes with largest nearest
neighbor distance,

Tor equal energy block codes of M vectors spanning 8, two optimiza-
tion problems thus present themselves: to find a code for which P, ,
as given by (4) and (5), is & minimum; and to find a code with largest
nearest neighbor distance between its code words. We have made little
progress in solving these problems.

In this paper we investigate instead a class of equal-energy block
codes called group codes. It is conjectured that this class includes
solutions to the problems just mentioned for many values of M and n.
Quite apart from these questions of optimality, however, group codes
possess an important symmetry property that makes their study of
interest in its own right. Roughly speaking, all code words in a group
code are on an equal footing. This notion is made precise in the next
section.

Most codes that have been investigated for the Gaussian channel
are group codes: it is likely that any code used in practice will be of
this type. Group codes for the Gaussian channel are a natural exten-
sion of the group codes introduced for the binary channel in Ref. 21,
and these latter codes are obtained as a special case of the codes de-
seribed here.

In what follows, we define equivalence for group codes, then in-
vestigate the possible classes of group codes. Here the theory of group
representations plays a key role.”®* The appendix gives a summary
of results needed from this field. The problem of constructing group
codes is considered and an optimization problem of some difficulty
is encountered. A number of interesting properties of group codes are
disclosed.
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Many of the results reported here are contained in the author’s
Bell Telephone Laboratories report of May 7, 1951, a document that
received a limited circulation outside the Laboratories. A number of
these results were recently rediscovered independently by J. G. Dunn
and appear in his thesis®™ along with extensions in directions different
from those reported here. The discovery of an easy decoding algorithm
for certain group codes'® has led to a revival of the author’s interest
in this subject, and so the present paper, while in part very old, is a
report on research now in progress. It examines the general structure
of group codes. In a later paper we hope to give a detailed treatment
of some group codes associated with the symmetric group.

II. GROUP CODES

In studying the geometric properties of equal-energy block codes,
it is convenient to deal only with code vectors of unit length. That is,
we set S in equation 1 equal to 1/n, and deal with normalized codes.
To compute error probabilities associated with the use of the code,
one must scale up the vectors by a factor vnS.

Let X, , X, ---, X, be the (unit) vectors of an equal-energy block
code. It is clear from the definition of the regions @&; and from (4)
and (5) that P, is invariant under a rotation of the code as a whole.
That is, if O is an arbitrary n X n orthogonal matrix and

X;=0X;,, i=12"",M, (6)

the error probability P/ for the code X/, - -, X/, is the same as that
for the code X;, Xz, - -+ X, . The set of interword distances for the two
codes is the same, and in particular both codes have the same minimum
nearest neighbor distance d. Two codes whose vectors (with possible
renumbering) can be related as in equation (6) are called equivalent.
Equivalent codes have the same communication capabilities.

We now examine in what sense the words of an equal-energy block
code in 8, might be “alike”. Given the M/ unit vectors X; that define
the code, the real orthogonal n by n matrix O is said to leave the code
invariant if the Y; are a permutation of the X; where Y; = 0X;, 7 =
1,2, ---, M. The collection § = {0,, 02, ---, O,} of all real orthogonal
n by n matrices that leave the code invariant clearly forms a finite®
group under ordinary matrix multiplication. Now transformation by

* By hypothesis, the X; span §,. Ann X n orthogonal matrix is completely
determined by its effect on a set of n vectors that span its carrier space. Since the
words of the code are permuted along themselves by each element of 8, g = M.
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an orthogonal matrix preserves distances between points, so that a
possible definition of “alikeness” for the points of the code is to require
that in the group @ there be elements O, , O, , --- , O, that transform
any particular word, say X, , into each of the 1/ vectors of the code.
A collection of M unit vectors spanning §, that satisfies this condition
will be called a group code and denoted by the symbol {M, n}. In a
group code, if O; sends X, into X; and O, sends X, into X, , then 0,07*
sends X; into X; . We have then

Proposition 1: For a group code, the set of distances from X; to all
other poinis of the code s the same as the set of distances from X; to all
other points of the code, 7, j = 1,2, --- , M.

Each point has the same number of nearest neighbors, the same number
of next nearest neighbors, and so on.

The maximum likelihood regions ®; for a code are defined by equa-
tion (2) in terms of distances from code points. Since orthogonal matrices
leave distances invariant, it follows that for a group code a matrix
0 ¢ 8 that sends X, into X; also sends ®, into ®; . From this fact and
the form of (4) we have

Proposition 2: For a group code {M, n} the maximum likelthood regions
®Ry, Ray +++ , Ry are all congruent and all words have the same error
probability, that ¢s, P,, = P, = -+ = P, = P, .

III. GENERATION AND CLASSIFICATION OF GROUP CODES

To each matrix O of the group 8 of orthogonal matrices that leaves
a group code {M, n} invariant, there corresponds a permutation on
M letters, namely the permutation effected by O on the M vectors
of the code. That these permutations form a transitive permutation
group follows from the definition of a group code. No two different
elements of 8 can effect the same permutation of the words of {M, n}
since the effect of an » X » matrix on a set of vectors spanning S,
completely determines the matrix. We have then

Proposition 3: The group 0 of all orthogonal n X n malrices leaving
a group code | M, n} invariant forms a faithful representation of (is simply
isomorphic to) a transitive permutation group on M letters.

Group codes {, n} do not exist for every M and n. For example,
it is not hard to prove that it is impossible to arrange 5 points on the
sphere in 3 dimensions to form a group code. Neecessary and sufficient
conditions on M and n for the existence of an {1, n] are not known,
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Group codes do exist in great abundance, however, and we shall
give examples later. Indeed, from any set of n X n orthogonal matrices
0,,0,, - -+, Oy that form a finite group G under matrix multiplication
we can form a group code by choosing a unit n-vector X and forming
the set of vectors

X,=0X, i=12--,M. Q)

Elements of G leave this configuration of vectors invariant by the
group property. Since G must contain the n X n unit matrix, X is
among the collection of vectors and it is sent into each of the other
vectors. A group code therefore results. This code may not have M
distinet vectors, however, and it may not span §, . The code depends
on the initial vector X.

If the code has fewer than M vectors, then for some 7 # j, X; = X;
or 0,X = 0,X, or 07'0.X = 0,X = X for some O, ¢ G. That is, X must
be an eigenvector with eigenvalue unity for at least one O ¢ G different
from the unit matrix. The set of all such O ¢ G forms the subgroup 3¢
of order h of G that sends X into itself. It is easy to show that by (7)
G generates » = M /h distinet vectors. Since the matrices of G have
only a finite number of eigenvectors, however, it is always possible
to choose an X so that the M vectors (7) are distinet.

It may not be possible, however, to choose X so that the vectors
span 8, . To discuss this matter further we must recall the notion of
real-reducibility. A finite group of (real) orthogonal matrices § =

0,, 0,, -+, 0y is said to be real-reducible if there exists an n X n
real orthogonal matrix O such that for¢ = 1,2, -+, M
-1 A__D)
00,07 = (C ‘B‘- (8)

where 4, is an [ by  matrix, B, isann — [ by n — I matrix, 0 <1 <n
and C and D are matrices all of whose elements are zero. It is assumed
that ! does not depend on 7. A group of real’orthogonal matrices that
is not real-reducible is said to be real-irreducible. In words, a real-
reducible collection of matrices can be simultaneously transformed to
block diagonal form by a real orthogonal matrix: a real-irreducible
collection cannot be so reduced.* The reduced matrix in block form
in equation (8) is said to be the direct sum of the two square matrices

A; and B;.

* In the theory of group representations (see the appendix) reducibility is usually
defined over the field of complex numbers. The definition is as above with O replaced
by a unitary matrix. We shall speak simply of “reducibility” in this case as opposed
to “real-reducibility’.
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It is easy to show that if the matrices O, of equation (7) are real-
irreducible, then the code they generate spans §, for all choices of X:
if they are real-reducible, for some choices of X the code will not span §, .

These comments lead to

Proposition j: Every real-irreducible group G = 0,, 0., -+- , Oy
of real orthogonal n X n matrices serves by means of equation (7) o generate
a group code {M’', n} for each unit vector X in 8, . Here M' < M. If
M' < M, it is a divisor of M.

Propositions 3 and 4, together with the theory of group representa-
tionst suggest a means of classifying and generating all group codes.
From Proposition 3 we can associate with a given group code {M, n}
a unique abstract group and a faithful representation 6 of this group
by orthogonal matrices. The code can be thought of as generated from
one of its vectors, X, say, by the operation of the matrices of this
representation in the manner of equation (7). Now the representation
¢ will in general be real-reducible. There will exist then a real orthogonal
matrix O that will exhibit # in block form (8) as the direct sum of a
number of real-irreducible representations. Denote this new reduced
representation by ¢'. It is easily seen that the matrices of ¢’ operating
on the vector Y = OX generate a group code Y, , Y, , - - -, Y, equivalent
to the originally given {M, n}. We can further regard Y as the sum
of its projections Y', Y*, --- on the various invariant subspaces of
¢’ indicated by its block structure.

By the procedure just outlined, for each equivalence class of group
codes we arrive at a particular set of real-irreducible representations,
say 6,, 6,, --- , 6; of an abstract group, each with a corresponding
associated vector Y', ¥*, --- |, Y. We regard Y* as lying in the carrier
space of 6, , so that if 6; is of dimension I; , then Y is a vector of I
components, ¢ = 1, 2, -+ , 7. Let the length of Y' be A\, . We have
2 M = 1. The 6, are determined by {M, n} only up to equivalence
in the sense of representation theory, owing to the possibility of reduc-
tion of @ by different matrices O. The vectors ¥ inherit some additional
freedom owing to the M possible choices of X in the preceding paragraph.

We can think of the {/, n} as decomposed by the above process into
an equivalent direct sum of j group codes, the 7th code being generated
by the matrices of 6; operating on the initial unit vector Z* = Y'/A,,
i = 1,2 ---,j The constituent group codes are weighted by the
numbers A, , Ay, -+ -, A; in forming the direct sum code {M, n}. Notice

t Knowledge of the material in the appendix is necessary for understanding
much of the remainder of this paper.
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that some of the constituent codes may have fewer than M distinet
words.

Conversely, within equivalence we can construct any group code
as the weighted direct sum of codes generated by real-irreducible groups
of matrices after the manner of Proposition 4. In synthesizing codes
in this manner, we may, of course, arrive at equivalent codes by several
different constructions. The group § of Proposition 4 may be only a
subgroup of the group of all orthogonal transformations that leave
the code generated by G invariant. Different initial vectors operated
on by the same group of matrices may give rise to equivalent codes.

Every group possesses the trivial real-irreducible one-dimensional
identity representation in which each group element is represented by
the one-dimensional unit matrix. The inclusion of this identity rep-
resentation in the constituent codes making up a direct sum code
represents a waste of one dimension, since the code is then equivalent
to one in which each code vector has the same first component. This
first component then earries no information. By omitting the first
component of each vector (and rescaling the length of the resultant
vectors), a new code of dimension n — 1 is obtained with error prob-
ability no greater than the original {M, n}. In general in what follows
we will not be concerned with codes that contain this identity rep-
resentation.

We turn our attention now to the basic problem of constructing good
group codes as the weighted sum of properly chosen group codes gen-
erated by real-irreducible groups of orthogonal matrices.

IV, THE INITIAL VECTOR PROBLEM AND THE FUNDAMENTAL REGION

As in Proposition 4, let a code be constructed from a given group
g =0,,0,, -, 0, of orthogonal n X n matrices by means of equa-
tion (7). We think of these matrices as a faithful representation of an
abstract group isomorphic to the matrix group. The code obtained in
this manner depends upon the initial X on which the matrices operate.
The regions ®; of equation (2) and hence also P, = P,; by (4) also
depend on this choice. We suppose now that X is not an eigenvector
of any of the O; so that the code has M distinct words. It would be
desirable to be able to choose an X of this sort to either minimize P,
or to maximize d, the nearest neighbor distance. We have not seen
how to solve either of these problems in general. A few words about
them are in order.

Consider first the problem of choosing X to maximize d. The squared
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distance between X and X; is
X X)=|X-X|"=2-2X-0X

a monotone decreasing function of the quadratic form X-0.,X in the
components of X. This form is the cosine of the angle between X and X, .
Solution of the maximum nearest neighbor distance is equivalent to
finding

a = min max X-0,X 9)

X i

where the maximization over the matrices of ¢ must omit the identity
matrix. The quantity « is an invariant of the representation (is the
same for every equivalent representation) and should ultimately be
expressible in terms of properties of the group. The vector X which
minimizes (9) is not unique: any word in the code generated by X would
serve as well.

Given G, we define two points X and Y on the unit sphere to be equiv-
alent if one can be obtained from the other by an operation of G. The
surface of the sphere is thus divided into equivalence sets, A connected
region on the sphere such that no two points in its interior are equiv-
alent and such that every point on the sphere is equivalent to some
point in the region will be called a fundamental region of G. The maxi-
mum likelihood regions, &, associated with any {M, n} generated
by G intersect the unit sphere in fundamental regions. These inter-
sections are very special fundamental regions: they are convex and
bounded by hyperplanes.

In attempting to minimize P, or maximize d it clearly suffices to
consider initial vectors X restricted to some fundamental region. It
is natural then to ask what fundamental regions are possible for a
given G.

The situation is complicated. For some groups, the fundamental
region is completely determined (up to equivalence under the group
operations, of course): for other groups only certain features of its
boundaries are determined, or no points at all may be determined.

For example, in the plane consider the group G, generated by the
three matrices corresponding to reflections in three lines through the
origin that make angles of 60° with each other. This group is of order 6
and is a subgroup of the symmetry group of a regular hexagon having
the given lines as diagonals. The fundamental region of this group is
completely determined. It is a 60° arc of the unit circle with end points
on two of the given lines. Any group code {6, 2} generated by g, has
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this fundamental region for the interseetion of one of its maximum like-
lihood regions ®; with the circle. Choice of X serves only to position
the initial vector within the maximum likelihood region. (When X is
chosen to lie on one of the reflection lines, a {3, 2} results and the maxi-
mum likelihood region changes discontinuously to the union of two
adjacent regions of the sort just discussed.)

On the other hand, consider the group G, of rotational symmetries
of the regular hexagon. G, , of order 6, consists of a 2 X 2 matrix rep-
resenting a rotation of 60° in the plane along with the distinet powers
of this matrix. Any 60° arc of the unit circle is a fundamental region for
this group. Codes {6, 2} generated by G, are equivalent for all choices
of the initial vector X.

An example illustrating a partly determined fundamental region is
obtained by considering the pure rotational symmetries of a cube
in three dimensions. We imagine the cube centered at the origin and
inseribed in a unit sphere. We speak in terms of the operations on the
cube rather than in terms of the 3 X 3 matrices which describe these
operations. G, , a group of order 24, consists of rotations of the cube
by 120° around the body diagonals, of rotations by 90° about axes
through the origin and centers of faces and of rotations of 180° about
axes through the midpoints of edges and the origin. One axis of each
kind is shown on Fig. 1. In discussing the fundamental region of G,
and codes generated by Gs , it is convenient to speak of points on the
cube, rather than on the circumseribed unit sphere. It is to be understood

90° cTJ c[" 180°

Fig. 1 — Example of partly-determined fundamental region.
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then that when a point on the cube is mentioned it is really the cor-
responding point on the sphere obtained by projecting along a radius
that is under discussion.

The vertices of the cube, the centers of faces and the midpoints of
edges must all lie in boundaries of fundamental regions, for these points
are on axes of rotation of G, . For example, a point distance e from a
vertex of the cube has two nearby equivalent points forming an equi-
lateral triangle with the vertex at the center of the triangle. These
three points cannot all lie in the interior of one fundamental region.
The cube vertex therefore cannot be an interior point of a fundamental
region. In fact at least 3 fundamental regions must meet at each vertex,
at least 4 at each face center and at least two at each edge midpoint.
Cube vertices and face centers must therefore be vertices of fundamental
regions. Now all vertices of the cube are equivalent under G; as are all
face centers and all edge midpoints; no two of these three types of
points are equivalent. A fundamental region of G; must therefore con-
tain at least one cube vertex and one face center among its vertices and
at least one cube edge midpoint along its boundary.

Two distinet types of fundamental regions for G; bounded by hyper-
planes (great circles on the sphere) are shown in Fig. 1. Region AEFG
is bounded by four hyperplanes. Edge midpoints are vertices of this
type or region. Four fundamental regions surround each face center
and each edge midpoint: three surround each cube vertex. Region
ABCD is bounded by only three hyperplanes. Edge midpoints are
no longer vertices of the fundamental region. Eight regions meet at
each face center. The fundamental region ABCD corresponds to the
maximum likelihood region of a group code having an initial vector
(and hence all vectors) pass through a cube edge: region A EFG results
when the initial vector passes through a face diagonal. All other positions
of the initial vector give maximum likelihood regions that are funda-
mental regions bounded by four hyperplanes but not congruent to
AEFG.

G; is the irreducible representation of the symmetric group on four
letters derived from the Young tableau®® associated with the partition
(2, 1, 1). The irreducible representation belonging to the partition (3, 1)
is also three dimensional. It is equivalent to the group of symmetries
of the regular tetrahedron and can be generated by reflections in planes
through the centroid of the tetrahedron and its edges. The fundamental
region here is completely determined. It is bounded by three of these
generating reflection planes. Maximization of nearest neighbor distance
for a {24, 3} generated by this group can be easily accomplished by
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choosing the initial vector equidistant from the three bounding planes
of the fundamental region.

More generally, Coxeter” has shown that if a real-irreducible finite
group of n X n orthogonal matrices is generated by reflections, the
fundamental region is completely determined, and in fact the region is
bounded by n hyperplanes. Indeed, Coxeter has enumerated all possible
groups of this sort. In dimensions n greater than 8, there are only three
such groups, called by him 4, , B, , and C, of order (n + 1)}, 2" 'n!, and
27n), respectively. These groups generate permutation modulation
codes'*—A, generates Variant I codes, B, generates Variant II codes
with g, = 0, and C, generates Variant IT codes with g, # 0. The various
permutation modulation codes are obtained by choosing the initial
vector to lie in boundaries of various dimensionality of the fundamental
regions of these groups.

Returning to the general case (when G is not generated by reflections),
the real eigenvectors of the O, with eigenvalue unity serve to determine
landmarks of the fundamental region. Such an eigenvector must lie in
the boundary of the region. If O, has [ such eigenvectors, their span is
an Il-dimensional boundary of the fundamental region. The situation
has been studied by Robinson®* in some detail, but no simple method
of classifying the possible regions is available.

V. THE DIRECT SUM

Since any group code is equivalent to the weighted direct sum of codes
generated by real-irreducible representations of a group, it is natural
to investigate the relationship between interword distances in the sum
code and the corresponding distances in the summand codes.

LetGg = A,, A,, ---, A, be a finite group of order g with 4, the
identity. Let D'(A) and D*(4) be two real-irreducible representations
of G by real orthogonal matrices of dimensions I, and [, respectively.
Let X; = D'(A)X,and Y, = D*(4,)Y,7 = 1,2, --+, g be group codes
generated by D' and D’. (Neither code need have g distinet vectors.)
The direct sum code with weights A, and A, has vectors

Zi = A1Xt'€'_)A2Y.:‘ 1= 1) 2! Tty g (10)
7\?+R§=1, 0<k1,k2<1

of I = I, + I, components. We seek to choose the weights so that the
nearest neighbor distance, d, for the sum code Z is a maximum.

Let a; = d°(X;, X,) and 8; = d°(Y., Y,) be the squared distance
from the code word generated by A, to the initial vector in the two codes,



GROUP CODES 587

i=1,2, ---, g, respectively. For the sum code we have
dz(zi ) Z]) = 7\?“; + 7\3.8.'

since the subspaces containing the X code and the Y code are orthogonal.
The desired maximum nearest neighbor distance is thus

d® = max min [(1 — Ne; + M:] (11)

0sSAs1 1#1

where we have set A = Aj . The situation is illustrated in Fig. 2. Here we
have taken @ < a3 = - -+ = a, which we can do without loss of general-
ity since this is merely a matter of giving names to the group elements.
The bracketed expression on the right of equation (11) is plotted as the
line segment with ordinate «; at A = 0 and ordinate 8; at A = 1. We
seek the highest point on the bottom boundary of this collection of
lines, point P in Fig. 2.

Now any of the vectorsY; ,7 =1, 2, ---, g, not just Y, , would serve
to generate the'Y code. We can seek a further maximization of the nearest
neighbor distance (11) for the Z code by choice of the vector from the
Y code to be called Y, . Stated otherwise, for the initial vector of the Z
code we choose a particular vector X, from the X code and to this we
can add (directly) any of the vectors of the Y code. Now replacing Y,
by ¥, merely amounts to permuting the subsecripts on the 8; of Fig. 2.
The subscript 7 is replaced by & where 4;4; = A, . To combine the
two codes to get the largest nearest neighbor distance, we must further

B
dg
as Bz
%4 Be
P Ba
s Bs
az
0 1 X

Fig. 2 — Maximum nearest neighbor distance,
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maximize (11) over permutations of the @'s corresponding to left
translations of the group.

The maximization just considered was with respect to the manner of
combining the two summand codes. There remains the matter of choos-
ing X, and Y, to further increase (11). At first it might be thought
that these vectors should be chosen to maximize the nearest neighbor
distance in each of the summand codes. That this is not necessarily so
can be seen from Fig. 2. Choosing X, to increase the nearest neighbor
distance in the code generated by D' would cause a, to increase. The
line connecting «, and 8, on the figure would move up. However, this
change of X, might cause o, to decrease by a larger amount so that
point, P on the figure moves downward. The situation is complicated.

The relationship between the maximum likelihood region for the
sum code and the corresponding regions for the constituent codes is
even more complicated in general. Let @ be the region belonging to
Z, of equation (10) and let @' and ®* be corresponding regions for X, and
Y, in the summand codes. We write Z = A, X + A.Y for a general point in
the space of the direct sum representation where X and Y lie in the
respective invariant subspaces of the summand codes. A point will lie
in®thenif |Z —Z,| £ |Z —Z,|fori = 2,3, ---, ¢, or what is the
same, if

Nd'(X, X,) + Nd(Y, V) £ NEEX, X)) + MY, YD)

fori = 2,3, -+, g. Thusif X e ® and Y £ ®® then Z ¢ ®, but the con-
verse is not necessarily so in general.

A special case in which the converse holds is the following. It may
happen that both the X code and the Y code have fewer than g distinet
vectors. In the direct sum code (10) it may happen that each distinet
vector of the Y code is paired at least once with each distinet vector
of the X code. (§ must be homeomorphic to the direct product of two
groups.) In this case @ is the cartesian product of the two regions ®'
and &°. The probability of no error for the sum code is given by Q. =
Q' (M) Q%(\;) where the factors are the probabilities of no error for the
separate scaled summand codes. The information rate (3) for the sum
code in this case is the weighted sum of the rates for the constituent
codes

We are better off using the code with the larger rate uncombined.
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VI. THE CONFIGURATION MATRIX

Let X,, X;, ---, Xy be a collection of unit vectors spanning §, .
The configuration matrix of this code is the M by M matrix p whose
elements p;; = X;-X; are the cosines of the angles between the words.
Equivalent codes have identical configuration matrices except for a
possible relabeling of rows and columns. This configuration matrix is
real, symmetric, non-negative definite and of rank n. The diagonal
elements are unity and the off-diagonal elements are of magnitude no
greater than unity.

Conversely, we have the following

Lemma: Every real, symmetric, M by M non-negative definite mairiz of
rank n with diagonal elements unity and off-diagonal elements of magnitude
less than unity is the configuration matriz of a code of M unit vectors that
span 8, .

The proof of this lemma follows readily from the fact that a real sym-
metric M by M matrix p can be diagonalized by an orthogonal matrix O,
that is, 0p0™" = A where, since p is non-negative definite and of rank n,
A has n positive diagonal elements and all other elements are zero.
Without loss of generality we can take the first n diagonal elements of
A, say Nii=\;,4=1,2,- -+, n to be the positive ones. From p=07"'A0, it
follows that

pi; = Z Oul\/}\_ﬂ Oui \/rﬁl = Xl"xf

where X, is a vector of n components, the uth component being ‘\/_)\,,O,“ )
t =1,2 ---, M. We have now exhibited M unit n-vectors whose
configuration matrix is the given matrix p. We need now only show that
they span 8, . But we have written p = XX where X is the matrix of M
columns and n rows whose 7th column is X, . The tilde denotes trans-
pose. Since the rank of a product of matrices is not greater than the
smaller of the ranks of the factors, it follows that X must be of rank =,
for if it were of rank less than n, so also would be p contrary to hypothe-
sis. The X; therefore span §, .

For group codes, the rows of the configuration matrix are all permuta-
tions of the first row of the matrix as can be seen from Proposition 1.
Indeed the structure of this matrix is closely related to the multiplica-
tion table of the group generating the code. Let the code vector X; =
D(A)X,i=1,2, -+, M be generated by an orthogonal representation
D of a group G with elements 4, , A,, ---, A, . Here 4, is the identity
and the code need not have M distinet vectors. Denote by 6(4,) the
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angle between X; and X, . Then 6(47") = 6(4,),j = 1,2, ---, M and
the configuration matrix of the code is found to be given by

pi; = cos B(A74,)
4,j=1,2 ---, M.If p,; < 1forj > 1, then the code has M distinct
vectors: if 1 = pyj, = pij, = -+ = puj With 1 = §i <o --- <
and these are the only elements of value unity in the first row, then

the code has M /h distinet vectors.
Conversely, we have

Theorem 1: Let z(A;) be a real-valued function defined on the elements

Ay, Ay, -+, Ay of a group G of order M. Let x(A,) = 1, where A, is the
identity of the group, and let x(A;) = x(A7"),j = 1,2, ---, M. If the
M by M matriz p with elements p;; = x(A7'A;) is non-negative definite

and of rank n, then there exisls a group code {M' n} generated by an n-
dimensional orthogonal representation of G that has configuration matrix p.
Here M' = M/h where h is the number of different values of j for which
z(A;) = L

Proof: The proof follows easily from the lemma. We can find M unit
vectors X; (not necessarily distinct) that span 8, such that p;; = X;-X; .
Without loss of generality we can suppose that X, , X,, -+, X, are
linearly independent. Now an n by n real matrix is determined by speci-
fying its effect on n vectors that span its carrier space. For each p =
1,2, -+, M we determine the n by n matrix D(4,) by specifying its
effect on X, , -- -, X, , namely that D(A)X; = Xjsw,2 =12, -+, 0
where A, A;=A,; ., - Now X;-X,;=p;;=2(A7'A,)=ax(AT'A]'A,A4,)=
(ATE WA w) = Xigw - Xigw , so that D(A4,) preserves the angles
between n vectors spanning its carrier space. It is easy then to show
that D(4,) preserves the angle between any two vectors and hence is an
orthogonal matrix. For j > n,

X;= Z ﬂ'ikxh
h=1

for some set of o’s. Using this representation and the orthogonality of
D(4,), it is now easy to show that D(4,)X; =X, . fori=1,2, ---, M.
The fact that D is a representation then follows readily.

Theorem 1 permits an interesting reformulation of the problem of
finding an {M, n} of largest nearest neighbor distance generated by a
representation of G. Form the modified multiplication table of G,—an
M by M array of group elements with A7'4; in the 7th row and jth
column. From this table we construct a symmetric M by M matrix p
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by replacing the group identity 4, , say, by unity, by replacing both A4,
and AT by the variable x,, 4, and A;' by z,, and so on. If G has
exactly m self-reciprocal elements, there willbe K = m — 1 4+ (g — m)/2
variables in p. The condition that p be non-negative definite and of rank
not greater than n obtained by conditioning certain minors of p gives
rise to polynomial constraints in the variables x; , - -+ , 2x . To find the
code of largest nearest neighbor distance, we must minimize max, z;
subject to these constraints.

We notice in closing this section that the configuration matrix of an
{M, n} generated by a group G of order M commutes with all the ma-
trices of the regular representation of G (see the appendix). Using Schur’s
lemma, one can then arrive at a canonical representation for configura-
tion matrices that involves the irreducible representations of G. But
we do not pursue this topic further here.

VII. SOME THEOREMS ON DISTANCES

We now adopt the notation of the appendix. Let G be an abstract
group of order g with elements E, A, B, --- where E is the identity.
Let D(E), D(A), - - - be a real-irreducible representation of g by n X n
(real) orthogonal matrices. From an initial unit vector X = X the
representation generates a code by Xz = D(R)Xy, R runs through g.
We denote the squared distance from X to Xg by & (X, Xs). We
have then

X, , X)) =22 Z D(A);xx;

1,7=1

= dg(xmx , Xi) (12)

for every R and A = G. Here , , x,, --- , x, are the components of X.

For codes generated from real-irreducible representations in this
manner, a number of interesting distance sums are independent of the
choice of the initial vector X.

Theorem 2: Let D(R) be the matrices of a real-trreducible orthogonal repre-
sentation of a group of order g. Let X = D(R)X. If D(R) is not the trivial
one-dimensional representation D(R) = 1, then

> X, X) =2

ReG

independent of the unit veclor X.

This is really a special case of the more general
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Theorem 3: For any code generated from the initial unit vector X by a
real-irreducible orthogonal representation D of G,

2 d'(Xga , X) = 29(1 — p)

xeg
where
b = e 2 X(E)
is a constant independent of X. Here x(R) = Tr D(R) is the character of R
in the representation.
Proof: Consider the matrix

A=Y DR") = 3 DR)D(R) --- D)
Reg Re§
where there are m factors in the summand. Since the representation is
by orthogonal matrices, D(R) = D '(R) = D(R™") where the tilde
denotes transpose. Thus
A=>DR"H---DRH =4
Re§

since as R runs through G so does R~*. The matrix A is thus symmetric.

We next show that A commutes with all the matrices D(R). By a
theorem quoted in the appendix we can then conclude that A = ol
where I is the unit matrix. To see that A commutes with D(&), consider

ADR) = SES D(S)"'D(S)D(R) = SZQ D(8)" 'D(SR).

Now set SR = T so that S = TR™'. Then
ADR) = Y, D(TR™H™'D(T)

3 D(TR™D(TR™) --- D(TR™)D(T)
= 3 DMDRT)DR™'T) --- DR™'T)

Te§

= X D(RU)DU)""' = D[R) 2 D(U)" = DR)A
Ue§

Ue§

[

where we have used the substitution U = R™'T.
From equation (12) we have
E dz(xm' X)) =29 —2 Z Tyl REQ D(R™).;

ReG i,i=1

29 — 2 2 za; Ay =2(g — a)
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by the diagonal property of A just established. To find « consider the
trace of 4. We have
TrA =Tral =an = », Tr D(R™) = 2 x(R".
Re§ R«§

The theorem then follows.

To establish Theorem 2, notice that for the trivial representation
DY(R) = 1, we have x'(R) = 1. For the character x(R) of any other
nonequivalent real-irreducible representation we then have

RZQS X' (R)x(R) = 2 x(R) =0

ReS

by the orthogonality relations (appendix). Using this fact and setting
m = 1 in Theorem 3 yields Theorem 2.

Theorem 4: Let @ be a class of n. elements of G with character x(€). For
any code generated from the initial unit vector X by a real-irreducible
orthogonal representation D of G,

2 dX, X) = 2m(1 - %x(e)) (13)
independent of the unit vector X.
Proof:
,§ X, X) =20, — 2 X za; REG DR).; . (14)

Now consider the matrix
B = Y DR) =" Y. D(SRS™) == ¥ D*(S)D*(R)D*(S™")
Mee J seg J s

where D*(R) is an irreducible (over the complex field) representation of
dimension m of §. Now B commutes with all the matrices of D since

BD(T) = % gzs DXS)D(R)D*(S™'T)

=" 3 p(rU~YD*(R)D*(U) = D*T)B

UeS

where we have set S™'T = U. By Schur’s lemma, B = kI where [ is
the m by m unit matrix. Taking traces we have

TrB =Tr 2, D*(R) = nx"(€) =Trkl = km

ReC
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so that

B =3 D'R) =" x(e) (15)
For m
If now the real-irreducible orthogonal representation D is also irre-
ducible, by equation (15) the inner sum in (14) is (n./n)x(€)8;; and the
theorem (13) follows at once.
Suppose now that D is not irreducible. Then (see appendix) D is
equivalent to an orthogonal representation of the form

UR) V"(R)]
—V(R) U*(R)

where D*(R) = U*(R) + iV*(R) is an irreducible representation by
unitary matrices and U* and V* are real and of dimension m where
n = 2m. We can suppose the D of equation (14) to be of the form (16).
Now let

D'(R) = (16)

B =} D'R)
ReC
and set
\
7= L V il
2hr 1

where as before I is the m by m unit matrix. One then finds by direct
computation that

vpy = 3 [PE 0
ReC 0 DQ(R)*
_ T x (eI 0 ="
™o x'e*r

where the middle equality follows from equation (15). Now let x*(€) =
i + v with g and » real. Direct computation gives

n‘.‘
m

wl vl .
—vl ul

B =UHU" = 17

The right of (14) is
2n¢ - 2 E B,-,-.’L',-:Br-
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and using (17) this becomes

9
om, — e o at = Qm(l — H—)-

m m

From equation (16), however, x(€) = 2u, so that (13) then follows
and the theorem is proved in all cases.

Since every group code can be thought of as the direct sum of codes
generated by real-irreducible representations, and since squared distance
in the sum code is the sum of squared distances in the separate codes,
Theorems 2, 3, and 4 have ready analogues for all group codes. For
example, if a group code does not contain the identity representation,
then

> d'(Xx , X) = 2g.

Re§
Theorems 3 and 4 hold for group codes in general when x(R) is replaced
by the weighted sum D Mx'(R) of the characters of the constituent
real-irreducible codes.

Another theorem of interest concerning codes generated from any
group of orthogonal matrices arises from the fact (12) that d*(X, , X) =
d*(Xz4 , Xz). Let there be a point of the code distant d from the point
X . Starting from X, we imagine moving from word to word of the
code restricting our moves so that from any word we can move only to a
word distant d away. We shall call the ecollection of words that can be
reached from X in this manner “a d chain starting from X"’. X is to be
included in this chain.

Theorem b: Let the words of a d chain starting from Xz be Xp, X,,,
X4,, -+ X4, . Then the group elements E, A, , Ay, -+ , A, form a
subgroup 3C of G. The group elements whose corresponding words are dis-
tant d from Xg form a set of generators for 3C. I 3C is a proper subgroup of G,
then from any word corresponding lo a group element not in 3¢, a new d
chain may be formed and the group elements corresponding to the points of
this new d chain will form a coset of 3C.

Proof: Suppose all the points distant d from Xy are X,,, X,,, -+, X4, .
Let us construet a table of group elements in the following manner.
The first row is &£, A,, A2, -+, A, . The K + 1st row of the table is
formed from the preceding K rows as follows. We examine the elements
of the table in order, reading from left to right in the first row, then from
left to right in the second row, and so on. Let B be the first element
arrived at in reading the first K rows that does not appear in the first
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column, rows 1, 2, --- , K. The the K 4 1st row is to be
R,RA, ,RA,, --- ,RA, .
The table thus appears

E, A[ 3 Az ] Am
A.l 3 Af y A1A2 ] AlAm
AE H] A—2Al ] AE ] A2Am
Am ] AmAl y AmAZ y A,ﬂu
B, BAI y BAZ y BA"'

R, kA, , RA,, R4,

When j rows have been written and every element in these j rows has
appeared once in the first column the process is stopped and the table is
considered complete. The table can have at most g rows. Now from
d*(Xz, Xz) = d*(Xsz, Xg), it follows that the words represented by
the elements in the 2nd, 3rd, - -+ , m + 1lst columns of the Kth row are
all distant d from the word represented by the element in the first column
of the Kth row. Furthermore, these m words are all the words of the
code that are distant d from the word represented by the element in the
first column of the Kth row. Thus the elements of the first column of
the table give the points of the d chain starting from Xz . That these
elements of the first column form a group 3C and that A, , A, ---, 4.
are generators of 3C is clear from the method of constructing the table,
for we have formed all possible distinet products of the A’s and listed
the distinet elements thus obtained in the first column. Let 3C be a
proper subgroup of G and let S be an element of § not in 3¢. If we multiply
every element in the above table by S, we obtain a new table giving
all the points that can be reached from point X by steps of distance d.
The first column of this table lists the points of the d chain starting
from Xg and the corresponding elements are just the coset S3C of 3C.

VIII. BINARY GROUP CODES

The group codes (n, &) for the binary channel introduced in Ref. 21
are group codes in the present sense. Each word of an (n, k) code is an
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n-place binary sequence. Replace each zero by 1 and replace each 1 by
—1 in each word. Then write each word (a sequence of +1’s) as a
diagonal » X n matrix. This collection of 2° n X n orthogonal matrices
forms an Abelian group ®, that is isomorphic to the k-fold direct product
of the simple two element Abelian group. The matrices generate the
code by operating on the n-vector (1, 1, 1, - - - , 1). The real-irreducible
representations of this group are all one dimensional. There are 2* of
them. The representation by n X n matrices just considered is already
exhibited in reduced form as the direct sum of n of these real-irreducible
representations.

1X. CONCLUDING REMARKS

The foregoing paragraphs outline some of the theory of group codes
for the Gaussian channel. The development of this subject is clearly
incomplete: we have raised more questions than we have answered.
Perhaps the outstanding problem is that of finding a tractable method
of choosing the initial vector to maximize the nearest neighbor distance.

There is a great abundance of groups of arbitrarily large order that
can be examined from the point of generating group codes. The sym-
metric group and the hyperoctahedral group appear most promising
for initial investigation since their structure and irreducible representa-
tions (which are all real) are comparatively well understood.

APPENDIX

Review of Group Representation Theory*®

Let G be a finite group of order g with elements E, A, B, --- . The
letters R and S will be used for the general element of G and F will denote
the identity of G. As R runs through G, the distinct elements of the set
RAR™ are said to form a class of G. The elements A and B are said to
belong to the same class of G if there exists an S such that A = SBS™".
G can be divided uniquely into a union of classes, no two classes con-
taining a common element. The number of elements in a class of G is a
divisor of g.

If 3C is a subgroup of G and if 3C is of order &, then & is a divisor of
g and the number ¢/h is called the index of 3¢ under G. If, for every
R in 3¢, all elements of G in the same class as R are also contained in 3¢,
then 3C is said to be a self-conjugate subgroup of G. A subgroup ¢ of
is said to be proper if h < g.

The matrices in what follows are assumed to have elements in the field
of complex numbers.
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If to every element R of a finite group G there corresponds an n by n
nonsingular matrix D(R) and if D(R)D(S) = D(RS), the collection of
matrices A = {D(R), R runs through g} is said to form an n-dimensional
representation of G. The matrices of A form a group under matrix
multiplication. If the correspondence between the matrices of A and the
elements of G is one-to-one, A is said to be a faithful representation of g.
If for some R # S, D(R) = D(S), A is said to be an unfaithful repre-
sentation of . The matrix D(E) is always the n by » unit matrix. If a
representation is unfaithful, the elements represented by D(E) form a
self-conjugate subgroup of G, say of order k, and to each matrix of A
correspond exactly . elements of G. A contains g/h distinet matrices.
If D(E), D(A), --- is an n dimensional representation of G, so is
MD(EYM™, MD(A)M™', --- where M is any nonsingular n by n
matrix. The two representations A and MAM ™" are called equivalent.
Every representation of a finite group is equivalent to a representation
by unitary matrices. Henceforth we shall be concerned only with such
unitary representations.

A finite collection of n by n matrices 0,, O,, -+ , Ok is said to be
reducible if there exists an n by n unitary matrix U such that for ¢ =
1,2, .-+, K we have

s

UO.'U_ = C B,-

where 4, is an I by ! matrix, B, is an n—l by -l matrix, 0 < 1 <=, C
is an 7~ by ! matrix all of whose elements are zero, and D is an [ by n-{
matrix all of whose elements are zero. It is assumed that [ is independent
of 7. A collection of matrices that is not reducible is said to be irreducible.

Every finite group has exactly as many nonequivalent irreducible
representations as it has classes. If I, , Iy, -+ - , [, are the dimensions of
all the nonequivalent irreducible representations of G, of order g, then

D lh=g.
1

If D*(R),, is the element in the uth row and »th column of the matrix
representing R in the I,-dimensional irreducible representation, «, of G,
then
E DG(R)WDH(R):‘W‘ = aup' aw'g/la My “’) v, Vo= 1; 2; ] la .
Re§
Here * means complex conjugate and & is the usual Kronecker symbol.
If the matrices D?(R) form an Iz dimensional irreducible representation
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of G not equivalent to the representation «, then

> DR),.D(R)%,. =0,

nuyy=112!“'llur #’71":1:2:"'9!'3‘

If D(R) is the n by n matrix representing R in the representation A,
the trace of D(R), namely

x(R) = Z D), ,

is called the character of R in the representation A. If R and S are in
the same class of G, then x(R) = x(S), for any representation of G.
The characters of the irreducible representations « and 8 of G satisfy
the orthogonality conditions

RZIG X" RX'R)* = g 6.5 .

Here 8.5 is unity if « and 8 are equivalent representations and is zero
otherwise.

Let A be any representation of G with character x(R). Let the char-
acters of the irreducible representations of g be x'(R),j = 1,2, -+, ¢
where ¢ is the number of nonequivalent irreducible representations of
G (= number of classes of G). Then x(R) may be written uniquely in the
form

x®B) = X ax'®), allRing,

i=1

where the a; are nonnegative integers independent of R. In fact,

a4, = = ¥ x(R(R)*.
J kg

The representation A is said to contain the irreducible representation
j a; times and there exists a unitary matrix U independent of R such
that

D'(R) 0---0
UDR)U™ = 0 D(R) ---0 all R ing

0 0 D*(R)
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where D*(R), D'(R), D*(R) etc., are matrices of the ith, jth, kth, ete.,
irreducible representation of G, and 0 stands for the appropriate matrix
with all elements zero. The jth irreducible representation will occur
exactly a; times among D*(R), D'(R), D*(R) and so on.

Every group G possesses a faithful representation, called the regular
representation I', that consists of g by g permutation matrices. The rows
and. columns of these matrices can be labelled by the elements of G. The
entry in row R and column S of the matrix representing T is unity if
R = TS and is zero otherwise. The regular representation is reducible:
it contains the irreducible representation D exactly [, times, &« =
1,2 -,

Let D’(R) and D’'(R), R runs through G, be irreducible representations
of G of dimension d' and d” respectively. Let the matrix H satisfy
D'(R)H = HD''(R) for all R in G. Then either H is the zero matrix or
H is square and nonsingular so that d’ = d”, and the two representations
are equivalent. A matrix that commutes with all the matrices of an
irreducible representation of G is a multiple of the unit matrix. These
statements are known as Schur’s lemma.

Much of the foregoing remains valid with minor modifications when
the number field in question is the real rather than the complex numbers.
One easily finds that every real representation of a finite group is
equivalent (over the reals) to a representation by orthogonal matrices.
The only real symmetric matrix that commutes with all the matrices
of a real-irreducible representation is a multiple of the unit matrix.
If D*(R) and D?(R) are nonequivalent real-irreducible representations
by real orthogonal matrices, respectively of dimension I, and ls, then

> D*(R),,D*(R),, = 0,

Re§

#,V=1,2)"'!lﬂ 'u,"p’=1,2,"‘;zﬂs

3 [D*(R),,D*(R)ur, + D*(R), D" (R),)] = 2 8ur 8409/la

Re§

v, p v =1,2 .-+ [, .
For the characters one has

2 X"B'(R) =0

Re§

if the representations « and 8 are not equivalent, while

ZR: x“®)x"(R) + x"(R")] = 2g.
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Every real-irreducible representation that is reducible (over the complex
numbers) is equivalent to the direct sum of an irreducible representation
and its complex conjugate. If the irreducible unitary representation
D(R) = U(R) + <V (R), with U and V real, is not equivalent to a real
orthogonal representation, then

(JQ.Q ) as)

—V(R) | UR)

is a real-irreducible representation by real orthogonal matrices.
For an irreducible representation D(R) with character x(R), the sum

1

ho== 2 xR
G Res
can have only one of the three different values 0, ==1. If k. = 1, D(R) is
equivalent to a representation by real orthogonal matrices. If b = —1,

the representation D is equivalent to its complex conjugate, but is not
equivalent to a real representation. A real-irreducible representation
can be made from each irreducible representation D having h = —1 by
forming real matrices of the form (18), where U and V are the real and
imaginary parts of D. Finally, if = = 0, D is not equivalent to its com-
plex conjugate and is not equivalent to a real representation. Non-
equivalent irreducible representations for which A = 0 occur then in
complex conjugate pairs. Each such pair gives rise to a single real-
irreducible representation through the recipe (18). Thus, finally, if A
has the value 0 for exactly 2p of the ¢ nonequivalent irreducible repre-
sentations of G, then G has exactly ¢ — p nonequivalent real-irreducible
representations.
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