Design of Monopulse Antenna Difference
Patterns with Low Sidelobes*
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The flexibility of modern monopulse radar antenna systems makes
possible the independent optimization of sum and difference patterns.
The two parameter difference pattern, developed here for the circular
aperature antenna, is designed to have nearly equal sidelobes similar to
those of the Taylor sum pattern. The difference pattern is asymptotic lo
a model difference pattern which has the greatest slope (angle sensitivily)
for a given sidelobe level. The model function is unrealizable because it
has uniform sidelobes which are infinite in extent. The two parameter
difference pattern is realizable and is expressed in a Fourier-Bessel series
of N terms in a manner similar to Taylor’s treatment of the sum pattern.
The other parameter, A, controls sidelobe level.

Comprehensive tables of the Fourier—Bessel coefficients are given for
both the circular aperture series and the difference pattern series. Directivity
and angle sensitivity are tnvestigated and found to have maximum values
that decrease as sidelobe level decreases. The monopulse system performance
using the asymptotic difference pattern and the Taylor sum pattern compares
favorably with a maximum likelthood angle estimation system. Development
of a line source difference pattern is presented in the appendiz.

I. INTRODUCTION

Monopulse radar systems have, in recent years, achieved a high
degree of flexibility in their antenna patterns. This flexibility is the
result of development of multihorn feed structures and array anten-
nas. It now appears feasible to optimize independently the sum and
difference patterns of the monopulse system. A good deal of work has
been done to improve the sidelobe performance for sum beam pat-

* This work was supported by the Army Materiel Command under Contract
Eﬁ;BU-OﬁQ-AMC-S:iS(Y) through the Nike-X Project Office, Redstone Arsenal,
abama.
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terns.® However, less attention has been paid to improving the angle
sensitivity and sidelobe performance of the circular aperture dif-
ference pattern.

The objective of this investigation was to develop a difference pat-
tern which possesses characteristics that are compatible with those of
the Taylor sum pattern. Specifically, the goal was to obtain the maxi-
mum angle sensitivity commensurate with a given sidelobe level. Low
sidelobes are desirable in both sum and difference patterns for the
suppression of near-target clutter, ground clutter, and jammers. Re-
quiring large angle sensitivity and low sidelobes for the difference
pattern is analogous to requiring a narrow beamwidth and low
sidelobes in the case of the sum beam. The pattern that meets these
requirements must be produced by a reasonably well behaved aper-
ture illumination.

This paper solves the problem of generating difference patterns by
using a technique that parallels Taylor’s approach to the sum pattern
design. The problem is first detailed in terms of making good angle
estimates. It is attacked by applying a general synthesis technique
to the approximation of a model difference pattern. Finally, the re-
sulting asymptotic difference pattern is examined for angle sensi-
tivity. Pertinent design information is presented.

II. THE PROBLEM—ANGULAR ESTIMATION IN NOISE USING
ANTENNA DIFFERENCE PATTERNS

A monopulse system can make a maximum likelihood angle esti-
mate? under one of the following assumptions:

(7) The primary source of noise is spatially and temporally uncor-
related noise from the radiation field

(#) The primary source of noise is thermal noise which is independ-
ent in the sum and difference channels,

The angle estimate is made by correlating the sum and difference
channel outputs. The sum and difference patterns required to make
the maximum likelihood estimate unfortunately have quite high side-
lobes (for example, the difference pattern first sidelobe is only 14.5
dB below the sum beam maximum). For applications where clutter
or active noise sources are a problem, such high sidelobes are clearly
unacceptable. Techniques used to suppress sidelobes can be expected
to reduce the angle sensitivity. (This tradeoff is examined in Section
IV.) Thus, the problem is to suppress antenna sidelobes in both the
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difference and sum patterns without severely degrading the angle
sensitivity of the system.

The objective of this paper is to provide a unified approach to dif-
ference pattern design for the monopulse system. Specifically, the
objectives are to:

(7) Design a difference pattern with equal sidelobes, similar to side-
lobes of Taylor sum pattern.,

(72) Solve the practical problem of generating the aperture function
for the circular aperture.

(71) Balance sidelobe level and angle sensitivity to get the best
angle sensitivity for a given sidelobe level.

(iv) Compute and tabulate such design parameters as angle sensi-
tivity, directivity, sidelobe level and, of course, the aperture generat-
ing functions.

III, THE SOLUTION—AN ASYMPTOTIC PATTERN FUNCTION WITH
UNIFORM SIDELOBE LEVEL

3.1 Aperture and Pattern Functions

The aperture screen concept is very useful in the analysis of planar
antennas. It is well known that from the tangential E and H fields on
a surface enclosing a source one can, in principle, calculate the radi-
ated fields. If the enclosing surface is an infinite plane, then some
useful simplifications can be made. The equivalence principle and
image theory’ can be used to determine the field in the source-free
half-space (z > 0) from its tangential components on the plane (z =
0 in Fig. 1). For this special case the E-field can be determined solely
from the E-field on the plane.®

Plonsey* has pointed out that it is possible to describe the field in
the Fraunhofer region for all § < =/2 where the usual Kirchhoff scalar
diffraction approximation® is good only for small 6.

The aperture and pattern expression can be put in standard form
by making the following change of variables:

_ 20, _T
u—hsmﬂ and P=_p (1)
where u is the angle variable measured in standard beamwidths, p
is the normalized aperture variable and a is the radius of the antenna,

(Fig. 1). It is of interest to consider the case where the vector field
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Fig. 1 — Aperture geometry.

in the aperture is factorable:

E{p, . ga} _ {(a, +12)9p,¢); P @

0; elsewhere

where v is a complex constant, a; is a unit vector and g(p, ¢) is the
complex scalar aperture funetion. Notice for linear polarization, y = 0,
and for circular polarization, ¥ = =j. Under the above assumptions
and with the usual Fraunhofer approximations (that is, p K R, 1 < kR)

E(R, 6, ®) = _f;‘}:k—ﬂ fap X [a. X (a. + vau)]}(%f—”)zﬁ'(u, ®); 6 < %
@)

where

P, ) = 5 [ do [ oo, ¢) exp liup cos (@ — pdp. @)

The pattern function, F(u, ®), which is the Fourier-Hankel transform
of the aperture function, g(p, ¢), will be the starting point for the
next section.
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3.2 Synthesis Method for Circular Apertures

The procedure for synthesizing an arbitrary pattern function with
a circular aperture is an application of Woodward’s technique to the
circular aperture synthesis problem.®

The aperture function can be represented as a Fourier-Bessel series

9(p, ¢) = kz Z ai-ceijk(I-lkrP); P = (%)

== 1=0
This series has orthogonality and completeness properties for appro-
priately chosen w,; . It converges in the mean to an arbitrary aperture
function, §(p, ¢), when the complex coefficients, a;, , are found by taking
the inner product of the function with each orthogonal function.

The Sturm-Liouville boundary conditions give rise to the eigenvalues
for the angular and radial eigenfunctions:

() The angular eigenfunctions must satisfy periodic boundary condi-
tions. Thus their eigenvalues are the integers k.
(#7) The radial eigenfunctions must satisfy one of two cases:

1. Jk(,ukﬂr) = 0;#*1 > O,k ; Orl = 0, 1, 2, e,
2. CJ;;(#H‘"‘) + I-lH‘JI'JL(#HT) = 0; c = 0, ¢ + K > 0, ur > 0 for
l=0,1,2 - except whenc¢ = k = 0 then uy = 0.

The selection of case 1 or 2 and the constant ¢ determine the set of
positive distinet eigenvalues to be used in the radial eigenfunctions
of (5).

The aperture function expansion that allows nonzero boundary
values (case 2) is to be preferred in the expansion of equal sidelobe
patterns because:

(#) As Taylor' has shown, the slowest far sidelobe decay rate results
from nonzero boundary values.

(72) The “central region” (| % | < wev) zeros are confined to a smaller
region. This means that better sidelobe control can be obtained in
the central region for a given main-beam performance and a fixed
number of terms, N.

Thus, choosing case 2, let ¢ = 0. The synthesis of a difference pattern
allows simplification of (5) because of the symmetry required. The
difference pattern requires an antiphase aperture [one sign reversal,
F(u, ) = —F(u, ® + )], thus only first order Fourier components
are required (¢ = ==1). Thus choosing ¥ = 1, the boundary conditions
reduce to*

* Primes denote differentiation with respect to the argument.
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Ji(um) =0 =01, --- (6)

where the k subscript on u., has been dropped. See Table I for values
of u, .

To further simplify the choice of coefficients, let the difference axis
be ¢ = ® = 0. This requires setting a,, = —a_,;, = B,/2 and gives

N-1
Mn@=cm¢§BJ@@; pSm. (1

The N-term approximation to the required function § or F is designated
by a tilde § or F. The pattern function expansion corresponding to
d(p, ¢) in equation (7), that is, transformed by (4), is

= uJ (ru) ®)

F(u $) = jcos ® ZB J (;.mr) -k

The terms of (8)

uJ (wu)

I (”‘ 'ﬂ') ,M2 ]

are shown in Figure 2.

The pattern function series (8) has the important “sa.mpling
property which many approx1mat10n techniques use. If (8) is set equal
to the required pattern function, F(u, ®), at the sample point (g, , 0)
then the mth coefficient, B,, , can be evaluated because all other terms
of (8) are zero there. Equation (8) is evaluated at (u., 0) by applying
L’Hospital’s rule, substituting Bessel’s equation and the boundary
value (6) to obtain

Pl , 0) = B T Jimam)1 = (run) ™). ®

TasLe I — BesseL FuncrioN Zeros, J,'(uw) = 0

l M l My l Ha i e

0 0.5860670 5 5.7345205 10 | 10.7417435 | 15 15.7443679
1 1.6970509 6 6.7368281 11 | 11.7424475 | 16 16.7447044
2 2.7171939 7 7.7385356 12 | 12.7430408 | 17 17.7450030
3 3.7261370 8 8.7398505 13 | 13.7435477 | 18 18.7452697
4 4.7312271 9 9.7408945 14 | 14.7439856 | 19 19.7455093
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Fig. 2 — Bessel series pattern function terms.

Now setting (9) equal to F(u, ®) at the sample points, the coefficients
of (8) are evaluated

i .) a2 =0
Bm = ]"(.“m ) 0) ’-T_—r:‘; ']l_-(#m’r)“ - (TI',U.,,,) -] l;

m=20,12,--- N — 1. (10)

In Section 3.4 (10) is used to evaluate the coefficients from sample
points on the model function, F,, , and thus determine the aperture
function (7) and pattern function (8).

3.3 Construction of a Model Paitern Function

The previous section provides a method of expanding any realizable
pattern function. In this section a model difference pattern funection is
developed. It will serve as a model for the construction of the asymp-
totic difference pattern in the next section. Thus its role is analogous
to Taylor’s “ideal function.”

The main characteristic desired in a model function is maximum
angular sensitivity for a given sidelobe level. It has been shown” for
an array that the pattern funetion that produces the greatest angular
sensitivity with a given sidelobe level must also have sidelobes of
equal height. This theorem is analogous to that proved by Dolph for
the sum pattern.®

Two important differences occur when the above result for an
array is extended to the case of the continuous aperture:



630 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1968

(1) The pattern function has maximum slope for a given sidelobe

level (not maximum sensitivity).
(i7) The pattern function is not a realizable antenna pattern.

These two characteristies result from requiring the difference pat-
tern to have sidelobes of equal height. These equal sidelobes now are
infinite in extent (for all u). Any pattern function whose sidelobes do
not decay at least as w~%/% is not realizable because it requires an un-
bounded aperture function. Because the function is unrealizable its
angular sensitivity is undefined. Nevertheless it does have the maxi-
mum slope for a given sidelobe level and will serve as a model func-
tion for synthesis of a realizable asymptotic difference pattern in See-

tion 3.4.
Thus, the main characteristics of the model function are:

(7) Maximum slope at the origin for a given peak-to-sidelobe ratio.
(i) Sidelobes of uniform magnitude and infinite in extent.

Price and Hyneman pointed out that an exact functional form for
such a function is not known. What follows is a method for construct-
ing a very close approximation to the equal sidelobe difference pat-

tern funetion.
The ideal sum pattern used by Taylor* is of the form

Fsw) = cosmvu' — A* (11)

where A is a parameter that determines the sidelobe level. This func-
tion has equal sidelobes that are infinite in extent. Taking the deriva-
tive of the ideal sum pattern a difference pattern is obtained.

Fo(u) = w(u® — A®) 2w sin w(u® — A% (12)

The first few sidelobes of this function are not of equal height as
can be seen from the dashed curves in Figure 3. However, it is pos-
sible to modify the first few sidelobes of the above function so that
they are equal to the asymptotic sidelobe level. The zeros of the
above function are given by

i = {0; n=0 . (13)
+(A* + 00 om=1,2,3, -

A model difference function can be constructed by moving the
first T zeros on either side of the origin so that the sidelobes are made
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Fig. 3— Model difference pattern compared with unmodified function for
sidelobe levels of 25, 35, and 45 dB.

equal. The model difference funetion is given by

T .2 2
Fut) = Fa) 115 = (14)
where the zeros, z,, are moved to &,. The location of the new zero &,
which make the sidelobes equal can be found by an iterative proce-
dure.® Very good results were obtained by moving only the first four
zeros on either side of the origin. The constructed model functions
are shown in Figure 3 as solid curves.

To expedite future computations the sidelobe parameter A and the
zeros were fitted as polynomial functions of the sidelobe level in dB.
Fourth degree polynomials were fitted to values of 4, &,, and the loca-
tion of the difference peak, po, that were obtained from the iterative
computation. Curves of the parameters along with their polynomial
coefficients can be found in Figure 4.

The use of fitted polynomials inevitably leads to errors in the re-
sults. The effect of these errors is more pronounced in the low side-
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Fig. 4 — Model difference pattern parameters.
. Polynomial Coefficients
Polynomial
Name
Co Ci Ca Cs Ci
A 0.30387530 | —0.05042922| —0.00027989| —0.00000343| —0.00000002
& 0.98583020 |—0.03338850| 0.00014064| 0.00000190( 0.00000001
£y 2.00337487 |—0.01141548| 0,00041590| 0.00000373| 0.00000001
& 3.00636321 |—0.00683394| 0.00029281| 0.00000161| 0.00000000
& 4.00518423 |—0.00501795| 0.00021735| 0.00000088| 0.00000000
Po 0.47972120 |—0.01456692| —0.00018739| —0.00000218|—0.00000001

lobe pattern. For example, notice the depressed first sidelobe in the
—45 dB pattern of Figure 3 (and later in Figure 8). If good fidelity is
desired for low sidelobe patterns it is advisable to use the caleulated
zeros directly and avoid use of the polynomials.

3.4 Synthesis of Asymptlotic Difference Patterns

Now the problem of approximating the model function using the
synthesis method described in Section 3.2 is considered. In this sec-
tion an asymptotic form of the model function is developed. The
asymptotic form is expressed in terms of the Fourier-Bessel series.

In Section 3.3 the model function for the ideal difference pattern
Fy is generated in equations (12) and (14). The outstanding feature
of this model function is its equal sidelobes. Fyr is an entire funection
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of u and is completely described by its zeros,

J'O: n=20

Z, =]:|:£n; n=1,---,T. (15)
LA+ 0 n=T4+1, . -

For large | u | the zeros approach -n asymptotically. The model
function is not realizable because it does not have decaying sidelobes
(nonfinite energy).

The steps in constructing the asymptotic difference pattern are
illustrated in Figure 5. The behavior of the model function in the far
sidelobe region is changed so that it conforms to the asymptotic be-
havior of a realizable pattern function with decaying sidelobes. To
do this, the zeros, Z,, of F, for all n = N are moved to u,. These
new far sidelobe zeros are zeros of the truncated pattern funection
series (8). This series must represent a realizable pattern function.

These zeros also satisfy (6). By changing only the far sidelobe zeros
we have retained the essential model function characteristies in the
central region. This central region behavior is embodied in the central
zeros, Z, for n < N. The Nth zero pair of the model function, 2,
and the Nth zero pair of the realizable function, =uy , do not coincide.

|F )

CENTRAL «——— | ——> FAR SIDELOBE
REGION REGION

U<y By<u

u*2asymPTOTE
J REALIZABLE
FUNCTION

'
~Z

=

N\,
F\ Kt Hnsz Bnea
N

TP, ol

Fig. 5 — Construetion of asymptotic difference pattern.
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Usually, the distance between Zy_, and uy is somewhat greater than
one. Such a situation will give rise to a rather large sidelobe at the
transition between central region and far sidelobe region.

To eliminate this high transition sidelobe the zeros of the central
region will be dilated by a factor ¢ which makes Zy and uy coincide

— B~
=z (16)

For sufficiently large N, ¢ will always be greater than one.
The steps illustrated by Figure 5 are:

(7) A realizable pattern function with decaying sidelobes replaces the
model function in the far sidelobe region.

(#7) The model function (dashed curve) is dilated so that the zero
(¢Zy) coincides with the first zero of the far sidelobe region at u = py.

The asymptotic form of the model function is essentially complete.
It can be expressed as a cononical product of its zeros

F.(u, ®) = Cur cos ® I:I:Ii [1 — (UZH)E] ﬂ [1 - (&)2] )

n=N n

where C is a constant. The second product term must be reduced to
closed functional form for this expression to have any practical value.
The zeros in the second product of (17) satisfy J{(u.m) = 0. Thus
the second product term in (17) in closed form is equal to the first
term of (8) with all zeros removed for | u | < ux.

T4 -} =emelie- G} o9

- ()]

Combining (17) and (18)
F.(u, ®) = C (cos ®)2rul{(ur) *7= nak
-0 ]

F,(u, ®) is a realizable asymptotic difference pattern. It is nearly equal
to the model function in the central region (that is, | u | < px). In fact,
as the size of the central region increases without bound, the asymptotic
function approaches the model function

Lim F,(u, ®) = Fuu, o). (20)

N—sco

- (19)

1
=0
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The limit can be deduced from (17) by noting that asymptotic behavior
of px (6) gives

3

U=f;1—5—3-_‘1ﬁ5}—%%1+ﬁ, 1 <T<XN. (21)
Now as N is increased ¢ — 1. Thus as N goes to infinity (and ¢ — 1)
the second product term (17) disappears and only the first remains.
The first product term (with ¢ = 1) is exactly equal to the model
funetion. Thus F,(u, ®) is truly asymptotic to F(u, $).

The asymptotic function (19) is expressed as a Fourier-Bessel series
using equation (10) to evaluate the coefficients. First evaluate F,(u, ®)

at the sample points (u., , 0)
N-1 I: u 2
l — (_m) } ,
!,I;I, cZ, Lim Jilur)

]T‘(.um ) 0) = Fn(#m ) 0) = C'Q‘ﬂ'pl,,, No1 9 2
-] -]
=0 M Mo

L=m

m=20,1,---, N — 1. (22)

Evaluating the limit and substituting Bessel’s equation yields

Fo(ptm , 0) = Clrpn)’[1 — (wpn) 11 (unm) 325 [1 - (“m)z]

m=20,1,--- ,N — 1. (23)

Notice also that because of the construction of the asymptotic function
Fo(um, 0) = 0 form = N. Iinally the coefficients from (10) are:

N-1 ) .
e [ (5)]
J(p,m) AL 2] ! m=0,1,---,N—1
e ! [1 - (Lm) } (24)

I=m

0 ; m=N,N+1,---

where p., is given by (6), Z, by (15) and ¢ by (16). The constant C
is evaluated so that the peak of the asymptotic difference pattern is
unity, that is, Fu(epo, 0) = 1.

The pattern function expansion (8) is identically equal to the asymp-
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totic difference pattern, F,(u, ®), because only the first N coefficients
(24) are nonzero, thus the series terminates. Furthermore, the expan-
sion (7) is equal to the aperture function of the asymptotic difference
pattern. Thus equations (24), (8), and (7) define the solution to the
problem of finding a difference pattern compatible with the Taylor
sum pattern. (A similar function is developed for the line source in
the appendix.) This realizable two-parameter difference pattern is
asymptotic to the model function. The parameter A controls the
sidelobe level of the pattern. The parameter N controls the size of the
central region; hence, it controls the degree of approximation to the
model function.

IV. THE RESULT—DESIGN DATA AND PATTERN CHARACTERISTICS

4.1 Pattern and Aperture Functions

The usefulness of a pattern function is determined largely by the
availability of design data about the pattern. Coefficients B, were
calculated in equation (24) for sidelobe levels from —17.5 dB to —45 dB
at 2.5 dB intervals and for N = 3 to 30. Coeflicients for selected values
of N appear in Tables IT and III. The coefficients are normalized to
malke the difference pattern peak equal to unity.

The coefficients are used, in equation (7), to generate the aperture
function with ¢ = 0 (Figures 6 and 7). Some observations can be
made regarding the effects of the parameters on the aperture function:

TABLE 1] — CoRFFICIENTS IFOR 84, PATTERNS

N= 5 7 ] " 14 17 21 27 3o 3o ao a0
COEFFICIENTS SLL= 175 -200 225 -25.0 =215 -30.0 ~325 —35.0 -316 40,0 ~425 ~45.0
B 0O 079738 0.79422 078677 078215 077508 (0.76878 0.76183 0.75508 074706 0.73851 0730090 072200

B 1 0.14654 020764 030017 036076 042971 0489981 056485 062432 O0EB9GE3 075578 081714 087420
B 2 0.13474 011727 008774 004336 001691 —0,00460 —0.01848 -0.02572 —002877 —-0.02588 -0.01680 -0.00303
B2 —0.15632 -0.18338 ~-0.13874 -0.12031 —0.09011 -0.06174 -0.04006 -0.02421 -001019 000022 000851 0.00873
B4 009850 0.18907 0.16174 016100 0.13248 010080 007503 0.05502 003628 002125 001070 0.00376
BS —0.15105 —0.15245 -0.18152 -0.16116 -0.12935 —0.10140 -0.07855 -0,05604 —0,03749 -0.02412 -0,01464
B6 008042 0.11488 0.18236 0.17722 014914 0.12134 009701 007130 0.04884 003410 002272
B7 —0.05983 —0.16641 - 0.18258 -0,16223 -0.13703 -0.11266 —0.0B443 —0.06016 -0.04233 -0.02032

B8 0.13589 0.17757 016881 (0,14BB4 0,12604 008575 006800 0048920 003485
B9 -0.09434 —0.16271 -0.16888 -0.15679 —0.13730 -0,10568 —0.07661 -0.05623 -0.03952
B10 004678 0.13912 0,16253 0.16080 0.14645 0.11398 0.08307 006024 004344
B11 -0.10843 -0,15009 -0,16080 -0,15342 -0,12094 -0,08841 -0.06437 -0,04667
BI12 0.07294 0.132'4 015681 0.15811 0,12642 009261 006762 0.04821
B13 -D.03554 —0.10956 —0.14893 -0.16046 -0.13036 -0.00565 -0.06888 -0,06107
B14 008348 0.13742 016040 013271 0.09750 007146 0.05226
BIS -005531 -0,12261 -0.15794 -0,13341 -0,09813 -0.07202 -0.05276
B16 002676 0.10500 0.15309 013250 009753 007167 0.05258
817 -D.08518 —0.14504 -0,12893 009572 -0,07040 -0.06172
BB 0.08387 0.13661 012575 000270 006825 0.05019
B9 -0.04188 -0.12628 —0,12000 —0.08853 —0.06524 —0.04803
820 002018 011216 011275 008324 006140 0.04625
B21 -D.09749 -0.10409 -0.07691 -0.05677 -0.04188
B22 008144 009385 006847 005133 0.03790
B23 -007256 -00B964 006646 -0.04826 -0.03649
B24 004215 007314 005417 004010 002087
825 ~D03185 -0.06044 —0.04481 —0.03320 -0.02450
B26 001530 004762 003534 002621 001844
B27 -0.03472 -0.02579 -0.01915 -0.01422
828 002199 001635 001215 0.00803

B29 -0.00876 -0.00725 -0.00538 -0.00400
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TABLE III — COEFFICIENTS I'OR DIFFERENCE PATTERNS

CGE#FIC\ENTS\ SLL= =115 -200 -225 -250
B0 0.79738 078751 077806 0.76893
B 1 014654 026831 037445 D.A46T72
B2 013474 006408 0.01520 -0.01692
B3 -0.15632 -0.08756 -0.05612 -0.02743
na 009650 006431 004125 002488

EEEFFIC\ENTS\SLL'- =175 =200 -22.6 -26.0
B O 0.81073 0B00G3 0.70056  0.78064
B 1 0.02204 016201 026817 037274
B2 0.26540 0.16480 000021 0.03653
B3 ~0.37699 -0.25068 -0.17324 -0.11027
B4 043812 030036 027485 0.14597
B S —0.45439 -0.32444 -0.22918 -0.15072
BE 042262 030349 021625 015259
87 —0.34848 -025158 -0.18048 -0.12849
B8 024219 017579 0.2684 009111
89 —0.11903 -0.08696 -0.06326 -0.04580

N=5

-215 -300
076033 075218
055036 0.62400
~0.03613 -0.04535
-0.00808 0.00445
001343 0.00556

N=10

~2715 -300
077095 0.76154
046739 0.55343
~0.00030 -0.02345
-0.06513 -0.03349
009622 0.06071
-0.10940 -0.07324
010637 007303
-0.09065 -0.06323
0.06491  0.04586
-003297 0023156

-325
074458
0.69001
—0.04690
0.01209
0.00029

=325
0.75248
0.63195
—0.03549
~-0.01200
0.03576
~0.04751
0.04915
~0.04349
0.03205
~0.01670

=350
0.73722
0.74921
-0.04252
0.01623
~0.00311

~36.0
0.74367
070372
—0.03846
0.00191
0.01858
—0.02942
0.03219
—0.02935
0.02208
—0.on7n

=315 -40.0 -42.5 -45.0
073042 072392 071782 0213
080278 085116 089522 003516
-0,03364 -002137 -0.00658 0.01005
001706 001804 001706 001544
-0,00817 -0.00631 -0.00680 -0.00666

=315 —-40.0 -42,6 —45.0
073523 072716 0,71935 071189
076956 083004 088566 093694
-0.03404 -0.02362 -0.00834 0.01085
0.01023 001451 001506 001549
0.00708 -0.00031 -0.00478 -0.00721
—0.01690 -0.00841 -0.00281 0.00074
0.02027 0.01201 000638 0.00262
—0.01832 -0.01227 -0.00737 -0.00401
001495 000087 000629 0.00380
—0.00810 ~0.00550 -0.00364 -0.00232

first, when N is fixed (Figure 6), one sees that increasing the sidelobe
level decreases the peak but increases the edge illumination. Con-
versely, when the sidelobe level is held constant (Figure 7), the effect
of increasing N reduces the peak only slightly but increases the edge
illumination tremendously. One of the prominent characteristics of this
type of pattern synthesis is that the edge illumination increases as N

increases.
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Fig. 6 — Circular aperture functions for N = 10.
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Tig. 7 — Cireular aperture funetions for —30 dB sidelobe level.

The pattern functions exhibit a more straightforward dependence
on the two parameters. The sidelobe envelopes are plotted in Figure 8
and 9 that correspond to the aperture functions in Figures 6 and 7.
Only the envelope is plotted with a O to mark the sidelobe peak.
Obviously the sidelobe parameter controls the maximum sidelobe level.
The suppression of the first few sidelobes for very low sidelobe levels
(Figure 8) is caused by using too small an N. When nondecreasing
sidelobes are encountered the pattern is in a nonasymptotic region
indicating that there are not enough terms in the series.

The effect of changing N can best be seen by keeping the sidelobe
level fixed (Figure 9). As N is increased the sidelobes become more
nearly equal as well as increasing the region affected. If we examine
the sidelobe more closely we see that an inflection occurs at about
u = N. The inflection results from the transition between the central
region where the zeros have been modifled and the far sidelobe region
where the natural decay envelope is u™** (Figure 10).

The asymptotic behavior of a given pattern function for large u can
be examined in a manner similar to Taylor's', giving the asymptotic
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form of the pattern function as

@m)“ 'IMa + 1)
/2 uPe

h(r, ®) exp [jﬂ»(u — g - g):l—i—h(w,tb-l-:r) exp [—W( - % - %):I
' 2

for |u|— « and Rewu > 0. (25)

Flu, ®) ~

The above notation follows Taylor’s except that the aperture function
is defined over the entire aperture not just on a line. The function

.
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Fig. 8 — Sidelobe envelope of pattern functions for N = 10,
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h(p, ®) is the analytic part of the aperture function, that is, g(p, ®) =
h(p, ¢)(=* — p*)°. For nonzero boundary values a = 0 and (p, ¢) =
g(p, ¢). Evaluating (25) for the difference pattern gives

— sin 7 — 3
Flu, ® ~ /2 gtr, &) 2L, 26)

As one might expect when dealing with aperture-limited functions
the asymptotic form of the pattern function depends only on the
aperture function behavior at the boundary of the aperture. The
asymptote in Figure 10 was computed from equation (26).

To pursue the topic of asymptotic behavior further leads to con-
sidering the superdirectivity ratio and “Q” of the antenna. A rough
qualitative definition would describe the superdirectivity ratio as the
ratio of total power flow through the aperture to the power that is
actually radiated. The definition of @ is the ratio of energy stored in
the near field (evanescent waves) to that radiated per cycle. Increasing
the superdirectivity increases the reactive component of power flow
(also Q) and thus increases the ohmic losses in the antenna.
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Fig. 9— Sidelobe envelope of pattern functions for —30 db sidelobe level.
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Fig. 10 — Asymptotic sidelobe behavior for —25dB sidelobe level and N = 11.

Large superdirectivity ratios are to be avoided (expect in very small
antennas) for a number of practical reasons: high ohmic losses, high
error sensitivity, and narrow bandwidth. How then is superdirectivity
affected by the choice of difference pattern? Superdirectivity increases
as the integrated power of the pattern function in the region u > 2a/\
increases. This means that for a given sidelobe level superdirectivity
increases with N. However, for a given pattern function, superdirectivity
decreases with increasing antenna diameter. Because of the undesirable
effect of the reactive component, the parameter N should be chosen
so that N < 2a/\.

The asymptotic behavior of the pattern function as N is increased
is best illustrated by the dilation factor, ¢ (Figure 11). The dilation
factor decreases to one as N is increased toward infinity. In the non-
asymptotic region (Figure 11) the dilation actually increases with N.
Because of severe sidelobe anomalies it is best to avoid using patterns
with N in the nonasymptotic region. For N = 30 the pattern dilation
is less than 3 per cent for all sidelobe levels.
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4.2 Patlern Characteristics
A figure of merit by which the performance of a pattern can be
measured against other patterns is a great help in selecting a specific
pattern. Two such figures are directivity and angular sensitivity.
The directivity function is defined so that the aperture function
can be used to find the total power

L) P, @)

4r°a*
kz 2 -7
j dsoj | 9(p, @) I" p dp
(1] 0

This definition is based on Silver’s work,'® and makes the following
assumptions:

Glu, ®) = (27)

(i) The effect of the obliquity factor is neglected.
(#2) The antenna is large in wavelengths.
(it) The effects of ohmic losses in the antenna are neglected.

The maximum directivity of a uniform-phase circular aperture is

dr*d’

}\2
The maximum directivity of a difference pattern naturally occurs at

the peak of the difference beam (u,, ®,) rather than at boresight.
The directivity at the pattern maximum normalized by the maxi-

G, = (28)
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mum aperture directivity is defined as the relative directivity, »:

] .
_ G, @) _ o« | Flu, , @,) |

(;u 2x T )
[ dsof | g(p, ®) |" p dp
L] 1]

where (u, , ®;) is the pattern maximum,.

This quantity is similar to aperture taper efficiency. Computation
of relative directivity can now be carried out for the asymptotic dif-
ference pattern by noting that the coefficients computed for Tables II
and IIT were normalized to make F (u,;, ®) = 1 and that the aperture
function series is orthogonal.

(29)

N-1 =1
7 = 1% {E [ B, |* Ji(pm)[1 — (;mr)zl} (30)

Relative directivity in dB (10 log ») was plotted as a function of N
and sidelobe level (Figure 12). It can be seen that there is one N that
gives a maximum relative directivity. The maximum is obtained when,
as N increases, the power removed from the main beam by narrowing
is just offset by the power added to the sidelobes by raising more
sidelobes. The maximum relative directivity that can be achieved in
any difference pattern (antiphase aperture) is —2.47 dB."

The most important characteristic of a difference pattern is its angle
sensitivity. The angle sensitivity function is defined™ using equation (27)

¥
K@) = @—(:;L—q") volt/volt/std. BW (31)

-25
n 35 ]
2
z
4.5

=555 -20 -50

-30 -40
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Fig. 12— Difference pattern relative directivity, 7.



644 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1968

where ®, is the difference pattern axis. The angle sensitivity of a
pattern is K (0) which is the maximum value at boresight. The maxi-
mum angle sensitivity for any aperture is produced by a linear odd
aperture function?* (that is, g = jr). For a circular aperture its pat-
tern function is

J ()

Flu,0) == v (32)
This pattern has —11.6 dB sidelobes and angle sensitivity
K, = 5 Gi volt/volt/std. BW. (33)

Again it is convenient to normalize to this maximum angular sensi-
tivity and thus define relative angle sensitivity to be

_K©O _2,
8= K, v
where F (u, ®) is normalized to unity.

By evaluating the partial derivative of the difference pattern func-
tion at v = O the relative angle sensitivity is calculated as

aF(u, ®,)

dJu (34)

u=(0

N-1
5 = ,n% EB:J_‘(_’:.@ (35)
=0 Hi

Relative angle sensitivity in dB (20 log 8) was plotted as a function
of N (Figure 13). The curves are very similar in behavior to those for

8§ IN DECIBELS

N

Fig. 13 — Difference pattern relative angular sensitivity, 8.
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relative directivity as might be expected from equation (35). Certainly
it is not unreasonable for the derivative of the directivity function
at boresight to be strongly influenced by the magnitude of the peaks
on either side. The dependence on sidelobe level is greater than for
relative directivity. The dashed curve in Figure 13 is the maximum
angle sensitivity (3...) for each sidelobe level. The pattern coefficients
are given in Table IT for 12 sidelobe levels with N chosen to maximize 8.

The decrease in angle sensitivity as the target moves off boresight
is of interest in determining the linearity and useful angular sector
of operation. The normalized angular sensitivity function, K(u)/K, is
plotted for six ... patterns in Figure 14. Although the boresight
sensitivity is higher for high sidelobes than for low sidelobes, it also
decreases more rapidly as a function of angle.

4.3 System Performance

The sum and difference signals derived from the antenna just
discussed can easily be put in a form that allows processing by any
of the three types of angle detection systems.*® The system generally
used makes the angle estimate by forming a ratio of the difference to
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Fig. 14 — Nermalized angular sensitivity function, K(u)/Ko.
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sum signal. The statistic of this ratio was recently treated** with
regard to maximum likelihood estimates of angle. For the high signal-
to-noise case the variance of the maximum likelihood angle esti-
mate? * is shown to be:

. A* 2B\
i = 5 () (86)

where A and B correspond to G4 and K in our notation,* E is the signal
energy and N, is the noise power per cycle of receiver bandwidth.

Manasse had shown earlier’ that the minimum standard deviation
for the maximum likelihood angle estimate made using a circular
aperture is

(0o = (as),,,,t(%“) - % (%E;) std. BW (37)
where 2E,/N, is the output peak signal-to-noise power ratio in a per-
fectly matched receiver with optimum antenna system (that is, uni-
form aperture function).

The effects of antenna illumination on system performance can be
expressed noting that realized signal energy E is also affected by antenna
sum directivity. Thus £ = EsnyL where L accounts for losses such as
filter mismatch loss, integration loss, and transmitter and propagation
losses. Then (36) expressed in standard beamwidths is

_ G*g(u) (zEn‘ﬂzL
7= Kw) \ N,

)4 std. BW. (38)

Now by noting that

RO _ 5 g &O _ 0 K@y gy G0,

K, G ~ "™ KO- "™ G0
for | u| <« 1, and for a circular aperture K, = (v/2)G}, then (38) becomes

2 (zEDL)-%
o= "#Na std. BW. (39)

Thus at high signal-to-noise ratios the antenna dependence is

o | =

Ty ~

This dependence shows that the difference pattern angle sensitivity is
of prime importance in determining the over-all system angle accuracy.

* The subseript = refers to sum pattern parameters.
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The optimum system from the standpoint of angle estimation is one
with & and 5y equal to unity. As we pointed out before such a system
would have unacceptably high sidelobes. The price of lower sidelobes
is reduced sensitivity (Figure 15). The top curve shows the maximum
relative directivity, fm.c(Z), obtainable from a Taylor sum pattern.*
Similarly, the N can be selected to maximize relative angle sensitivity,
8.mae , for the asymptotic difference pattern (Figure 15).

0.0

I N=3 6 ]
N=5 $ Tyax®

8 AND 7 IN DECIBELS

-3.0

K
7
i

|
N FOR & MaX
-4,0 PATTERN |
|
-10 -20 -30 -40 -50
SIDELOBE LEVEL IN DECIBELS

2

Fig. 15— Relative directivity and angular sensitivity for maximum sensitivity
pattern.

The relative directivity (n) of the 8., pattern is shown at the bottom
of Figure 15. Notice that it is 3 dB below the sum pattern relative
directivity. Thus, to equalize the sidelobe clutter returns from the
highest sidelobes in the sum and difference patterns, the difference
pattern sidelobe level should be 3 dB greater than the sum patterns
sidelobe level. For example, if a sum pattern with —30 dB sidelobe
level is chosen (N = 8) the difference pattern sidelobe level should
be —27 dB, and 8., is —1 dB when N = 14.

One of the major reasons for suppression of sidelobes is the presence
of clutter. Although clutter can be a problem throughout the pattern
it is often more prevalent at low angles. If clutter does not occur near
the main beam it might be advantageous to choose a small value of N
so that the sidelobes decay rapidly (Figure 9). If clutter is very bad
it may be necessary to taper the transmitter illumination, too.

* Where N corresponds to 7 in Taylor's notation.
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A second reason for suppression of sidelobes is the presence of active
noise sources. These are the essence of the radio astronomy problem.
For the radar problem they are jammers (electronic countermeasures).
They generally are considered to be point sources which may appear
anywhere in the pattern. Hence the requirement to minimize the
maximum sidelobe level.

In selecting a difference pattern a major practical consideration is
that the aperture function be realizable. Remember that the aperture
function represents the resulting field on the face of the aperture (that is,
after all ohmic losses and mutual couplings have been accounted for).
Certainly one could not choose an aperture function with a lip or
spike at the edge for use with a horn fed antenna or array. Even in
an array of independent elements it usually is not desirable to let the
edge excitation exceed the peak.

These considerations along with constraints of the system problem
such as required accuracy, clutter, noise, and so on, influence the
selection of sidelobe level and N.

V. SUMMARY

Full theoretical and design documentation has been given to a new
two-parameter difference pattern. The salient features of the pattern
are asymptotically equal sidelobes and near optimum angle sensitivity.
The two parameters, A and N, give complete control of the sidelobe
level and decay behavior. The difference pattern was designed to be
compatible with monopulse systems using the Taylor sum beam
illumination.
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APPENDIX

Asymptotic Difference Pattern for a Line Source

The construction of an asymptotic difference pattern for a line
source can be carried out in a manner similar to that described for
the cireular aperture. The equations for the line source difference
pattern, which parallel those in the body of this report, are outlined

here.
The line-source-to-pattern-function transform is a finite Fourier
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Flu) = f T @)™ dx (40)

where w = 2a/x sin 6, # is measured from the normal, 2a is the length
of the line source and z is normalized to =/a. Expand ¢ (x) in a sine
series because an odd function is required

B, sin p,x; -
o) = | Bestnwrs o

IIA

<

r=T (41)
0; elsewhere.

A nonzero boundary value is again required for the truncated series
The eigenvalues must be v, = | + 1/2. Now transforming the series
by (40) and setting w; = I + 1/2 yields

1
) = 2j ZB, U +):la)003u (42)
The desired model function, Fy (1) (see equations 12 and 14) is again
described by its zeros.
The dilation factor is

_ N +
g = 7y

(43)
The asymptotic function is given by the canonical product

: 3 N-1 u )2} @ { B (&)2}
I, = Cu nI=I] {l — (O’Z“ 1141
where C is a constant

=N M

b3

Hy
Ly

(44)
The asymptotic difference pattern in closed form is

-G
1 —
F.(u) = Cu cos (m)]” . (45)
- ()]
The function may be expressed in series form by evaluating (45)

at u = pu, and setting it equal to (42) to find B,,. Evaluating the
series (42) at u = p,, gives

F(y,) = Lim F,(u) = jrB

U—sf

(46)
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Substituting u, = n + 1/2, the coefficients are:

p

T _(m+ %)2]
2 !;]; [1 ( U'Zn .

1

c -
2_7(_'1) (m — 2) N1 (m’ + %)2 )
Bw = I -G

=0
l=m

m=0,1,2,--- ,N—1
»0, qn:N’N_i_l,...

(47)

As N is allowed to increase without bound it may be noticed that ¢ —1
from above and the zeros of F,(u) approach those of F(u). Thus

Lim F,(u) = Fyu).

N

For small N the values of B,, can be evaluated by hand by using the
model function parameters from Figure 4.
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