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This paper studies the effect of an active control system that iniroduces
corrective transverse lens displacements on the propagation of beams in
optical waveguides. The induced displacement of the nth lens is a linear
function of the beam displacement at the (n + 1)th lens. Beam displace-
ments from the ideal design position are caused by transverse displacements
of the lenses and sensors from their design positions. Expressions have
been obtained for:

(7) The conditions for spatial and temporal stability.
(#) The rms beam displacement resulting from uncorrelated displace-
ments of the lenses and sensors.
(i73) The beam displacement caused by sinusoidal displacements of the
lenses and sensors of arbitrary spatial frequency.
(i) The spatial rate of return to the guide axis of a beam injected into
the guide off axis.

We also show that the positions of beams, other than the sensed beam,
are controlled by the system and that the system can simullaneously guide
many different sensed beams. We calculate an upper limit on the prob-
ability that the beam will not be contained within a given aperture.

I. INTRODUCTION

The ability of a beam waveguide to guide optical frequency elec-
tromagnetic energy is severely limited by the tolerances held on the
transverse positions of the lenses. Hirano and Fukatsu® have shown
that uncorrelated transverse lens displacements will cause the ex-
pected deviation of the beam from the guide axis to grow as the
square root of the number of lenses through which it has passed.
Steier? has shown that random longitudinal lens displacements and
variations in the focal lengths of the lenses couple with random
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transverse lens displacements to cause the expected value of the rms
beam displacement to grow exponentially with the number of lenses
through which it has passed.

This paper describes the performance of linear self-aligning beam
waveguides that are subjected to transverse disturbances of the lens
and sensor positions. It is quite likely that nonlinear control systems
may turn out to be more effective or practical in practice but an
understanding of linear systems will facilitate the more involved
analysis of nonlinear control systems. The idea of using active guid-
ing media for optical communications was proposed long ago by
R. Kompfner® and L. U. Kibler,* and has been discussed by E. A. J.
Marecatili.®* The improvement that can be obtained with self-aligning
beam waveguides has been demonstrated experimentally and with
computer simulations by Christian, Goubau, and Mink.®

In the guiding systems considered in this paper, the lenses are
physically moved an amount that is determined by sensing the posi-
tion of the beam in the guide.

The axis of the guide is defined as the line joining the centers of
the beam sensors. In general in an actual installation this axis will
not be straight.

The displacement of paraxial beams from the guide axis is a linear
function of the transverse lens displacements. An important conse-
quence of this linearity is that the superposition principle can be
applied to the beam displacement. Incremental displacements of the
lenses produce ineremental displacements of the beam. These incre-
ments are independent of any bias positions resulting from an inten-
tional bend. Therefore, when we study the effects of imperfections in
a straight guide, the results apply equally well to the effect of im-
perfections in a curved guide. For example, in studying the effect of
the control mechanism on the propagation of a beam through a bend
we would proceed as follows:

(¢) Specify the guide axis. This is the path of propagation for the
beam. The sensors are located along this axis.

(%) Find the proper set of lens positions that will cause the beam
to propagate along this axis. In an analysis these are calculated.
In an actual installation these positions would be determined by
moving the lenses until the beam is aligned along the sensors.

(711) Determine the effect of imperfections by assuming that the
lenses and sensors are displaced from their proper positions. The
consequence of the linearity of the system is that the beam displace-
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ment resulting from these imperfections is the same as it would be if
the guide axis were a straight line.

This paper emphasizes the case where the design axis for the lens
centers and sensors are straight lines and coincident with a reference
line, The beam is injected into the guide along the reference line and
the center of the first lens of the guide lies on this line.

The optical waveguide consists of a sequence of identical positive
lenses, of focal length, f, and spacing, d, as shown in Figure 1. In
Figure 1, g,, s,, and r, are the sensor, lens, and beam displacements
at the n' lens, respectively. We shall consider paraxial ray propaga-
tion in two dimensions for simplicity. It has been shown that the three-
dimensional problem can be split into two independent two-dimen-
sional problems® and that the center of the beam follows a path
deseribed by a paraxial ray.” 8

When the guide is subjected to disturbances in time, the transverse
displacement of the n' lens relative to the reference line is given
by s(t),. Similarly, the displacement of the beam center at the nth
lens from the reference line is given by r(t),. Using geometric opties,*
and considering the guide to be time-dependent, results in the follow-
ing difference equation for the paraxial beam in the guide

)i — (2 cos wud)r(t),., + (), = (d/f)s(t).., (1)

where cos w,d = 1 — d/2f.

In any lens waveguide there will be transverse displacements of
the lenses, owing to the impossibility of holding exact tolerances or
the movement of the earth after the guide has been constructed.
These lens displacements are unavoidable. They are denoted by N,.
Here we study the effect of a superimposed corrective lens displace-
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Fig. 1 —The beam waveguide and schematic diagram of the feedback system.
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ment, 8,, on the performance of the beam waveguide. The total dis-
placement: of the n* lens is the sum of N, and 3,

Sn=Nn+§n- (2)

For most of this paper, the response of the system in time is deter-
mined only in the steady-state when the disturbances are either step
functions in time or at low enough temporal frequencies to be con-
sidered constant functions independent of time. These conditions are
relaxed and general time functions allowed in Section 2.2 where tem-
poral stability is considered and in Section 2.4 where the high gain
case is considered.

Although the beam control is achieved here by inducing transverse
lens displacements, the results can be applied to other beam control
mechanisms such as mirrors and prisms, when such mechanisms can
be interpreted as an equivalent transverse displacement of the lens.

II. THE SYSTEM

Figure 2 is a schematic representation of a mechanism for lens
position control.

The beam position is sensed at each lens. This beam position signal
is used to control the transverse position of the preceding lens. The
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Fig. 2 — Schematic diagram of a mechanical device for lens positioning.
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difference between the beam and sensor positions at the nth lens we
call the error in the beam position. The corrective displacement of
the nth lens, 8,(t), is a function of time and the error in the beam
position at the (n+1)th lens.

s = Flensr , 1) @)
where e, is the position of the beam relative to the sensor at the
(n+1)th lens. The form that the function F (e, 1,t) takes will depend
on the properties of the control mechanism.

In order to study the stability of the beam in the guide it is con-
venient to transform equation (3) into the temporal frequeney domain.
Assuming that the control mechanism can be represented by a transfer
function H,(s), the Laplace transform of the corrective displacement
of the nth lens for a system at rest at time zero can be written:

8u(s) = H.(8)E,.1(s) )

where s, 8,(s), and E, 4, (s) are the complex temporal frequency, the
Laplace transform of the corrective displacement of the n'* lens, and
the Laplace transform of the error in the beam position at the (n+1)t
lens.

In general the transfer function will have the following form

K(sr, + 1)(sr, + 1) - -+ .
Slv(sﬁ + D(st2 + D(srs + 1) -+

It is customary to classify systems in terms of the number, N, of
factors of the form 1/s which appear in the transfer function. This
number indicates the number of integrations performed by the com-
ponents. For example: if N = 0 the system is referred to as a type 0
system, if N = 1 the system is referred to as a type 1 system, and so on.

The number of integrations determines some important properties
of the steady state response. Since s = 0 as t = o, in the steady state
equation (5) yields

H.(s) =

(5)

Hs) o = 4 = & ©)

G

when s — 0. There are two possibilities for A. A is either equal to a
real constant K (type 0 system) or A goes to infinity (type one or
more system). We consider both of these possibilities in the following
paragraphs.

For the control mechanism shown in Figure 2, H,(s), the control
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mechanism transfer function, will be of the form

K,
H6) = 3¢ F Bs T K, !

where K, is the gain, K, is the spring constant, M is the mass of the
lens, and B is a friction constant. The steady-state value of H,(s) =
A = K,/K,. This system is reduced to a type 1 system by removing
the spring, that is, letting K, = 0.

2.1 The General Description

The properties of the linear active guiding medium in time and
space can be studied using a combination of Laplace and Z transform
techniques.®** Laplace transforms are used to transform from the
time domain to the temporal frequency domain. Quantities that de-
pend on position along the guide, given by the lens number n, are
transformed into quantities that depend on axial spatial frequencies
using Z transform techniques.

Taking the Laplace transform of equation (1) results in the follow-
ing recursion equation for the Laplace transform of the beam dis-

placement,
(1 — (d/HH.()]R(S)ns2 — (2 cos w,A)R(S)nss

+ R@, = @)V — apHe B2 @®

8

where R(s),, N,, and G, are the Laplace transform of the beam
displacement at the nth lens, and the constant displacement of the nth
sensor, respectively. Taking the Z transform of equation (8) results
in the following equation when the boundary conditions are zero,
that is, the beam is injected into the guide on axis and the first lens

of the guide is on axis
R(s, 2){[1 — (d/HH.()]" — (2 cosw,d)z + 1}

G(z)
2O

where R (s,z) is the Z transform of the Laplace transform of the beam
position, and N(z) and G(z) are the Z transforms of the constant
lens and sensor displacements, respectively. Rewriting equation (9)
and introducing the transfer function H(s,z) results in the following
expression.

= a(a/n M — 2a/pH. )

R(s, 2) = H(s, 2)[N(z) — 2H.(s)G(2))/s 4 10510)
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where

z(d/f)

HGs &) = (/) H.(9)7 — @ cosad)z + 1 (11)
Equation (10) is a simple relationship between funetions that contain
the information about the performance of the guide. The transfer
functions H (s,z) and H,(s) contain the properties of the guide such
as d/f and the characteristics of the control mechanism, The function
R(s,z) contains all the information that is necessary in principle to
determine the position of the beam at any lens as a function of time.
N(z) and G(z) are determined from the constant lens and sensor
displacements,

When 7, (£) can be considered a constant function of time denoted
by r,, then R(sz) is the Z transform of r,/s. Multiplying equation
(10) by s and letting the temporal frequency go to zero yields R (z),
the Z transform of the steady-state heam position

R(z) = H(z)[N(z) — AzG(z)] (12)

where H (z) is equal to the value of H (s,z) for s equal to zero.

2.2 Temporal Stability

A funetion is defined as stable in time if it is bounded for all posi-
tive values of time. The position of the beam in the guide will be
stable in time if the poles of the Laplace transform of the beam posi-
tion are in the left half of the complex temporal frequency plane (s
plane). The Laplace transform of the beam position is obtained by
taking the inverse Z transform of equation (10). The following con-
volution summation®® is a general expression for the inverse Z trans-
form and gives the Laplace transform of the beam position.

R = & X HA N = Ho9Gme] (13
where H,,(s) is the inverse Z transform of H (s,z). Assuming that the
transfer function H,(s) (that describes the control mechanism) has
no poles in the right half of the s plane, the only source of right half
plane poles would be in the function H, (s). In order to obtain an
expression for H, (s) it is convenient to factor the denominator of
equation (11) and rewrite the expression for H(s,z). z; and z; are the
two roots of the denominator in equation (11) and are given by the
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following expression

cos wd = [cos® wd — 1 + (d/NH.(s)]*

Ziand2 = 1 — (d/f)H,:(s) . (14)
Therefore

_ d/f : : >

Hs, 2) = [1 = (d/f)Hc(S):I =26 —2) iy

The inverse Z transform of equation (15) can be found in tables and
is given by

B (d/2he) — 27 .
Hals) = [cos® wd — 1 + (d/N)H.(s)]* o

A sufficient condition for temporal stability is that the poles H,,(s)
are in the left half of the temporal frequency plane. The s plane poles
of H, (s) are the roots of the following two equations

1 — (@d/fHH.(s) =0 17

and

sin® w,d — (d/f)H.(s) = 0. (18)

Equation (17) is the characteristic equation of a single sensor lens
loop. Therefore if a single section of guide is stable the roots of equa-
tion (17) will be in the left half of the s plane. Equation (18) is more
restrictive. For example, if a single section becomes unstable when
the gain, K in equation (5), is increased beyond a value K,, it follows
from equation (18) that when many sections are tied together to form
the optical waveguide, the value of K at which the system becomes
unstable is reduced by sin? v,d.

When the H,(s) is given by equation (7), the system is stable if

A <1 —d/4f (19)
where 4 = K,/K;.

2.3 Spatial Stability

A guide will be defined as spatially stable if the beam remains
within a bounded region around the guide axis for all values of n.
A sufficient condition for the steady-state time solution to be spatially
stable is that the poles of H(z) are inside the unit cirele in the Z
plane. H(z) can be obtained by setting s = 0 in equation (11).
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z(d/f)

He) = [l — (@/NA)k — (2 coswd)z + 1 20)
Beginning with equations (19) and (20), using standard techniques
it can be shown that for the type 0 system described by equation (7)
only a negative value of A will satisfy the conditions for both tem-
poral and spatial stability. For type 1 or higher systems 4 — c and
the poles of H(z) approach the origin of the Z plane assuring spatial
stability.

2.4 The High Gain Case

By high gain we mean large magnitude of H,(s). This is of par-
ticular importance, since the performance of the system improves
when the magnitude of H,(s) becomes large. When the magnitude of
H,(s) is large, equation (11) becomes

—1
zH (s)
Using the above approximation for H (s,z) and relaxing the restriction
that the disturbances are constant functions of time and substituting
into equation (10) the general expressions N (s,2) and G(s,z) for the
Z transforms of the Laplace transforms of the lens and sensor dis-
placements yields

H(s,z) ~ (21)

_ NG, z)
zH (s)
Division of a Z transform by z corresponds to subtracting one from

the index of the inverse transform. The inverse Z transform of equa-
tion (22) is

R(s, z) — G(s, 2) (22)

Rus) — Guls) ~ —’i,—(s(;) 23)

when H,(s) is large the Laplace transforms of the beam and sensor
positions will be approximately equal. It follows that the functions in
the time domain will also be approximately equal. In the steady-state,
when the disturbances are independent of time, the displacement of
the beam from the guide axis is

=g = — =, (24)

For a type 1 or more system A — o and in the steady-state the beam
follows the sensors.
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2.5 The Propagation of Unsensed Beams in the Guide

An unsensed beam will differ from the sensed beam primarily be-
cause the active guiding mechanism will not respond to deviations of
the unsensed beam from the guide axis. The unsensed beam may also
be injected into the guide off axis and follow an entirely different
trajectory in the guide than does the sensed beam.

The effect of the corrective displacements on beams other than the
beam that is sensed by the control system, can be seen by mnoticing
the form of the total lens displacement. The Z transform of the total
lens displacement, S(z), is the Z transform of the constant lens dis-
placement, N (z) plus the Z transform of the corrective lens displace-
ment 8(z) = Az[R(2) — G(2)],

S() = N(z) + Az[R(z) — G(z)]. (25)
Substituting equation (12) into equation (25), the Z transform of the
total lens displacement becomes

o 22— (2coswdz + 1
T (1 — Ad/f)F* — (2 cos wd)z + 1

Let P, be the displacement of an unsensed beam propagating in the
guide with the boundary econditions P,, and P/, just to left of the
first lens which is assumed to be on the reference line. The difference
equation that describes the propagation of any beam sensed or unsensed
traveling in either direction through the guide is equation (1) rewritten
here to deseribe the unsensed beam.

Pﬂ+2 - (2 cos wﬂd)Pﬂ+l + Pn = (d/f)svﬂ-l J (27)

Operating on equation (27) using Z transform techniques®** yields
the following expression for the Z transform of the position of the
unsensed beam

S(z) [N(z) — AzG(z)]. (26)

_ 2(d/NSE) + [ —2]Pin + 2dPiy
B 2’ — (2cosedz + 1

The substitution of equation (26) and (20) into equation (28) yields
the following expression for the Z transform of the displacement of the
unsensed beam.

P(z) (28)

(.32 - z)P.—.. + ZdP':-,. .

*— (2 cosw,d)z + 1
The displacement of the unsensed beam, P,, the inverse Z transform

of (29), is the superposition of two components. The first is represented

P(z) = H(z)[N() — A2G(z)] —|—z (29)
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by the first two terms in equation (29). A comparison of these two
terms with equation (12) shows that this component of the displace-
ment is identical to the displacement of the sensed beam. Comparison
of the remaining terms of equation (29) with equation (28) shows
that they are identical to the Z transform of the displacement of a
beam traveling in a guide with zero lens displacement, S(z) = 0.

The second component is identical to the displacement of an un-
sensed beam injected off axis into a perfectly straight guide. The
total displacement of the unsensed beam is the sum of these two
components. The unsensed beam will oscillate about the position of
the sensed beam just as a beam injected off axis into a perfectly
straight guide would oscillate about the guide axis. This result differs
from equation (28) of Reference 5, which predicts a growth in the
displacement of the unsensed beam as it propagates. In Reference 5
substitution shows equation (28) to be inconsistent with equation
(22).

For stability, the sensed beam must travel in the direction of increas-
ing n, but an unsensed beam may travel in either direction.

2.6 The Propagation of Many Sensed Beams in the Guide

Where there are many heams propagating in the positive direction
of the guide, the signal obtained from the sensors is the average dis-
placement of all the beams. The Z transform of the beam position
signal is

D(z) = (P(z)) — G(z2). (30)
Where D(z), (P(z)), and G (z) are the Z transforms of the position
signal, the average beam displacement, and the sensor displacement,
respectively. Different beams are injected into the guide differently
and follow different trajectories through the guide. When the Z trans-
form of the total lens displacement is S(z), the Z transform of any
beam propagating in the guide is given by equation (28). The Z
transform of the average displacement is given by the average of
equation (28) over all beams.

_ 2d/[8() + [2° —2](P.n) + 2d(Pl.)
(P) = 22— (2 coswd)z + 1 '

Where (P,,) and (P’,) are the average displacement and slope of the
beams just before propagating through the zeroth lens. It follows
from equation (31) that the average displacement of the beams in
the guide is the same as the displacement of a beam that is injected

€2))
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into the guide with slope and displacement equal to (P%,) and (P )y
respectively. Therefore, the control system will respond to the average
beam position signal and control the average of the beam displacements
just as it would respond to one beam propagating in the guide.

2.7 The Response of a Beam to Waves of Displacements

As an example of how the system might perform consider the fol-
lowing particular type of disturbance. Both lenses and sensors are
displaced simultaneously. The constant transverse displacements, Dy,
of the lens and sensor assembly relative to the straight reference line
form an axial wave of spatial frequency o, and are described by the
following equation:

D, = Be'*™ (32)
then

DiE = ——— (33)
z

where B is the amplitude of the wave, = 2x/A, and A is the spatial

wavelength. When n is large enough so that boundary effects can be

neglected, the Z transform of the displacement of the beam from the

sensor is obtained by using equation (20) and letting D (2) = N(2) =

G (2) in equation (12).

_ (z— 1)
(1 — Ad/fie” — 2 cosw.dz + 1

It follows'® from equation (34) that at any given spatial frequency,
w, the ratio of the amplitude of the wave of the beam’s displacement
from the lens sensor assembly, to the amplitude of the wave of the
lens sensor assembly’s displacement from the axis is given by

R — D) = D). (34)

T“_D“

= _ |1 — coswd | (35)

- | coswd — cos w,d — A(d/2f)e’*" |

The ratio given in equation (35) is plotted in Figure 3, for various
real values of A, as a function of the spatial phase, wd. It follows from
the sampling theorem that the largest spatial phase possible between
lenses is wd = .

Figure 4 is a plot of the ratio of the amplitude of the beam displace-
ment to the lens displacement when the sensors remain on axis and the
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Fig. 3 — Spatial frequency response of the beam position relative to the sensor
when the lenses and sensors are disturbed simultaneously.

lens displacements N, form a wave of axial spatial frequency w. For
this case, the ratio of the amplitude of the beam displacement wave
to the amplitude of the lens displacement wave is

d/2f

Tn _

N.

| cos wd — cosw,d — A(d/2f)e' " |.

(36)
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Fig. 4 — Spatial frequency response of the beam position relative to the sensor
when sensors are undisturbed and the lenses are disturbed.
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2.8 The Response of a Beam to Random Transverse Displacements

Again assuming that the entire lens sensor assembly moves together,
the spatial response of the beam to any general set of displacements,
D,, is given by the inverse Z transform of equation (34). The dis-
placement of the beam from the sensor is the following convolution
summation

Tn — Dﬂ = _Dn + Z (h‘n—m - Ahﬂ—”?+l)Dﬂl (37)

m=1

where h, is the inverse Z transform of the transfer function H(z),
given in equation (20).
d/f sin nw.d

b = U= Ad/H™7 sinwd (38)

where cos wed = (1 — d/2f)/(1 — Ad/f)*/*. We wish to find the ex-
pected value of the square of the beam displacement, from the sensor,
((r,—D,)*. For uncorrelated displacements, the expected value of the
product of any two displacements is given by

J’O if n#m

(D.D,) = (39)

LJ'E,‘ if n=m

where o, is the rms lens and sensor displacement. The expected value
of the square of the beam position can be written*
1 + Ad/f

<(?'s= - Dn)2> = 0'12|:1_Ad/f + :; (hm - 44h'sn+1)2:|' (40)

This summation has been evaluated for large n and plotted in Figure
5 for d/f = 1,2, and 3 as a function of A. When the magnitude of 4 is
large compared with one, the ratio of the rms beam to rms lens and
sensor displacement approaches 1/|A]|.

2.9 The Ability of a Short Section of Stabilized Guide to Return an Initially
Off-Axis Beam to the Optical Axis

The preceding sections are concerned with the effect of lens dis-
placements on a beam that is injected into the guide with zero slope

* Equation (40) can be obtained using equation (37) with the following con-
siderations. (i) The displacements, D», are uncorrelated. () The expected value
of a sum is the sum of the expected values. (&2t) The expected value of the prod-
uct of a deterministic function and a random variable is the product of the
deterministic function and the expected value of the random variable. (zv) The
zeroth lens and sensor are on axis.
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Fig. 5 — The statistical response of beam position relative to the sensor when
lenses and sensors are disturbed simultaneously.
and coincident with the guide axis. This is equivalent to saying that
the boundary conditions of the difference equation are zero.

When a beam is injected into a straight feedback controlled guide
off axis and the lens displacements are zero the Z transform of the
beam position is a function of the boundary conditions and is deter-
mined using standard techniques.?®

[(1 — Ad/)z* — (2 cos w,d)z)ry + (1 — Ad/f)r,
(1 — Ad/1)z* — (2 cosw.d)z + 1
where 7o and 7, are the beam displacement at the zeroth and first
lenses, respectively. The inverse Z transform of equation (41) ean be
found in tables and is equal to the following
1= (1 — Ad/)™""" (B sin wynd 4+ C cos wond) (42)
where cos wod = (1—d/2f)/(1—Ad/f)*/* and the constants B and C
chosen so that equation (42) will satisfy the boundary conditions.
Equation (42) shows that when a beam is injected into the feed-
back controlled guide off axis the maximum possible deviation from
the axis decreases by a factor of (1—Ad/f)-*/2 at each lens. For ex-
ample, a beam injected parallel to the axis, one centimeter off axis,
into a stabilized guide four lenses long with Ad/f = —9, will leave the
guide with a maximum displacement from the axis that is less than
0.1 mm.

2,10 The Probability That the Beam Will Not be Contained Within a Given
Aperture

An upper limit on the probability of the beam exceeding a threshold
can be calculated using Chebyshev’s inequality.’* The probability of

R(z) = (41)
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the magnitude of the beam deviation from the axis of the sensors
exceeding a value, T, at any given lens is less than the mean squared
deviation divided by T

g 2
Plr - gl 2 1) 5 SO 000, (43)
If the magnitude of “A” is much larger than one, it follows from equa-
tion (24) that

(s — 9" = 55 (44)

where oy, is the rms disturbance of the lens position. Equation (44) is
quite general and holds for deterministic as well as random lens dis-
placements.

ITI. CONCLUSIONS

A beam waveguide using the linear beam control system described
here can be made stable in time and space by proper choice of the
control mechanism.

If many beams are propagating in the guide it is only necessary
that the control system interact with one or more beams propagating
in the positive direction for the guide to be stabilized for all beams.

When the magnitude of A, the low frequency value of H,(s) is large,
the error in the beam position varies inversely with A.

It follows from equation (24) that, if A is large, the probability that
the deviation of the beam from the axis of the sensors will exceed a
value, T', at any given lens is equal to the probability that the dis-
placement of the preceding lens will exceed a value of 7' multiplied
by A. If A = —100, and T = 1, and if the lens displacements have
a standard deviation of 0.1 and a gaussian amplitude distribution, then
the probability that the deviation of the beam from the guide axis
will exceed one is less than the vanishingly small value of 107'"". A
more conservative number, 107°, for this probability, that holds for
all amplitude distributions, is obtained using Chebyshev’s inequality.

There is no growth in the rms deviation of the beam from the guide
axis as the beam propagates down the stabilized guide. Also, since
the effects of guide imperfections, for example, transverse lens dis-
placements, do not build up, the construction tolerances on the guide
can be relaxed. It is possible to contain the beam within a narrow
region of the guide axis, which permits minimizing the guide aperture.
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