Linear-Real Codes and Coders*
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(Manuscript received August 22, 1967)

In linear-real coding, the transmitted signals are (possibly redundant)
linear combinations of the data signals. The linear combination of data
signals can have a block patiern, resulting in linear-real block coders, or
a stationary pattern, resulling in linear-real stationary (shift-register)
coders. Stationary coding is shown to be a limiting case of block coding.
Both methods appear to be practical for the control of burst and impulse
noise. However, stationary coding appears to have some advantages and
18 the only one we study here. We propose shift register implementations
which promise the required precision and dispersion at less cost than
tuned RLC circuits.

Error properties of both block and stationary coders are similar, bul
it 18 easter to learn concepts by analyzing the block coders. When the receiver
is able, by using some of the techniques we discuss, to estimate the noise
covariance matriz for each codeblock, the resulting noise power is less than
that for receivers not using the statistics for each codeblock.

Nonlinear memoryless fillers, such as clippers, are especially effective
when used with linear-real coders. We propose a memoryless filter which
attenuates the input signal more severely when a second input to the filter
indicates the channel is having a noise burst. If the memoryless filter is
designed for the worst case noise, then performance will not degrade with
decreased noise when the nonlinearity is odd and monotonic.

1. INTRODUCTION

Many communications channels, including telephone channels, con-
tain noise which comes in short bursts, such as noise from impulses.
Such noise is particularly deleterious when the channel is used for
the transmission of digital data.

* Part of the research for this article was performed at Carnegie Institute of
Technology under National Science Foundation grants GP-39 and GK-373.
Some of the material contained in this paper is taken from the author’s con-
vention article,?
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At least as early as 1958 it was discovered that it is sometimes
possible to reduce digital errors in such channels without reducing the
noise power by using a scheme such as Fig. 1 shows. In some formu-
lations" the transformation A consisted of a continuous all-pass filter
whose Fourier transform magnitude was unity at all frequencies but
whose phase characteristic varied with frequency; the inverse linear
transformation was the continuous all-pass filter with the conjugate
phase characteristic. The linear filter was called the smear operation,
and its inverse the desmear operation. Later papers considered linear
transformations to be real-number matrices operating upon the data
in blocks.*°

In all schemes to which Fig. 1 applies, a single impulse of noise
into the inverse linear filter will be transformed into an output noise
which is dispersed in time. With proper design, this dispersed noise will
be small enough at all times to not produce errors at the output of
the quantizer.

Our purpose is to investigate coding schemes which fall in the
general pattern of Figure 1 to gain conceptual insight and learn practi-
cal design. Such study is useful because the practicality of the matrix
version has never been studied, and the continuous all-pass filter was
limited by cost and filter imprecision. The shift registers we might
propose avoid the problems which hindered the application of contin-
uous all-pass filters.

We show that the real-number linearity of the transformations of
Fig. 1 will permit the receiver to use any available information about
noise correlation or position. All of the proposed means for using this
information are simple in concept, and some are simple to implement.

II. DESCRIPTION

Linear-real block coding is a form of coding in which A, an n by &
matrix of real numbers, is used to produce an output vector b from an
input vector r according to the equation

b = Ar. (1)
ANALOG
OUTPUT
|
I
DIGITAL LINEAR CHANNEL INVERSE | 1 DIGITAL
SOURCE TRANS — WITH BURST LINEAR ¥ QuanTizER |OUTRUT
—*"] FORMATION [ | OR IMPULSE FORUATON —
A NOISE el

Fig. 1 — A general arrangement for placing linear filters A and A7 to reduce
digital errors,
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If n > k, then b will be redundant in the sense that not all of its com-
ponents are independent. The word “real’’ is used in order to emphasize
the fact that the arithmetic in equation 1, and all other equations in
this paper, is real number arithmetic. The use of real number arithmetic
distinguishes this work from generalized parity-check coders which are
linear in finite-field arithmetic.

Stationary (shift register) linear-real coding is a limiting case of
linear-real block coding, but is best described as being the convolution
summation given by

o0
bi = 2 hig (2)
where b; is the 7" signal transmitted, 7; is the i data number, and
where h, can naturally be called the unit pulse response of the en-
coding filter at time-step gq.

The conclusions to be reached on practical applications are that
moderate cost encoders and decoders of considerable use for burst and
impulse noise channels can be built as soon as low-cost tapped digital
delay lines are available. Magnetic domain-wall digital delay lines,*
for example, might well make these coders practical.

There are two general ways in which noise is controlled by means
of linear-real coding. We give the complete details and mathematics
later. Briefly, the qualitative aspects are:

The total noise power in the decoded signal is made less than that
without coding. We discuss three distinet ways of doing this:

() When linear-real block ecoding is used, and when the noise
covariance matrix is known (or can be adaptively deduced by the
receiver) then this knowledge can be used to reduce the noise power.
It can be correlation type knowledge, as accounts for the effectiveness
of Wiener filtering. If the noise process is a posteriori nonstationary,
then a receiver which estimates the noise correlation matrix for each
code block may effectively use the available information on the po-
sition of burst noises within the block. This is particularly effective in
burst noise channels having block coders using rectangular A matrices.

(77) A stationary memoryless nonlinear filter (such as a clipper) can
be used to reduce the noise power before the inverse linear transforma-
tion is applied. Such a filter would of course reduce noise power in
the absence of an inverse filter when it immediately precedes the
quantizer, but it would not then reduce errors. When placed before
the inverse transformation, the stationary memoryless nonlinear filter
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reduces both errors and noise power. We refer to equations for analyz-
ing design and performance of the memoryless nonlinear filter. A simu-
lation example in Section VI shows these devices to be surprisingly
effective.

(%) A memoryless nonlinear filter can be used which has both the
noisy signal and an estimate of the instantaneous noise power for
inputs. The output is an optimized estimate of the signal given the
estimated instanteous noise power. This filter always reduces noise
power, as does the filter in method i, and only reduces errors if
there is a filter such as the inverse linear transformation between it
and the quantizer. We describe several methods for estimating the in-
stantaneous noise power in Section V. One of these, which appears in
Fig. 6, uses the fact that practical pam signals have more bandwidth
then the Nyquist bandwidth for their pulse interval.

The remaining noise power is distributed more evenly among all
decoded signal components and (in the limit of infinite smearing)
made Gaussian. This type of noise control is especially effective in
quantized-signal burst and impulse noise channels which have a
thermal noise which is small compared with the separation between
quantization levels. In this case a burst noise with power which is
small compared with the thermal noise would be unable to produce
many errors if it were evenly dispersed, although it could when
bunched up. Dispersal of the burst noise power is sometimes un-
favorable, but if the noise power is reduced enough and the noise
dispersed enough, then the effect is very favorable. The decoding op-
eration also tends to make the decoded signal have a Gaussian first-
order probability distribution, which reduces the probability of a
large peak and thereby reduces errors for quantized signals.

The design equations for the nonlinear memoryless filter (clipper)
to which we refer assume a known probability distribution on the
noise, as does the simulation reported. In practice, the actual noise
can be less noisy than that used for design purposes, and the resulting
mean square error will not be larger than that with the design noise,
provided the noise probability density is even and the nonlinearity
has certain properties. We give precise details in Appendix D.

III. BLOCK CODES AND THEIR NOISE COVARIANCE MATRIX

In general, assuming r and ¢ are independent zero-mean column
yvector random variables, which represent the signal to be encoded and
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the channel noise, respectively, and assuming r and ¢ have nonsingular
covariance matrixes Q and N, respectively, and assuming that f =
b + cis decoded by some linear operator 7', where b is given in equation

1, then a straightforward evaluation of the covariance matrix of u =
r — Tf will show that

M = E[uu‘]
= (Tuxwy — TAQU iy — TA)' + TNT (3)

where ( )! denotes the transpose of a matrix or column vector. This
formula ean be used to compare the performance of encoder-decoder
pairs with good and bad choices for matrix A4, and good and bad
choices of matrix T'.

Table I shows three possible T matrices. The first was shown to be
the least mean square linear estimator in (9), and for Gaussian
signal and noise gives the conditional mean of the transmitted vector
given the received vector. The second is the first evaluated for infinite
signal power in all degrees of freedom (which implies Q* = 0)
and produces a decoded error uncorrelated with the signal. The third
does not require the use of the N matrix. All assume the columns of
A to be linearly independent.

Table II gives further insights into the behavior of the decoded error
by presenting a number of special cases of equation (3). The justifica-
tion of the equations of Table II is given in Appendix A. In one of
the special cases in Table IT, namely when equation (7) applies, the
decoded noise energy is proportional to the arithmetic mean of the
received noise energy. In other cases, such as that of equation (12),
the eigenvalues of A*N-'A play a crucial role in formulas for the mean
square decoded noise.

Equation (13) of Table II shows that the average of the eigen-
values of A'N-*4 appears in a formula for a lower bound for the mean

TABLE I — THREE DIFFERENT LINEAR OPERATORS FOR
Dzcoping f INTo 7.

Name Formula
Mean estimator T = (Q 4+ AINTIA)1AN!
(Gives least mean square error)
Unattenuated estimator T = (AN71A)1AN!
Unadaptive estimator T = (AtA)14¢
(The generalized inverse of A)
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TasLe II — Some SpEcIAL CasEs oF THE ERROR COVARIANCE
MaTrIX oF EqQuaTion (3) AND THE REsuLTiNgG MEAN SqQUARE ERROR

Unadaptive Estimator

M = (AtA)TANAI(AA) (4)
m.s. error = 1/k tr (AtA)LANA[(AA)]e (5)
When the columns of A are orthogonal and each of length (n/k)}:
M = (k/n)*A'NA. (6)
When in addition N = diag (n1, na, - -, na), and AM is the arithmetic mean of

these n;'s, and A is 1/(k)} times the first k columns of a Hadamard matrix (see
Appendix A for a definition):

m.s. error = My = (k/n)AM. (7
Unallenuated Estimator
M = (AN714)™L (8)
m.s. error = 1/k tr (AtN714)7L (9)
Mean Estimator
M = (@ + ANT'A)™ (10)
m.s. error = 1/k tr (@71 + AN71A)™L (11)
Mean Estimator (2 = 1) or Unaltenuated Estimator (@ = 0)

13
m.s. error = 1/k ¥ i (12)

Sn(eQ7 + ANTIA)

where A(Z) denotes the 7't unordered eigenvalue of Z. Special case of above when
Q = sI, s scalar:

(13)

k 1 1
m.s. error = 1/k .zc] BT F AN ) >

Qs 4+ 1/k i Ai(ANTIA)
i=1

Special case of equation (12) when @ = sI, and A is square, orthogonal, and each
column has length (n/k)}:
1
1
1 J——
t
The following assumptions are referred to as equation (15):
@ = 1: T is the mean estimator.
Q = 0: T is the unattenuated estimator, and AtN~14 is positive definite.
Q = sl, s scalar.
A is 1/(k)* times the first k columns of ann X n Hadamard matrix.
N = diag (n1, ng, *++ ).
The n; variables are independent, identically distributed random variables such
that Ei(l/n.—) exists, has finite variance ¢?, and the harmonic mean of the =;
variables

m.s. error = 1/k (14)

.
M=

8

HM = [l/n g l/n.-] (15)

is finite.
k is large enough for the weak law of large numbers to apply.
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Assuming equation (15):

! < m.s. error (16)

-1y
@7+ TEar
0.5 0.5 _ an

Sy 2. SR /ﬂ2u
CTkEM T ANT ° TEEM T AL

provided that the first denominator is positive, where 7 is given by equation 35
of Appendix I.

m.s. error <

square error; furthermore, that the mean square error equals this
lower bound only when all the eigenvalues are the same. Thus the
deviations of the eigenvalues of A’N-'4A detemine the closeness of the
lower bound of equation (13), which Appendix A shows is sometimes
related to the harmonic mean of the eigenvalues of N, which appears
in equations (16) and (17).

A geometric illustration of the eigenvalues of A*N—4 for rectangu-
lar A with orthonormal columns begins with the observation that the
eigenvectors of N form the semiaxes of an n-dimensional ellipsoid.
The projection of this ellipsoid by the transformation Af forms an-
other ellipsoid, which will be called the k-dimensional shadow of the
original n-dimensional ellipsoid.*

The semiaxes of the shadow ellipsoid have the lengths of the eigen-
values of A!NA. In order for the equation (13) bound to be close
to the actual value, the semiaxes of the shadow ellipsoid have to be
generally near their mean length; in other words, the shadow has to
be round. A sufficient condition for the shadow to be round is that
the ellipsoid is the shadow of a round ellipsoid, but this is not neces-
sary. For some of the possible spacial orientations, for example, a
football’s shadow is rounder than the football.

1IV. THE LIMITING CASE OF STATIONARY (SHIFT REGISTER) CODING

The purpose of this section is to show that—in the limit— all linear-
real coding and decoding operations can become time stationary, so
that they can be implemented by shift registers with time-invariant
impulse responses. The limit is taken in the sense that the transmitted
digits are obtained as a single block code whose output is a column

* An ordinary planar shadow of a three-dimensional object will be an orthogo-

nal projection only when the light rays are parallel, and are normal to the
plane of the shadow.
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vector with components from —n to n, where n approaches infinity.
There are two reasons why a study taking linear-real coding to the
limit of being time stationary can be advantageous or useful:

(i) Stationary encoders and decoders appear to be more economical
to implement than the block type of encoders and decoders.

(#) The mathematical investigations to be made in the passage to
the limit will add insights to linear-real coding by showing that a
special case of it is Wiener filtering, and will add insights to Wiener
filtering by showing that a Wiener filter is related to the least mean
square estimator of matrix-encoded noise data vectors.

Toeplitz matrices, defined later, and Z-transforms (Ragazzini and
Franklin) ** are our main mathematical techniques to reach these
ends.

4.1 Stationary Coders
The transmitted signal b; is assumed to be obtained from the data

stream r; by the convolution summation of equation (2), which ean
be put in matrix form by means of the doubly infinite vectors

- e
b_, T
b=|b|, r=|1l, ete.,

b, Ty

L - L
and the Toeplitz matrix (defined in section 4.2)
Ay =iy = hij
so that equation (2) can be expressed in matrix form by
b = Ar.
The problem of how to perform the infinite matrix multiplications,

either analytically or with hardware, will be shown to be solvable by
the use of Z-transforms.

4.2 Infinite Toeplitz Malrices
An infinite matrix A, with elements 4;;, 7, 7 = 0, &1, £2, --- ,
will be called Toeplitz* if some sequence ..., a_,, Gy, @, , ... exists

* Hermitian matrices of the type of Equation (14) are ealled Toeplitz forms,
and are described by Grenander and Szego.l® The Hermitian property is not
assumed in this paper’s definition, since it is not needed for some of the results.
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such that
Aij = au-p (18)

for all 4, j. Associated with this Toeplitz matrix will be the two-
sided Z-transform

az) = Y. az". (19)
g=—c0

The convergence properties of Toeplitz matrices could prove trouble-
some in some cases, but in this paper most difficulties will be avoided by
using only those matrices whose associated Z-transform, according to
equations (18) and (19), has all its poles some finite distance from the
circle | z | = 1, and which is absolutely convergent on | z | = 1. (If the
matrix is to be inverted, it also must have its zeros some finite distance
from [z| = 1) ‘

Any poles outside | z | = 1 arise from a, sequences which are nonzero
for ¢ < 0. This should not eause alarm, as noncausality of unit pulse
reponses for decoders is not a serious practical obstacle, since actual
noncausal unit pulse responses can be arbitrarily well approximated
by accepting a decoding delay. These restrictions on the poles of the
associated Z-transforms require that a, be bounded by a geometrically
decreasing sequence as ¢ — =+,

Section B.1 of Appendix B presents theorems which are useful in
relating Toeplitz matrix operations to Z-transforms, and shows how
least mean square matrix operators of the Toeplitz type can be related
to Weiner-filter types of sampled data estimators.

4.3 Error Analysis

When 4, @, and N are Toeplitz and nonsingular, the expressions for
the mean square error equivalent to the equations of Table 2 are

Tuesn = (Q_l + A‘I\/’D_lA)-'IA.‘.N_1

or
1
o@a?)
buean(z) = 1
n6) + a(%)erae)
gives
ms. _ [on diagonal component } (20)
error of Mypan = (@' + A'N'A)™?
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or

m.s. — Z-—]J Q(z)"’;(z) \[ . (21)
e n@) + aL)a@ae)] |,
where Z~" is the inverse Z-transform integral operator. When A is either

finite or Toeplitz but nonsingular, TuNATTENUATED and TUNADAPTIVE
give the same decoding matrix, namely A™', which will be called

T]stasn .
-1
Tinvirse = A

or for the Toeplitz case

1
tinverse(®) = EGS

gives
ms. _ {on diagonal component] ©@2)
erTor of AT'N(A™Y'
ms. _ g n(z) 1 - (23)

error 1,1(2)@(%)[ o

The above error can be evaluated by these three methods:

() Truncate A and N and then compute an on-diagonal component
of (A'N7'A)" near the center of the matrix.

() Use Z-transforms to find fyxarrenvaren(z). Invert the Z-trans-
form by either

(a) Using the inversion integral for Z-transforms, or

(b) Using pole-zero expansions and a small table of Z-transforms.

Method (#-a) is the Z-transform analog of using Parseval’s theorem to
find mean square errors of stationary nonsampled systems.

Lemma 1: When A is Toeplitz with columns orthogonal and of length 1,
then
(@) A'A =1

(b) ae)a(z) =1,

The proof is trivial. Also notice that (a) < (b).
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Corollary 1: When T = A™" and A is orthogonal,

m.s. ’
= Mm.s. noise.
error

For design purposes it is desirable to make the following definitions;
both assume 7' = A" which is assumed to exist.

For Toeplitz A and N:

noise |:0n diagonal component:”:on diagonal componentj!
power _ Lof ATIN(ATY! ILof A'A
amplification [on diagonal component of N
(24)
For Block Coders:
- 1 -1 4-15¢ 1 t
noise [~ tr ATN(A™Y il[— tr A A]
k k -
power = . (25)
amplification [% tr N:|

Physically, this corresponds to the actual amplification of noise in a
channel which encodes with a matrix proportional to the A matrix,
where the proportionality constant is selected to make the encoder
give unity power amplification to a white signal, and where the decoder
i8 Tixverse - For the stationary coder and channel, the Z-transform
version is:

)

27 R )
noise 1a(z)a(; [ = Z“{a(z)a(;)}
power = - 20 = (26)
amplification

The block code version of the trace formula ean also be used to show
that if the impulse response of the stationary encoderis...a_,, a, a,,

., and its inverse is ... b_,, by, by, ..., so that a*b, = §,.,, then
for N « I, the noise power amplification can be evaluated from the
impulse reponses by:

noise

power | s e - 2 |

amplification [q;m aa][qﬂz—w b"] )
(for white noise)
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The Z-transform version for N « I, is:
noise

power e 1 -1 (l)}
amplification Z 1 ]‘ 4 {a(z)a 2
aonl) |,

(for white noise)

(28)

k=0

It can be readily seen from equation (26) that:

Lemma 2: When A is Toeplitz, the noise power amplification will be
unity whenever

a(z)a(%) = constant

whether or not the noise is white, so long as it is Toeplitz.

An equivalent statement is that when A and N are Toeplitz, a sufficient
condition for the noise power amplification to be unity is that A’A = I, ,
which is equivalent to a(z)a(1/z) = constant.

The above lemma will be seen to be especially significant after it
is proved that unity noise power amplification is the least which can
ever be obtained, and when it is shown that simple a(z) functions,
namely all-pass functions, obey the conditions of the lemma. Notice
that the noise power amplification definition was based upon a receiver
which performed the inverse of the encoding operation, and not upon
a receiver which made a least square estimate of the signal given the a
posteriori noise statistics. Consequently, statements about least possible
noise power amplification are not applicable to adapative types of
receivers such as those employing Tmean -

The following theorem is for block codes with n = k.

Theorem 1: When square block coding is used and N s proportional to
the identity, then the noise power amplification is always greater than or
equal to one, and it is one only when A is proportional to an orthogonal
matrix.

Proof: What is required is a demonstration that:
@ Kl [tr A7(A™) [tr 447 2 1 (29)

and

(17) Equality oceurs if and only if A is proportional to an orthog-
onal matrix. (30)

These are established in Section 2 of Appendix B,



LINEAR-REAL CODERS 1077

The following corollary is the Toeplitz matrix limit version of the
ahove,

Corollary 2: When A and N are Toeplitz, and N 1is proportional to
I, a necessary and sufficient condition for unity noise power amplifi-
cation is that A*A = I, which is equivalent to a (1/z) a(z) = con-
stant. Otherwise the noise power amplification is greater than one.

When stationary (shift-register) linear-real decoding is used, then
the decoding filter passes the noise through a Z-transform transfer
function. When the noise is statistically stationary, the expected
value of the mean square of the output noise is stationary, and de-
pends only upon the amplitude of the transfer function averaged over
the values of z. However, for burst noise the variance of the mean
square of the decoded noise does depend upon the phase of the trans-
fer function. For burst-noise or impulse-noise channels, this variance
is minimized if the impulse response from the noise to the analog
output of the decoder consists of many small terms instead of a few
big ones.

For quantized signals it is important to minimize the variance of
noise power because fluctuations above the mean of the variance in-
crease the error rate far more than fluctuations below the mean of
the variance decrease it. In order to make the variance of the noise
power small, the impulse response from noise to analog output must
be near its peak for many times longer than the periods of fluctua-
tion in the noise process.

Because trace and expected value operators commute, the expected
value of the output mean square error can be found by substituting
E(N) where N appears, provided the noise process is stationary. This
cannot be done for error probabilities after the quantizer, however.

4.4 All-Pass Z-Transforms

A Z-transform a(z) is defined to be all-pass if la(z)| = constant
for |2| = 1. These are the Z-transform version of two-sided Laplace
(or Fourier) transformed all-pass functions. Figure 2 shows some im-
portant properties of all-pass Z-transforms, including the fact that
a(z)a(l/z) = constant is an alternative definition of an all-pass
Z-transform. The proofs of relationships in the figure not proved
previously are straightforward. The praetical implications of these
relationships are that all stationary (shift-register) linear-real coders
should have Z-transforms which are all-pass, in order not to in-
crease the noise power amplification.
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V. A. Kisel’ has made an excellent short study of all-pass Z-trans-
forms, with a view toward using them as phase-correcting networks.'*
He has shown that networks whose Z-transform transfer function
are of the form

1 4+ 8z + 82" + B2’
B3 + Bz + lslz2 + 2

are all-pass, and that Fig. 3 synthesizes such functions. Additional
modifications are added to this basic structure and implementations
are proposed in the next section.

a(z) =

V. IMPLEMENTATION STUDIES

The decoder for block coding with adaptive mean decoding appears
to require a large modern digital computer, and even then it could
probably only operate “on line” with a slow channel and a block
size not much over one hundred. Further research may lead to A
matrices for which (Q=* + A'N—4) can be easily inverted for realistic
Q and N, or further research may lead to quicker inversion proce-
dures, but with the present techniques, block coding with adaptive
mean decoding appears to be decidely less practical than other meth-
ods of error control.

The decoder for unadaptive block decoding appears to be generally
feasible if certain simplifying techniques are used. The most impor-

5 OUTPUT
B3 B2 B8
+
= DELAY DEL AY DELAY
B B2 B

b

Fig. 83— A shift register (real-number arithmetic) whose Z-transform transfer
function is all-pass. (After V. A. Kisel’, with modifications and a correction.)
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tant of these is the use of an A matrix which is a permutation ma-
trix* times diag(Ao, Ao, . . . - , Ao), where 4, is itself a matrix. Ay
must be large enough to give adaquate smear, whereas A must be
large enough to make error burst lengths considerably shorter than
the length of a code word. The hardware simplification achieved is
that the inverse of the small A, can be repeatedly applied in time by
the same hardware so as to invert the larger A. The practicality of
block coding appears to be slightly overshadowed by stationary
(shift register) coding, which offers somewhat simpler circuits and
freedom from the problem of block synchronization.

Stationary (shift register) coding appears to be the most practical
form of linear-real coding. In effect, such coding is a smear-desmear
type of signal processing whenever the encoding and decoding filters
are inverses of each other and of the all-pass type. The fundamental
reason for the practicality of shift register all-pass filters is that
accurately tuned shift registers can be relatively inexpensively
synthesized, even when the dispersion times are several seconds. This
is partly so because the “absolute” tuning of a shift register is deter-
mined by the clock pulses and not the precision of the components
used in making the register, and partly because the “relative” tun-
ing in a shift register is controlled by gains which in practice can be
resistor values. As will be seen, analog shift registers can be imple-
mented digitally, in which case complexity grows only as the loga-
rithm of accuracy. In RLC filter synthesis, in contrast, cost grows
rapidly with accuracy.

Figure 4 is a block diagram for coding of the basic stationary (shift
register) type. The decoder, because it must handle the analog signals
from the channel instead of the digital input signals, is selected to
have the impulse response simplest to implement, namely an all-pass
causal 1/a(z) obtained by a shift register made from a tapped delay
line with a relatively moderate number of taps. The encoder is con-
sequently left with approximating the noncausal a(z), which it does
with a delay by means of a tapped delay line.

The decoding shift register of Fig. 4 can be implemented by the
arrangement of Fig. 5, which is a particular synthesis of the all-pass
shift register shown in Fig. 3. In Fig. 5 all the digital-to-analog con-
version is done by resistor summing networks. This is relatively in-
expensive, although it does require that the flip-flop registers be de-
signed for relatively precise voltage levels on the “on” and “off” states.

*A penm.lt-a.t»ion' matrix is a matrix with a single one in 'each co-lun-m and
each row; it is always nonsingular.
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DIGITAL DATA
DATA OUTPUT
INPUT
a~'(z) sHIFT
NONLINEAR
REGISTER -
TAPPED DIGITA FILTER
DELAY SNE - (MEAN O (Egg gllz%lf;_s) —= QUANTIZER
APPROXIMATING C?%JE%F:EN) SAMPLER -
THE NONCAUSAL I
a(z)(WITH DELAY) 1 [sHIFT NPUT
' ]
[ :
MODULATOR
I AND
CHANNEL SAMPLING INSTANT
DETERMINER ERASURE
(ASSUMED PART DETECTION
ANALOG OF THE BASIC SIGNAL
SUMMER SAMPLER CHANNEL ) (OPTIONAL)

Fig. 4 —One possible general arrangement for unadaptive stationary (shift-
register) linear-real encoders and decoders. For multilevel signals, a Gray encoder
can be used before the analog summer, and the quantizer would incorporate a
Gray decoder.

Notice that in Fig. 5 there is only one analog-to-digital converter,
because the analog feedback signal is added to the input signal before
the conversion whieh is necessary in order to place the signals in
the digital delay line.

The cost of the encoding and decoding shift registers will be roughly
proportional to the amount of smear that they introduce. The amount
of smear necessary for given performance depends upon the noise
power. It follows that a considerable economic saving can be obtained
at given performance if circuits, inexpensive compared to the decoder,
can be found to reduce the noise during bursts.

A new circuit with this purpose for PAM systems is as shown in
Fig. 6. The operation of the circuit requires that the interval between
signal pulses be longer than the Nyquist interval for the bandwidth
of the pulse shape. A way to find part of the noise component is to
sample at the sampling instants, reconstruct the waveform which
would be transmitted if these sample values were the data-signal
values, and then subtract this signal from the actual received signal.
(For proof of this statement, see appendix C.) An estimate of the
instantaneous noise power can be made directly from those noise
components which can be found. These components, for example, can
be used to deduce the presence or absence of a noise burst. The circuit
in Fig. 6 can obtain some noise components,* provided that the taps

* Specifically, Fig. 6 obtains the sample values of A(¢) of Appendix C at
t = nT/2, n integer. Notice that by construction, A(n7/2) = 0 for n even. By

the sampling theorem, just the samples of A(¢) will be sufficient to reconstruct
A(t) provided that C'(w) is zero for |w| > 2 x/T.
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DiGiTAL DELAYED
ATA SIGNAL SAMPLE SIGNAL
INPUT INSTANTS — _ k
| TaPPeD ANALOG [ ¥
SAMPLER DELAY LINE
—0— o—e{ CHANNEL _CT l ‘1
J/ o—+| DELAY SUMMER
TAPPED DIGITAL SYNCHRONOUS = |
DELAY LINE SAMPLER / >
APPROXIMATING / T
T(HE lNONCAUSAL) HALFWAY -~ DELAYED
a(z) (WITH DELAY d
) BETWEEN ~ NOISE ONLY SQUARER
SIGNAL AT HALFWAY
SAMPLE POINTS
vennens INSTANTS BETWEEN
SIGNALS
ANALOG
SUMMER — SMOCrERNe
MEMORYLESS
NONLINEAR FILTER
=@ (MEAN SQUARE
CRITERION)
OUTPUT #+———— QUANTIZER DECODING GIVEN SIGNAL [
SHIFT REGISTER AND ESTIMATED
INSTANTANEOUS
NOISE POWER

Fig. 6 — A stationary (shift register) coder with an adaptive decoder for PAM
channels with white burst noise and pulse rates less than the Nyquist rate.

on the delay line represent the PAM pulse value at { = nT/2, n odd.
The output noise estimate (specifically A(nT/2, n odd, in the lan-
guage of Appendix C and the previous footnote) is then squared to
produce the sample variance of the noise; then the sample variance
function is put through a smoothing filter, as shown in Fig. 6. The
optimization of this filter is complicated by the absence of an ap-
propriate error criterion, but Wiener filtering principles could be used
to optimize a mean square criterion. The problem formulation would
specify that the sample variance is the true ensemble variance con-
taminated by small sample-size noise, and that the cross-correlation
between the halfway sample process and the sample process could be
found from the autocorrelation function of the channel noise.
Finally, a two-input nonlinear memoryless filter is used, also shown
in Fig. 6. It is reasonable to optimize this filter using a mean square
criterion because in the limit of infinite smearing only the power of
the noise will be significant because of the smearing and Gaussianizing
effects of the decoding shift register. Some improvement may be pos-
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sible by using other criteria, but the details appear to be very dif-
ficult and are unsolved.

The general scheme of Fig. 6 appears to be the most economical
form of linear-real coding when the channel is used for PAM at less
than the Nyquist rate. Telephone lines are used at less than the Ny-
quist rate because they are used with signals with nonsharp-cutoff
frequency characteristics. Radio links ean obtain information on non-
tuned burst noise, such ag static, by listening on adjacent frequencies,
and could therefore provide the smoothed estimate of instantaneous
noise power, needed as an input to the two-input memoryless filter,
by other means., Instantaneous carrier-to-noise ratios could be used
for carrier systems, for example.

Tt is also possible to use a different principle of instantaneous noise
power estimation which does not require a PAM channel used below
the Nyquist rate. The other principle uses the quantized structure of
the data stream. It is implemented by a decoder with a “pilot” decoder
which decodes, followed by an operator which squares the difference
between the signal and the nearest quantization level, which is then
smoothed and put into a two-input memoryless filter like that of Fig.
6, following which is the regular decoding shift register and quantizer.
This scheme is probably less practical than Figs. 4 and 6, but it does
give conceptual insights into some of the signal properties which can
be used in decoding, especially for burst channels.

VI. COMMENTS AND SIMULATION RESULTS

Any sample of the decoded noise is a weighted sum of the random
channel noises at many other sample instants. When the number of
terms in this sum approaches infinity and the relative size of the larg-
est term in the sum approaches zero, the central limit theorem applies.
It will probably be true that practical designs will not have the con-
ditions of the central limit theorem fulfilled to the extent that very
small digital error probabilities can be computed by using integrals
of the tails of the gaussian distribution.

Nevertheless, the fact that the decoded noise at any instant is a
sum of the random channel noises at many instants will tend to make
the decoded noise have some of the characteristics of a gaussian dis-
tribution. One characteristic that the decoded noise will have is the
small probability that the decoded noise is larger than three or four
standard deviations. This effect of the decoding filter (or matrix)
will be called the gaussianizing property.

The use of nonlinear filters in conjunction with linear-real coders
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is extremely effective, since such filters can considerably reduce both
the noise power and the probability that the noise has a large peak.
By reducing the probability that the noise has a large peak, the
desirable gaussian distribution of the decoded noise occurs with
smaller matrices, smaller shift-registers, or simpler all-pass filters.
In the limit when the decoded noise is actually gaussian, the noise
power is the only significant statistic; the higher-order moments of
the noise become insignifiecant due to the gaussian-distributing prop-
erty of the decoder. It is therefore quite appropriate to design the
nonlinear filter using a mean square error criterion, as is done in
Section viir of Reference 9.

Linear-real coding has features which could greatly improve error
detection in channels with burst noise. When erasure zones are used
to detect errors, the gaussian-distributing property of the decoder
greatly increases the ratio of the probability in the erasure zone to
the probability beyond the erasure zone. In addition, the noise spread-
ing gives more opportunities for a signal to land in an erasure zone in
the presence of impulses or bursts, because of randomness of the
decoded noise, and, with suitable designs, because of deterministic
reasons.

If the communications channel is, in order, digital processor to
analog transmitter to analog receiver to digital processor, then linear-
real block coding permits the energy per transmitted data digit to
be altered by reprogramming the digital processors, instead of physi-
cally retuning bandwidths of analog equipment. Although this option
does not in itself affect error control, it perhaps could greatly simplify
the implementation of adaptive communications systems in which the
signal energy per digit is adjusted to be appropriate for the transmis-
gion conditions, message importance, or message load.

A digital computer simulation was run of an additive-noise channel
with a linear-real block-code encoder at the input, and several types
of decoders at the output. Table III shows the results of the simula-
tion. The listed results are averages. The A matrix is the Hadamard
matrix which is generated recursively according to the procedure de-
scribed by Golomb and his colleagues (p. 55, first paragraph in proof
of Theorem 4.5).*®* The N matrix had zeros in all off-diagonal com-
ponents, and independent random variables on the diagonals, which
were 0.3 with probability 0.7 and 8.3 with probability 0.3. In ac-
cordance with Theorem 4 in Appendix b, these can be worst-case
values which then give the worst-case decoded mean square error.

Once the N matrix was generated, the channel noises were gen-
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TaBLE III — SIMULATED PERFORMANCE OF LINEAR-REAL CODERS

MS ERROR IN
DECODED COMPONENTS

When receiver

‘When receiver uses

COMMENTS

uses perfect N = diag (nd, **" , na")
N matrix where ni’ = max (0.3, fi* — 1)
The lower giound of
. equation (13) is some-
Mean estimator 0.516 0.711 w(}mt loose: it gives
0.297.
Equation (12) has cor-
rectly predicted that
Unattenuated 2.821 2.821 the error would be the
estimator same as that of the un-
adaptive estimator be-
cause A is square.
Equation (7) averaged
over the possible N
matrices gives m.s.
Unadaptive 2.821 error of 2.70. The ran-
estimator domness of the N
matrix accounts for
difference.
Clip estimator
parameters 1.805
(1.2, 0.9, 4.0)
Clip estimator
parameters 1.152
(1.0, 0.75, 3.0)
Clip estimator
parameters 0.771
(0.8, 0.6, 2.0)
Clip estimator
parameters 0.677
(0.6, 0.6, 1.5)
Clip estimator
parameters 0.645
(0.5, 0.5, 1.3)
Clip estimator
parameters 0.649
(0.4, 0.5, 1.0)

Channel: Additive noise channel sending +1 and —1 binary numbers and block
encoding with an A which is ¥~ times the first & columns of an n by n Hadamard

matrix.
n = 16.
k = 16.

Number of words in simulation: 10. Noise type: Zero-mean white Gaussian noise
has variance 0.3 with probability 0.7 and variance 8.3 with probability 0.3.
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erated randomly from a Gaussian distribution having the given N
for a covariance matrix. The clip estimator used a decoder which
first put each received component through a memoryless nonlinearity,
and then decoded the resulting components with the unadaptive esti-
mator. The parameters (x, ¥, z) indicate that the nonlinearity is a
continuous odd funetion having slope 1 for inputs of magnitude less
than z, and slope y for inputs of magnitude between z and 2, and
slope 0 for inputs of magnitude exceeding z. These parameters can be
chosen to approximate the least mean square memoryless nonlinear
filter referred to earlier, or they can be found by a trial-and-error
procedure with either analysis or simulations to evaluate the resulting
error.

The following two conclusions can be drawn from the simulation,
but it would not be appropriate to generalize them to cases of non-
square A matrices:

(7) For intermittent additive impulse noise of the type simulated,
the simple clip estimator scheme, for appropriate parameters, is
almost as good as the mean estimator, even though it is unadaptive
and therefore requires only a simple receiver.

(i) The use of rather crude algorithms for generating an estimate
of N appeared to be inferior to clip estimator decoding with appro-
priate parameters.
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APPENDIX A

Justification of Table 2 Equations
A.1 Unadaptive Estimator

In the case of the unadaptive estimator TA = I(;x), 80 equation
(3) reduces to equation (4) shown in Table II. Now in general, when
M is the covariance matrix of the decoded noise, the mean square
error will be the average of the on-diagonal terms of M, or in other
words, (1/k)tr M. In this way (5) follows from (4). Equation (6)
follows from (4) because A'A = (n/k)Ixx) in this case.

A Hadamard matrix is a square matrix with +1 or —1 elements
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and orthogonal columns. (Golomb and his associates fully describe
Hadamard matrices and their application to binary block codes.tt)

In deriving equation (7), a straightforward evaluation of (6) under
the assumption of diagonal N gives the result that

k 2 =n
ﬂ{,-,- = (*") E Qi 1y .
n/ =1
assuming:
T is the unadaptive estimator
N = diag (n,, na, -+, M)-

The on-diagonal terms of the above can be evaluated by using the
Hadamard assumption, which causes (a;)® to equal 1/k for all [ and

1. This gives
_ .’9) 13 ]
M;; = (n [ﬂ ;lﬂz

T is the unadaptive estimator

assuming:

N = diag (ny, 1y, - , M)

A is 1/(k)! times the first k& columns of any Hadamard matrix.
Notice that the term in brackets is AM, the arithmetic mean of the
seb (Ry, Mo, v v v, Ny).

A .2 Unattenuated Estimator
Equation (8) comes from (3) by direct substitution for the T
matrix.
A3 Mean Estimator
In the case of the mean estimator,
Ickxn —TA = Iguny — (Q_l + A‘N—IA)_lA‘N_lA
= Tax — Q'+ A'NTAAN'A+ Q' — Q7Y
=@+ A'NTA)TQ. (31)

Substituting (@' + A'N'A)7'Q™" for (I 4xxy — TA) in equation (3)
readily shows that
M= Q"'+ A'NA)™

assuming 7' is the mean estimator.
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A4 Joint Mean and Unattenuated Estimator

The unattenuated estimator is the special case of the mean esti-
mator when Q-* — 0. It is convenient to handle the two cases together
by using the variable @ = 1 when the mean estimator is used, and
Q = 0 when the unattenuated estimator is used.

The next two equations use an approach from Berkowitz.’* Equa-
tion (9) or (11) can be simplified by using the fact that, for any
nonsingular 7,

tr Z”l — Z rl__
~ N(2)
where X;(Z) denotes the ™" unordered eigenvalue of Z. The result is
equation (12). When the signal is white, the relation xi(«I + Z) =
v + X(Z) can be used, giving the equality in equation (13). When
@ = 1 the positive semidefiniteness of A'N-'A causes its eigenvalues
to be real and nonnegative; when © = 0 the positive definiteness of
AtN-1A will now need to be assumed. Because 1/(Qs™* + A} is a convex
upward function of A in the region of possible A, the inequality part
of (13) follows by convexity. This inequality will prove useful later
when—under additional assumptions—the term in brackets will be
found in closed form.
For square orthonormal A4, it follows that A-* = A? so

_1

M(N)

Equation (14) results when the above is substituted into (13). Notice
that when Q is zero and N is diagonal, this will reduce to AM. On
the other hand, when  is one, this will be less than AM.

When A is rectangular, the next analysis leads to a closed form
solution for the average of the eigenvalues of A!N—A, under the as-
sumpticns of equation (15), and it also leads to upper bounds upon
the m.s. error. The exact values of the components of A may enter
into the formulas for some statistics of the error. However, in the
first and second moment statisties to be investigated under the par-
ticular assumptions made, it turns out that the only important prop-
erty of the A matrix is the inner product between the ™ and j%
columns. This will always be (n/k) 8;;, independent of the particular
Hadamard matrix upon which A is based. However, since higher-
order moments are significant, especially in quantized channels, it is
likely that some Hadamard matrices might be more useful for prac-
tical purposes than others,

MANTA) = MATNTA) = AN
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Under the assumptions of equation (15), straightforward calcula-
tions will show the following. HM is the harmonic mean of the diag-
onal components of N; equation (15) includes its formula.

Iap-14 _ 1
(z) A'N A_IGHMI+Y*
where, for large k&
E[(Yk)i:'] =0 :
on allz, 4 (32)
BV} = 5
(@) E[l tr A'N“A] - (33)
k kHM
1 tar—1 n
(12) Var [E tr A'N A] =27 (34)

The above equations are especially useful because they show that

. taAT—1 n

the average of the eigenvalues of A'N"'A = W HM
This can be substituted into equation (13) to prove equation (16).
Equation (16) becomes an equality when all of the eigenvalues of
A!N-1A are equal; otherwise the mean square error is greater.

Because the m.s. error evaluated according to equation (12) re-
quires the computation of eigenvalues of typically a rather large
matrix, or the trace formula of (9) or (11) yields little insight, and
because the bound of equation (16) is a simple closed-form equation,
the question arises of whether the bound given by (16) is really
close enough to be used for design and analysis purposes as an equal-
ity. The analysis which follows will derive an upper bound for the
m.s. error, which could be used to develop some sufficient conditions
for near equality of equation (16)

Let equation (32) be used to define Y, let A’(Y3) denote

max [\(Y)],
1

and let = be any number such that

k

2 (TP

AT (83)
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Notice that  can always be as large as 1 and never exceeds k. The
second of the following inequalities is Schur’s inequality, which is
valid for any square Y..*® The first comes from (35).

ﬂWWéng@ggmmﬁ (36)

Assuming that k is large enough for the weak law of large numbers
to hold permits (32) to be used to evaluate the above double sum,
so that with a few manipulations (36) reduces to

M(T) S 22 (37)

By using equations (13), (32), (33), and (37), and a relatively ob-
vious property of convex functions,* equation (17) is established.
APPENDIX B

Relating Teoplitz Matriz Operations with Z-Transforms

Theorem 2: If

Ay = aiy
and if
a@) = X agz"
q==o
converges on |z| = 1 and has no poles or zeros for a finite distance

from |z| = 1, then A~ exists and

-y 1
a '(z) = @)
Proof: Let
b() =&—L—) for |z|=1.

* The property is that if f(z) is convex downward, and

k
Yz =0, max |z; | = R,
= :

then

?:::%f(” +2:) S ¥u - B) + #f(u + R).
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The assumptions on a(z) cause a, and b, to have geometrical decay,
and therefore the following converge absolutely:

(BA)-':' = Z Bl'chf = Z bi—olo-; -

=—00 g=—0o0

Also reducing to the above is (4B);;. Letting ¢’ = q — j gives

(BA);; = (AB)y; = 2. bu—p-a@e = Do * @y |i—;

Q" =—co

where the * denotes the convolution sum in the line above. Because
b(z)a(z) = 1, it follows that

bg*a,|.—; = 8i.;-

So BA = AB = I, thus proving that B is the inverse of A, which
completes the proof.
The following have proofs similar to that of the theorem.

Lemma 8: If A and B are Toeplitz, then C = AB s Toeplitz with
c(z) = a(z)b(z).
Lemma 4: The half-power of a Toeplitz matriz N can be defined by
n'E) = V).
The following has a straightforward proof:
Lemma 5: If A is Toeplitz, then At is Toeplitz and a'(z) = a(1/z).

The following relates linear-real coding for Toeplitz matrices with
Wiener filtering,.

Theorem 3: When A, Q, and N are wnfinite Toeplitz, then the least
mean square estimator

T=(Q "'+ A'N'4)'A'N™}

is the infinite Toeplitz, and the noncausal Wiener filter, given by

v

n@) + a(ﬁ)ﬂz)a(zf

iz) =
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Proof: By Theorem 2 and Lemmas 3 and 5,

iz) = I——I;E);Tz)-ae)-%-

9@ " n6)
This equals the stated result, which completes the proof.

Corollary 83: When A =1,
T =@+ NN
and

q(2)

@ = 1@ + 1@

1s the noncausal Wiener filter.

The following proof of equation (29) and statement (30) follows
the ideas of J. E. Mazo. For square A,

tr [A7(AT)] = tr [(A7)'A7Y,
since in general tr HC = tr CH for square H and C. Now let B =
AAt. Notice that (4-2)'A* is B2 Equation (29) is then:

ElgtrB'ltrB =1,

But
k
trB = > \M(B)
i=1
L |
N
B = 2, F
80
1 k
E ; )\i(B)

Elg tr B™'tr B =

1
1 < 1

The numerator and denominator are respectively the arithmetic and
harmonic means of the eigenvalues of the B matrix. Hardy, Little-
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wood, and Polya (p. 26, special case of 2.9.1) show that this ratio
always exceeds one, except when the eigenvalues are all the same, in
which case it is one.r” This proves (29).

At equality B has equal eigenvalues, and since it is symmetric the
eigenvectors span the space and B is proportional to an orthogonal
matrix:

B =\U = P'(\)P
= P'‘(\)P
because B is symmetric
= .

Therefore AA* = Al and A~ = \A?, so A is proportional to an orthog-
onal matrix at equality, thereby establishing (30) and completing the
proof of (29) and (30), thereby completing the proof of Theorem 1.

APPENDIX C

Finding Noise Component

In the text we discuss the circuit shown in Fig. 6 and state that a
way to find part of the noise component is to sample at the sampling
instants, reconstruct the waveform which would be transmitted if
these sample values were data-signal values, and then subtract this
signal from the actual received signal.

The proof of this statement requires the use of the valid converse
of the sampling theorem, which states that an arbitrary function
with frequency components out to || = «/T'; cannot be reconstructed
from samples every T seconds if T > T;. If it is assumed that

(@) RO) =1
(%) h(nT) =0
(¢47) H(w) is nonzero for |« | < #/T)
) ' < T
(v) The additive noise ¢(f) has components at all frequencies for
which H(w) has components,

then it follows that

actual sample at ¢ = ¢(t) + 2 r,h(t — nT)
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predicted sample at ¢ based upon
samples at nT, n = 0, &1, £2, --- = > [r, + cT)]h(t — nT)

A(f) = difference of the above = ¢(f) — 2 emT)h(t — nT).
By using a well-known result in sampling theory** the Fourier trans-
form of A(t) can be written as either of the following,

Alw) = FA@)] = Clw) — H(w) HEC(nT)e-imnT

n2r

= C(w) — Hw) ; C( - H,l,—,—)

By the converse to the sampling theorem, no H(w) will make A (w)
zero for all w. Consequently, A(w) contains some components of the
additive noise. If T, = T/2, then the direct sampling theorem shows
that samples every T/2 are sufficient to reconstruct A(f).

APPENDIX D

The purpose of this appendix is to state and prove the following
theorem.

Theorem 4: Assuming

() Channel I has additive noise ¢ independent of the signal b
(¢7) Channel I1 has additive noise g independent of the signal b
(#7d) ¢ and g are zero mean, and each s even about its mean
() F(a) = p(lc| = @), (a ?s defined to be nonnegative)
() K(2) = p(lg| = @)
(vi) In both channels signal plus noise are passed through the memory-
less nonlinearity nl( ) at the receiver
(viz) nl(z) is odd
(vizd) nl(z) has a slope bounded between 0 and 1 for all x, and this slope
18 monotonically decreasing in | x |
(iz) The mean square errors of channels I and IT are M SE, and M SE,; ,
respectively.
(z) Channel I is noisier than channel II in the sense that F(a) = K(a)
for all «, which means that for every bit of probability density ¢ has
at +8, g has an equal amount at a dislance which is at least 48,

then
MSE, =z MSE,,.
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(Thus, worst-case noise gives worst-case results with these mnon-

linearities.)
The next definition and lemma are used in the proof of Theorem 4.
Let MS(a) denote the special case of MSE; of Theorem 4 when

pa(c) = 38(c + a) + 38(c — @) (38)

where « is a positive constant, and §( ) denotes the Dirac impulse
function.

Lemma 6; Under the conditions of Theorem 4, (dMS(e)/d3a) = 0.
Proof:

us@ = [ [ o+ o - WpOn©deds. (39

Substituting equation (38) for p.(c), integrating with respect to ¢, and
then taking partial derivations with respect to « gives

aMS(@) _ f {[nl(b + o - 5@ dnl(a:)

da b+ a
——————— 7

A B

— [nl(b — &) — b) L2 d”’l(“’) }pl(b) db.  (40)

| S — 9

C D

Now
[assumptions 7, 8] = [C £ 0 for b2 0, A < 0 for b < 0]  (41)
[assumption 8] = [D = 0, B = 0] (42)

[assumption 8] = [B < D when b = 0, B = D when b < 0]. (43)
Therefore
—CD =z —CB when b=0 (44)
AB = AD when b =0. (45)
Consequently

é‘.f.‘%(i) > f_; (4 — C)Dlpy(b) db + fum [(A — C)Blp\(b) db. (46)
Now '

o [ dnl@)
A C—f_, 22 4 @7
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and by assumption 8 the integrand is nonnegative, so both sides of
(47) are nonnegative. This fact and (42), and the nonnegativeness
of p;(b), make the right side of (46) nonnegative, which proves the
lemma.,

Proof of Theorem 4: The assumed evenness of the noises, and the
linearity of the expectation operator, permit the MS(a) function to
be used to evaluate the mean square error, as follows

MSE; — MSEy; = fo " MS(@) dF(e) — fn " MS@ dK@).  (48)

The above right side can be combined into one integral, such that
integrating by parts gives zero for the end conditions plus the result-
ing integral.

MSE;, — MSEy = f (K(e) — F(a)]{g%} do. (49

o

Assumption 10 makes the bracketed term nonnegative, whereas
Lemma 6 makes the braced term nonnegative, so the right side of
(49) when integrated is nonnegative, which proves the theorem.
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