On a Class of Configuration and

Coincidence Problems

By Z. A. MELZAK*
(Manuseript received August 28, 1967)

Let A and B be sets in E™ where B is convex and symmelric about o.
Let n points be taken in A and let B; be the translate of B centered at the
it one. Let Y be the subset of the Cartesian product A", corresponding to
the configurations (B,, -+, B,) such that no more than p — 1 sels B;
infersect, or corresponding lo any stmilar configuration condition, expres-
sible in purely Boolean terms. The problem of evaluating various integrals
over Y generalizes a number of questions tn queuing, lelephone traffic,
statistical mechanics of hard spheres, and so on. This article gives a complete
solution for certain special cases, and discusses numerical (Monte Carlo)
techniques.

I. INTRODUCTION

‘We consider here a number of problems of the following general type.
Let A and B be two sets in the m-dimensional Euclidean space E™(m=1).
B is assumed to have a center of symmetry and for any point x B(z)
denotes the translate of B centered at x. An integer n(n = 2) is fixed
and the n-fold Cartesian produet A X A X --- X A is denoted by P.
If uePthenu = (z,, -+-, z,) wherex; e A fori = 1, --- , n; we shall
be interested in the sets B(x,), - - - , B(z,). By a configuration condition
we shall understand a statement referring to the relative positions of
the sets B(z,), --- , B(x,) and describing their intersection properties
in purely Boolean terms.

Examples of admissible configuration conditions are: (z) the n sets
are pairwise disjoint, (¢7) their intersection is empty, (i7z) their union is
connected. A configuration condition which generalizes () and (7z) is: an
integer pis given (2 £ p = n) and no p of the n sets intersect. Any admis-
sible configuration condition C induces a partition of P into two disjoint
and complementary sets ¥ = Y(C)and N = N(C);ifu = (z,, -+ ,z.) ¢
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P then u ¢ Y if and only if the condition C holds for B(z,), - - - , B(x.).
Finally, a function ¥ = F(z, , - - , 2, is defined over P and dV denotes
the volume element dz, - - - dz, . Our problem is to evaluate the integral

J=f?FdV.

In all cases to be considered the sets A, B, and Y, as well as the
function F, will be sufficiently regular so that the questions of meas-
urability and integrability will not arise. In fact, in most cases of
interest B turns out to be a ball, a cube, or an m-dimensional regular
octahedron. All these are Minkowski balls for a suitable norm p(§) =

p (&,...,&). We get the Euclidean ball with
n i
pl) = (12 E?) )
the cube with p(¢) = max (&, ..., £&,), and the octahedron with

1

p§) = i‘f;'-

It will be therefore assumed throughout that B is a Minkowski ball.
This amounts simply to assuming that B is a convex symmetric body.
The precise shape of A is of no particular importance, only its con-
tent and sufficient regularity are.

The integrand F will be usually of some highly symmetric type
such as

F=1, F=Hf(x.-). F= TI iz — =),

1si<jisn
where f is a suitable sufficiently regular function.

In this part of the paper we are concerned with certain special
configuration conditions which lead to an explicit expression for J in
terms of the so-called cluster-integrals. Later we consider a related
expansion of the form

i=0

where the parameter A measures the ratio of sizes of B to A. We shall
take up the questions of the existence of the expansion (1) and the
regularity of J as a function of A.
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II. EXAMPLES

Example 1

Let m = 1, A is the interval [0, L] and B is the interval [0, a], n is
any integer such that (n — 1)a =< L, the configuration condition is
that the sets B(z,), - - -, B(x,) are disjoint, and # = 1/L. J is now the
probability that with n points at random on the interval [0, L] no two
points are closer than a.

Ezample 2
Let m, A, and B be as above,

P, o) = 111G

where f(z) is a probability density on A. The configuration condition
is: p is an integer (2 £ p = n) and some p-tuple of the sets B(x,), - - - ,
B(z,) is to have a nonempty intersection. Here we have the following
interpretation: [0, L] is a basic time interval and n events occur during
that time. Each event occurs independently of the others with the
probability density f(z). A p-fold coincidence is defined to be the com-
pound event arising when some p events occur closely together—on a
time-interval of length a. Now J is the probability that a p-fold coinci-
dence occurs,

The above examples show that problems of our type might be of
interest in queuing theory, telephone traffic, the theory of particle
counters, and in similar areas. The next example is a scattering
problem for a random linear array of n identical isotropic point-
scatters, no two of which can be too close together.

Example 3

Let m, A, B, and C be as in example 1. We suppose that the wave-
length is 2= and that L is an integral multiple of it. Aside from propor-
tionality factors the signal scattered by the array is the vector (£, 5)
where

E*—-Zcos:v,r, n=Zsi11:c.-.
1 1
We are here interested in the probability P(u, v) that

u=t=u+t+du and » = 9 Z v+ do.
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The Markov method? gives

P, v) = 20)7°J3 f f e B, s) dr ds

where

B(r, 9 = fy exp [z‘(r ZL: cos ; + 8 1Esin x,)] dv.

J, and Y, are the integral and the region of example 1, respectively.
Therefore the spectrum B(r, s) is obtained in the form of our integral
J if we take

F = I:I f(m,-), f(x) = ¢'tr cosztasinz)

When a = 0 then P(u, v) reduces to the probability density for the
isotropic plane random walk of n unit displacements in arbitrary
directions.

Example 4

Let m = 3, let A be any large and sufficiently regular portion of
space, and let B be the ball of radius a. The configuration condition
is that no two sets B(z;) and B(x;) overlap. There is a suitable given
function ¢ () and

P, ) = I 0=,
15i<isn

Now, aside from some simple normalization factors, J is the so-called

partition function for a hard-sphere model of idealized gas with inter-

molecular potential ¢ and the hard core radius a.?

The knowledge of J is here of considerable importance in statistical
mechanics and a great deal of work has been done on the subject of
evaluating J in the form (1) which is closely associated with the so-
called virial expansion.

III. A SPECIAL CASE

The method to be used involves certain dissections of Cartesian
products together with the inclusion-exclusion principle of combina-
torics.®* As an illustration and an introduction to the more complex
examples which follow, we consider here at some length example 1
of the previous section, The material is taken from Ref. 4, where some
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further details can be found. The well-known solution®™ ¢ is here

J=Jna L) =[1— (n — Da/L]" (2)

and it may be obtained analytically as follows.
Let the coordinates of the n pointshez, , - - - , 2, ; these can be ordered
in n! ways. Suppose that 0 £ x, £ 2, £ --- £ 2, £ L; the conditions

of the problem are satisfied if and only if
0§1‘1§;r2—a§.1:3—2&

£ - -=22,—(n—1a=L— (n—1a (3)

Let yi = a2y — (i—1)a (i = 1, ..., n), then the probability that (3)
holds is L™ times the volume of the region in E" consisting of the
points ¥ = (y1,..., y,) for which

O=syp=p=- =2y =L— (n— 1a

The volume in question is [L— (n—1)a"]/n!; since there are n! equi-
probable orderings we get (2) at once.

Consider next an alternative geometrical proof of (2), which is
considerably more complicated, hut leads to useful generalizations
and gives some additional insight.

First, let n = 2. The sample space of pairs (z,, 2.)(0 < 2,, 2, < L)
is the square @ of side-length L, lying in the first quadrant of £Z* and
containing the origin as a vertex. Let D be the diagonal of @ through
the origin and draw the two lines parallel to D at the distance 27%a
from it. The hexagonal subset of @ contained between those two lines
is the sample space of the forbidden configurations with [z, — ,| < a.
The remainder of the square  consists of two congruent triangles which
can be moved together so as to form a square @, , of side-length L — a.
By the randomness assumption J(2, a, L) is the ratio of the areas of
@, and @ which yields (2) for n = 2.

The case of arbitrary n is handled similarly. In E* we take a

Cartesian coordinate system with the n axes Xy, ..., X,. The n-
dimensional cube
H={z, ,2):;0=22,=Li=1---,n}

is then the sample space of all n-tuples of points on the segment [0, L].
Let 7, be the interval [0, L] on the X ;- axis. In the two-dimensional
square face Q;; = I, X I; of H let D;; be the diagonal through the
origin and let H;; be the hexagonal subset of @,; consisting of all points
no further from D,; than 27%a. Let S,; be the Cartesian product of H,,
with all the I,’s for which k = 7 and k # j.
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S,; is now the sample space of the configurations which are forbidden
on account of too close approach of the points z; and z; for the chosen
indices ¢ and j: |z; — z;| = a. The sample space ¥ of the allowed con-
figurations is therefore the set

}{ - LJ Agﬁ .

1si<isn

When the (g) paradiagonal slabs S, , based on the paradiagonal sets

H,, , are removed from H, the remainder of the cube H consists of n!
congruent simplexes which can be reassembled by suitable translations
so as to form a smaller cube H, of sidelength L — (n — 1)a. By the
randomness assumption J(n, a, L) is the ratio of the volumes of the
cubes H, and H, and so (2) is proved again.

The above procedure works on account of a lucky geometrical accident
of the fitting of n! simplexes. If A and B were some other, m-dimensional,
sets, we could still form the paradiagonal sets and slabs and we could
attempt to find the volume of the union J S;; of all the paradiagonal
slabs. This is essentially what is done in the next section by means of the
inclusion-exclusion principle®.

IV. SIMPLE COINCIDENCE WITH SEPARABLE INTEGRAND

In this section we are concerned with a configuration condition cor-
responding to simple coincidence: u = (z;, -+, z,) ¢ ¥ if and only if
for some % and j B(z;) and B(z;) intersect. Subject to general restric-

tions, 4, B, m, and n are arbitrary. Welet N = (g) and we form the N
paradiagonal sets
H: = {(z:, z): B(z:) N B(x;) #= ¢}
and the N paradiagonal slabs
S = {@, -, z): B@@) N Bl;) # ¢}.

Let the slabs be enumerated by a single index as {8}, k =1,...,N.
Then an application of the inclusion-exclusion principle gives

J=deV E(—n'“[ PIREEEDD f de] 4
Y r=1 1ky<ks<+++<krSN v Sg,NreNSk,

2 (-DK, .

re=1

Il
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With the general integrand no further elaboration of (4) is possible.
Suppose now that F has the separable form

F = 1 1. ®)

With the double-index enumeration of the S;’s the first term K, can
be written as

n

K= > [ Iiwav
1sii<jasn Y §i1fa

1

and since all the N paradiagonal sets are congruent, we have

K= N[ 1@a) " [ s az, de.

For reasons which will be clear shortly we write

No=N, [f@a=0, [ f@iedd, =1, 6
A Hys
so that
K, = NnJ;_zJu . (ﬁb)

Similarly, the second term K, in (4) is

H fz) dV

K, = f
(1.71) (ia.d9) ¥84,i,N8eyi, 1

where the summation extends over all distinct pairs (i, ), (i , J2)
suchthat 1 <4, <j, =n,1 =1, <j, <n;no regard is paid to the

order of pairs; [(1, 2), (3, 4) is the same as (3, 4), (1, 2)] so that there
are exactly
((3))
2

such pairs of pairs. There are two types of these: N, pairs like 1, 2),
(3, 4) with all four indices different, and N, pairs like (1, 2), (1, 3) with
one shared index. By a simple. calculation

Nou =nn — Dn — 2)(n — 3)/8, Niyp =nln — D(n — 2)/2,
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and in analogy to (6) we set

4
Jow = f 11 i) dz: de. dz, da,
HiaNHao

1

= [ f@)f(zs) da, d:vg:r =Jiu  (7h)

1

3
Jow = f 11 f(x) dz, dz, dz,
HaoMH1a

so that
K, = N Ji T + Noods 2 . (70)
The main purpose of this section is to develop formulae, analogous

to (6) and (7), for the general term K, of (4). The principal dif-
ficulty here is that in passing from the single-index formula for K,

K= - Zfsm..m ; f(z) AV (8a)

18ky<sr=<krsN

to the double-index formula

kK, = Z o ur;) -1; fI fw) dV (8b)

(i1,71) “jJ‘\"'ﬂS,‘,,], i=1

we need an adequate description of the different types of r-tuples
of pairs of indices occurring in (4), together with a hold on the range
of summation in (8b). For instance, with »r = 2 there are two such
types, illustrated by (1, 2), (3, 4) and (1, 2), (1, 3). With » = 3 there
are five types of index-sharing in triples of pairs:

1, 2), (3,4), (5, 6); (1, 2), (1, 3), (4, 5); (1, 2), (2, 3), B, 4);

(1, 2), (1,3), 1,4);1,2), (1,3) 2, 3); 9)

We may therefore expect that the formula for r = 3, analogous
to (7¢) for r = 2, will have five terms rather than two. The number
of such types grows very rapidly with r, and as an aid we introduce
certain graphs associated with the terms of (8). These graphs reflect
completely the intersection properties of the sets B(z), . .., B(z.).
For r = 3 there are five such graphs corresponding to the five types
enumerated in (9). These are given in Fig. 1 together with the cor-
responding B-configurations. (It is, of course, assumed that n > 2.)

Each graph is of the following kind:

(1) No vertex is isolated.
(43) No pair of vertices is connected by more than one edge.



CONFIGURATION AND COINCIDENCE 1113

/\/\f“\)\g

4 OO 5 A

T8 &H &

Fig. 1 — Coincidence graphs, r = 3.

(#7%) No edge connects a vertex to itself.
(iv) There are exactly r edges.
(v) There are exactly v vertices.

One further, and crucial, condition is added:

(vi) If the v vertices are enumerated in some order then there exists
a configuration of v translates B,, --- , B, of B, such that B,
and B; intersect if and only if the 7t** and the j* vertices are
connected by an edge.

For the sake of convenience we make here the following conven-
tion: two convex m-dimensional bodies will be said to intersect only
if their intersection is itself m-dimensional, otherwise they are to be
regarded as disjoint. The reason for this is that we are interested in
purely metric properties: the intersections of such sets serve as do-
mains of integration for well-behaved functions in E™.

A graph satisfying conditions i through vi will be called a (B, r, v)-
graph, one satisfying 1 through ¢ and v7 a (B, »)-graph, and one
satisfying © through % and vt a B-graph. It must be emphasized that
the condition vt is not of the usual graph-theoretic kind and it pre-
vents many graphs from being B-graphs. For instance, let m = 2
and let B be a circular disk. Since a disk in E? cannot intersect six
congruent pairwise disjoint disks, the graphs of Fig. 2 are not B-
graphs.

The proof of the above assertion for the graph of Fig. 2b is obtained
by showing that here the “extreme” configuration is that of Fig. 3.

Similarly, when m = 2 and B is a square then B cannot intersect
five pairwise disjoint translates of itself (for each translate contains
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(a) (b)

Fig. 2— Graphs which are not B-graphs. (B is a disk.)

a vertex of B) so that the graph of Fig. 4a is not a B-graph. On the
other hand, the graph of Fig. 4b, which corresponds to that of Fig.
2b, is a B-graph as shown by the configuration of Fig. 4e.
Returning to the evaluation of K, , we start with (8b). Summation
there extends over all the
((2))
2

distinet r-tuples of pairs of indices where for each pair (%, , j.)1 =%, <
j, £ n; r-tuples differing only in the order of pairs are not considered
distinet. We can now associate the terms of (8b) in a 1 : 1 fashion with
the distinct (B, r)-graphs on some n vertices w,, --- , w,. Given a
B-graph @ let

5@) = M S, (10)

where the intersection is taken over all pairs (¢, j) for which w; is con-
nected to w; by an edge in G. Then (8b) may be written as

k=% [ e, (11)

(@) i=1

Fig. 3— An extreme B-configuration.
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2 2 8 3 2
i
1 3 1 5 7 . . 8
4 5 4 4 8 7
(@) (b) (c)

Fig. 4 — Configurations when B is a square.

the summation running over all distinet (B, r)-graphs on n vertices.

Let v (@) denote the number of vertices of G and C (@) a connected
component, of (. Since the integrand in (11) is completely separable,
the integral over S(@) splits into a product of integrals over the con-
nected components and we get

K, = ZG: i T JIe@). (12)

c(@)

Here J[C(G)] is an integral over the connected component and the
product is taken over all such components of . Two examples of
integrals J[C'(G)] are given in (7h). Owing to the congruence of all
the paradiagonal slabs and the form of the integrand, it is not neces-
sary to sum in (12), over all (B, r)-graphs on the vertices wy, . . .,
wy, but only over their types.

Suppose that there are exactly ¢ = ¢(r) types of such graphs and
let G; be any one of the j® type; let also N,j(n) be the number of

different (B, r)-graphs on the vertices ws, . . . , w,, of the j® type.
Then (12) becomes
t(r)
K, = > N, @J; ¢ T JI0@)). (13)
i=1 Cc(@j)

Thus the problem of evaluating J has been reduced through (4)
and (13) to: the geometrical problem of determining the types of
(B, r)-graphs, the combinatorial problem of ealculating the coef-
ficients N,;(n), and the analytical problem of evaluating the cluster-
integrals over the connected (B, r)-graphs.

V. MULTIPLE COINCIDENCE WITH SEPARABLE INTEGRAND

Formulae analogous to those of the previous section will now be ob-
tained for the case of p-tuple coincidence. Subject to general conditions,
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A, B, n, and m are arbitrary and F is of the separable form (5). An in-
teger p is fixed (2 < p = n) and the configuration condition is: u =
(., -+, x,) ¢ Y if and only if there are p indices, , - - - V(1 Sty < -ve
< 1, = n) such that

ﬁ B(:r.;.) #= ¢.

a=1
We observe here our convention that the intersection must be it-
self m-dimensional. We introduce the analogs of paradiagonal sets
and slabs:

H.‘,---.‘,. = {(xh y Ut :x-‘,,) . ﬁ B(l'f.) #= ¢} )
Sh-"fp = {(171 y T vxn) : 6B(Ii.) #= ¢} ’

we let M = (n)’ and we re-enumerate the M sets S;,...;, with a single

index k as {S,}, 1 < k = M. Then we get a formula analogous to 4):

r“gl (—1)r+l[1§<::-.<k§r ‘[9;; MessN Sk F dv]
3 (=), . (14)

r=1

Il

szdeV

It

Asin (6a) we let
M., = M, f f@) de = Jo | f I1 (e da, -~ dzy = o,
A Hizooop 1

to get
U1 = ]llllJ;_”Jn -

In terms of p-tuple indices the second term Uy of (14) is

v.- * T | I 1) av.
e dp) YBiy i NSy 1

(iayeeniip) (Fa,°

The summation extends over the (;) distinet pairs of p-tuples. We have

now p types of such pairs, depending on the number of shared indices,
which may be 0, 1, -+, or p — 1. Let M,; be the number of p-tuple
pairs of type j (that is, with j — 1 indices shared) and put

2p—j+1

H f(,l:’) dx, -+ dEap—js1

fHu..-:Jf'\lfnh—j...np—n-. i=1

Joy =
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then

P
U? = E Nzi 3_2"7[-1-]2; .
i=1

Observe that the integral J,, splits into a product: J,, = J%,. To
get an expression for arbitrary U, we introduce a higher-dimensional
equivalent of B-graphs. Let X be a regular simplex in £"~" on the vertices
wy, *++, w,. On account of properties 7 through 477 listed in Section IV,
a (B, r)-graph is simply a set of certain » edges (or one-dimensional
faces) of X. A d-dimensional hypergraph @ will be just a set of some of
the (d i 1) d-dimensional faces of X. This takes care of properties
1 through #77. When there are r such faces in G we shall speak of an
(r)-hypergraph and when these faces comprise between them v vertices
of X, G will be called an (r, v)-hypergraph.

An equivalent of the important condition (v) is very naturally
obtained: there is a B-configuration of v translates B,, --- , B, of B,
such that any d + 1 of them, say, B, ... ;... intersect if and only if
Wi, , '+, Wy, are the vertices of a d-dimensional face of X included
in G. Components, types, and so on, for (B, r)-hypergraphs are defined
in the same way as before. For instance, a hypergraph @ is connected
if no plane disjoint from it can strictly separate some of its d-faces from
others. All quantities such as C(@) and »(G) have the same meaning
as before. Let ¢ = t (r, d) be the number of different types of (B, r)-
hypergraphs, let ; be any one hypergraph of the jt type, and let
M?,(n) be the number of different (B, r)-hypergraphs of the jt* type on
the n vertices. Then, proceeding as before, we get the equivalent of (13):

tir,p—1)

U o= 2 MF'mJe— " I JIeG)). (15)

c(Gj)
VI. SOME COMBINATORIAL PROPERTIES OF B-GRAPHS AND B-HYPERGRAPHS

Let ¢(») and ¢(r) be the smallest and the largest number of ver-
tices, respectively, in a (B, », v)-graph . From conditions i through
i we have at once y(r) = 2r. (7 is then minimally connected with »
components (Fig. 5a). Suppose that r is a triangular number: r =
§(s—1)/2; there is then a complete graph on s vertices which is
clearly a B-graph for any B, so that s = v. If » is not a triangular
number let ¢(t—1) < 2r < t(t+1) and put e = r—t(t—1) /2.

Let G be the complete graph on ¢ vertices. For the corresponding
B-configuration we may assume that the translates B,, --- , B, of B
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20=—0 20—0 20—0 o—0 O Qi)
[ ] L] . L] .
L] L - . L]
L J [ ] L L] [ ]
r-20—0 Ir-20—0 r-20—o OO0 o—0

(a) (b) (c)

Fig. 5 — (B, v, v)—graphs with high v.

have an interior point in common. We check that e < ¢ and that B, - -,
B, may be arranged so that a point z e (] B; can be strictly separated
from U!,, B; by a plane P. Let B,., be a translate of B which contains
2z and lies strictly on the same side of P as z. Then the resulting B-
configuration B,, -+ , B,.; corresponds to a (B, r, v)-graph G with
v = ¢ + 1. This G may be said to be a maximally connected (B, r, v)-
graph. We have now

Vo) = 2, o0) = min {j:j = [1+ (1 + 89%/2}.
Similarly, let ¢(r, d) and ¥(r, d) be the corresponding minimum and
maximum of » for a (B, r, v)-hypergraph. Then clearly y(r, d) = (d + 1)r.
To determine ¢(r, d) we suppose first that r = ( d _‘:_ 1). There is then
a complete hypergraph on s vertices, consisting of all the d-dimensional

faces of an (s — 1)-dimensional simplex. This hypergraph is a B-hyper-
graph for any B and sov = s. If

t :+1)
(d+1)<’<(d+1

we proceed as before and find that v = ¢ + 1. Hence
W(r,d) = @+ Dr, ¢(r, d) = min {5 :

j = largest pos. root of z(z — 1) --- (z — d) = (d + 1)Ir}.
The bounds ¢(r) and y(r) lead us to the possibility of a combina-

torial identity
n ¥ ir)
)= %, 4.) a0
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and its relation to B-graphs and the numbers N,;(n). For instance,

we find forr = 2
(3) =3(3) +<G).

((é) ) is the total number N,, + N, of graphs of (7a) and

()= v 53) = e

To prove the validity of an expansion like (16) for all n observe
that the left-hand side is a polynomial in n of degree 2r = y(r) so

that
()= £4.G)
Further, 4,, = 0 for & < ¢(r), for we substitute successively n = 0,
1, -+, ¢(r) — 1in (16) and recall that (f) = 0for p < r. By expanding
both sides of (16) in powers of n and comparing the coefficients we find
Arae = 20127, A,py = 2r — 1)Y27'( — 2)1,
Apgrs = 2r — 2)1Er — 1)/3.27'( — 3)!

and so on. Therefore (16) may be written as

©)

I

M)2,/(27) 4+ M)ary/[277'(r — 2)1)

+ (n)2r~2/[3.2r_l(7‘ —3AN@r—-D]+ --- (17)
2r=p(r)

= Z (n)zr—f/D.‘-

i=0
(n), stands for n(n—) ... (n—p+1).

The denominators D; have the following interpretation. Consider
first the (B, r, 2r)-graph of Fig. 5a. The 2r vertices can be chosen out
of wy, ..., w,in (n)s ways. We define the symmetry number for
a (B, r, v)-graph to be the number of ways in which its vertices can
be labelled with integers 1, 2, . .., v, all of which ways are to corre-
spond to the same B-configuration. Here the symmetry number is 27!,
as there are 2" ways of permuting the labels on the two vertices of a
component and r! ways of permuting their components. This leads
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us to the first term (n).,/27r! in (17) which is precisely the number.
N,1(n) of (13) provided that we consider Gy in (13) to be of the type
of Fig. 5a.

Similarly, for the (B,,2r—1)-graph of Fig. 5b we find the sym-
metry number to be 2*(r—2)!. The number of ways to choose the
2r—1 vertices is (n)s; and so we get the second term (n)ar1/2™*
(r—2)! of (17). The situation gets somewhat more complicated for
the (B,r2r—2)-graphs. Here we have three types instead of one,
illustrated in Fig. 5c. The 2r—2 vertices can be selected in (n)g2
ways, the symmetry numbers for the three types are

2=y — 3)l, 3.2 — 3)!, and 277 — 4)L. (18)

Therefore, the corresponding numbers of graphs, say N,3(n), N,4(n),
Ny5(n) are

(M)ar-a/[272(r — B, (M)2/13.277°(r — B)I], (n)oy—s/[277'(r — 4)]

and their sum is precisely the third term of (17). The corresponding
denominator D, is therefore three times the harmonic mean of the
three symmetry numbers in (18).

Thus the first few terms of (17) give the total numbers

; Nrr'(n)

of (B,rw)-graphs for v = 2r2r—1, and so on. However, this pleas-
ing circumstance breaks down as soon as we reach the smallest term
7 for which one of the types of graphs in question is not a B-graph.
For the case m = 2, B a circular disk, this occurs for 7 = 7 and the
graph in question is then that of Fig. 2a together with other components
containing one edge each. When B is a square the graph of Fig. 4a shows
that the breakdown occurs for ¢ = 6. On the other hand, the quantity
(n)s,_./D; from (17) always provides an upper bound for the sum
3" N,;(n), the summation extending over all types j of (B, r, 2r — 1)-
graphs.
The explicit form of (16) is

©)- £ a.0)

k=g

where ¢ = ¢(r) and

DY (~1)*(’;.)((*f))- (20)
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We prove (2) by induction on k. For &k = ¢, (20) holds, suppose it to be
proved fork < g+ s — 1. Let n = ¢ + sin (19), then

o= () £ 0

which by the induction hypothesis may be written as

toe = () - E £ (2.

In the double sum we may sum first over those terms for which the
difference u = ¢ — j is constant, then over w. In this way one gets

Argre = ((a“)) + g( n’ _“(q + u)((qﬂ))

which after some simple algebra becomes (20) with k = g+s. This
completes the induction and the proof of (20).

Some combinatorial identities may be obtained from the above.
For example, we know that A,., = (2r) !/2r!. Hence, on putting k = 2r
in (20), we get

T 1)( N - enver. (21)

Similarly, withk = 2r — 1 and k = 2r — 2 we get

IS (2’” D) —er— e -2 e

T

2r—g—2 J[2r — 2 (gr—;‘—z)
,-Z,, (_1)( fl )( r )
=[2r—2)! ¢ — 1/3)]/2'(r — 3)I. (23)
For hypergraphs we have the identity
(@) = £ 4.a(2) 29

where ¢ = ¢(r,d). The explicit expression for the coefficients A,;(d)
can be found in the same way as (20):

A,.d) = Z (~1)"(’;.)((?)). (25)

and
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Some of the higher coefficients A, 4, A, ar1, . . . can be evaluated by
comparing the powers of 7 in (24) :

A, . d) = @)Yr1@N, A,um(d) = @)@ — 1)/2r1@Y"
and so on, so that by putting k = rd and k = rd — 1 in (25) we get
> (—1)"(( T) = @) @y (26)
and

E (—1)"(d’"£,T 1) ((dr_;—])) = @)'der — D/2r1@y. @D

r

The coefficients A, (d) have the same interpretation with hyper-
graphs as the Aj, have with ordinary graphs, and they refer to
symmetry numbers.

VII. SIMPLE COINCIDENCE IN A CUBE

We consider here the problem of evaluating the probability P (n,a,L)
that when n points are taken at random (uniform distribution) in a
three-dimensional cube of edge-length L, then no two points are closer
than a. The problem occurs in deriving the van der Waals equation
from a primitive hard-sphere gas model. See, for instance, Ref. 2,
where the problem is termed “very difficult” and the crude (though
sufficient) approximation

P(n, a, L) = ﬁ (1 — 4wja*/3L") = 1 — 2xn’(a/L)*/3 (28)

is used.
From our formulation we find that

L*[1 — P(n, a, L)]

is the J integral for the case m = 3, 4 is a cube of volume L?, B a ball
of radius a/2, and the configuration condition is that not all sets B(z)
be disjoint; in other words, a simple coincidence. Therefore by (4),
(13), and an inspection of Fig. 1 we have

L*1 — P(n, a, L)) = N,,L"°I,, — (N, L I,y + Npo L' °Is)
+ (NglLSﬂ_lsI:n + Nastn_wIaz + NsaLan_uIaa
+ NaqLan_lqu + NasLan_uIas) - (29)
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where the integrals I;;, o1, . . . can be symbolically represented as

follows

Iu=f, In=f=f1, Iu:f. Ia1=f=I:1’1|
. = A — G0

To obtain an explicit Cartesian expression for an integral, I, we
consider its signature graph G which is a (B,,v)-graph. If the v

vertices are enumerated as 1,2, . . ., v in an arbitrary order then I
becomes a 3v-tuple integral
I=f“'fd?‘1"'d?'u (31a)
Ry

where r; is the vector (xi, yi, 2, dr; stands for dx; dy; dz;, and the
region of integration E; is given by 3v + r inequalities:

Oéa:,-éL,Oé?jséL,ogziéL,("‘:=1;"',”): (31b)
[rs — 7i|° < a”if the *h and the j* vertices are connected (31c)

in G by an edge.

Further, such an integral occurs in (29) with the multiplier N,;Lsv
where N,; is the number of distinct graphs on n vertices, which are of
the same type as G. Together with each such integral I = I,, we may
also consider the corresponding integral K,, given by

K,,°=f---fdr,---dr.,
Qi

where the region @, is given by the (»* + 5v)/2 inequalities (31b), (31c)
and

[r; — r;|* = a” if the ¢* and the j vertices are not connected in G
(31d)

by an edge.

It turns out that the I integrals are expressible in terms of the K
integrals, and conversely. For instance, consider the K integral with
the signature graph which has four vertices 1, 2, 8, and 4, and edges
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12, 13, 23, and 24. We write it in a self-explanatory terminology as

(12)(13)(23)(24)[1 — (14)][1 — (34)]
and multiply this out to get

(12)(13)(23)(24) — (12)(13)(23)(24)(14) — (12)(13)(23)(20)(34)
+ (12)(13)(23)(24)(14)(24) (34)
which yields at once a representation of K as a sum of four I-integrals.

The first integral I,; is sixtuple and can be reduced to an iterated
integral as follows:

Ma M,
I, = f f dz, dz, dy, dys dz dz (32)

where
m2=7n4=m5=0, M2=M‘=M°=L

and

m, = max {0, Ty — [a2 — (yl - yg)” - (31 - 32)2]*13

m, = min {L, z; + [a* — (5, — y2)2 — (a — Zz)zli}:

ms = max {O, Yo — [0«2}(31 - 32)2]*]!

M, = min {L, y2 + [ = (a2 — 2)'T"},

ms; = max {0, z, — a},

Mﬁ = miﬂ {L, 2o + al-

This arrangement of the limits of integration corresponds to taking
two balls of radii a/2 and centers (z;, ¥1, 21) and (22, Y2, 22), and
letting the center of the first ball move freely over the cube while the
coordinates of the second center vary so that the balls intersect.
Accordingly, I1; has a simple probabilistic interpretation: I;; = L°[1 —
P(2,a,L)], where P(2,a,L) is the probability that two points taken
at random in the cube of edge-length L are no nearer than a. Similar
probabilistic interpretation holds for any other K integral. If G is its
(B,r,v)-graph then K is L* times the probability that when v balls
of radius a/2 are taken with their centers at random in the cube, then
the balls are in the configuration of G' (so that two of them intersect
if and only if the corresponding vertices of G are connected by an
edge).

We evaluate now the integral (32) subject to the condition a =< L.
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Integration with respect to z, and z, gives
L? — [max (0, L — D) (33)
where
D'=a"— (3 — 1) — (& — 2)"
Since ¢ < L we have D < L and therefore (33) is 2LD — D”. Integrating
this with respect to y, and ¥, we get first, on putting y;, — y. = u,

L oM
[ ] ere — ey — o7 — i) du s

where

b =a* — (z, — 2)°, m = min (y,, b), M = min (L — y., b).
Again, @ < L implies b £ L and the double integral is therefore

rL'b* — 8Lb*/3 + b'/2.

Finally, integrating with respect to z, and 2z, we get

I,, = 4%d’L*/3 — 3wa'L’/2 + 8a°L/5 — a°/6, 0 < a < L. (34)

There are two more forms of I, , corresponding to the ranges L <
a < 2'L and 2)L < a = 3'L, but they do not appear to be expressible
in terms of elementary or standard transcendental functions. It may
be observed that the leading term in (34) is the product of the volumes
of the cube and the ball of radius a.

To get a better approximation to P(n,a,L) than (28), we examine
(29) and find that for small @ every integral I;;, beyond I;4, is O (a®).
Therefore

P, a, L)

-1- (’2‘) [4/3(a/L)" — 3r/2(a/T)" + 8/5(a/L)"] + Ol(a/L)"). (35)
It is possible to find the exact limit of P (n,a,L) as
n— o, a—0, (4r/3)(n°/2)(a’/L*) —b.
For we have then P(n,a,L) = P(b) and
1 - P(b) = Nqu/LB - N21121/L]2 + N:-uIal/Lm -
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and
1 g ((;;)) % n?k/2kk2

Ii—l = (In)k-

This amounts to neglecting all graphs other than the “principal” one,
for each k, that is, the one corresponding to the configuration of Fig.
5a. Hence

1= P = 3 (—) (n/3 62/ DT/ = 1~

so that
P(b) = e™". (36)

VIII. NUMERICAL EVALUATION OF THE I-INTEGRALS

Since no I integral beyond I, appears to be explicitly evaluable in
terms of standard functions, the possibility was investigated of com-
puting those integrals numerically by the Monte Carlo method. The
first set of trial calculations was performed on I;; itself, in order to be
able to compare the results with the known true value. We assume
as before that @ < L and we put L = 1 (homogeneity!) to get

I,,(a) =4.1888a"—4.7129a"+1.6000a° —0.1667a°, 0 < a = 1.

We now choose a suitable integer M and set the value of a at 1/M.
Next, two points p1 (1, Y1, 21) and pa(2e, Y2, 22) are taken at random
in the unit cube by choosing each coordinate to be a random number
from the rectangular distribution on [0, 1]. Such pairs of random
points are selected N times; suppose that in Ny of them the distance
between the random points does not exceed 1/M, then the quotient
N./N is taken as the Monte-Carlo approximation to I11(1/M). Then
the whole procedure is repeated with 1/M replaced by 2/M, 3/M, and
so on, until the value 3'/? is passed. The whole calculation will be
referred to as an N by M Monte Carlo run.

In the first set of trial computations N by M Monte Carlo runs
were executed for various values of N and M, and in each case a
least-squares fit was done on these data by a polynomial of the form

(]
3 Al

i=3

The results are shown in Table 1.
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TABLE I—FirsT TR1AL, COMPUTATIONS

True value of A; 4.1888 —4.7129 1.6000 —0.1667

1st 1000 by 20 run 3.1873 —1.0742 —2.5488 1.3448
2nd 1000 by 20 run 3.3296 —1.6727 —1.9088 1.1584
10000 by 20 run 4.4765 —5.9918 3.4012 —0.9760

1000 by 200 run 4.3008 —5.2689 2.4437 —0.5641

10000 by 200 run 4.1974 —4.7337 1.6358 —0.1911
100000 by 20 run 4.1546 ~4 5615 1.4043 —0.0879

It appears from this polynomial that very long and large runs are
necessary to determine the coefficients with fair accuracy. However,
the values of the integral itself can be computed quite well. To check
this we have computed the standard deviations, both for the Monte
Carlo data, from

o =1/M Z: [(NV,/N) — I.(i/M)T

and for the least squares fit from

Ug = ]_/]i/f ; [fll(j/ﬂ[) - Iu(j/ﬂi)]z

where

6

I(a) = Z A;al

i=3
is the least-squares fit to I;;. The results are shown in Table 2.

As a compromise between accuracy and length of the Monte Carlo
run, the values N = 10000 and M = 20 were selected. In this way
there were computed the two integrals Iy, and Ig, corresponding to
the two (B,r,3)-graphs, the six integrals I, . . ., I corresponding
to the six (B,r,4)-graphs, and the 21 integrals I5,, . . . , I'5»; correspond-
ing to the 21 (Br5)-graphs. The first two series are shown in Figs.
6 and 7. The programming was quite simple and no details need be
given. The total time taken up on the CDC 6600 computer was about
one hour; this, however, includes a lot of trial runs and tests.

TaBLE II—STanNDARD DEVIATIONS

Monte Least

N Carlo o1 Squares o2
1000 0.01154 0.00753
10000 0.00257 0.00183

100000 0.000922 0.000554
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Fig. 7 — Cluster integrals for v = 4.
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To sum up, it appears that numerical computation of J-type inte-
grals is quite feasible, with the help of an automatic computer, to
fairly good approximation. One well known advantage of the Monte
Carlo method of evaluating multiple integrals was clearly brought
out; namely, its relative independence of the dimension.
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