THE BELL SYSTEM
TECHNICAL JOURNAL

Volume 47 July-August 1968 Number 6

Copyright © 1968, American Telephone and Telegraph Company

The Transmission Distortion of a Source as
a Function of the Encoding
Block Length*

By R. J. PILC
(Manuscript received December 15, 1967)

This paper is concerned with the transmission of a discrete, independent
letler tnformation source over a discrete channel. A distortion function s
defined between source output letters and decoder output letters and is used
to measure the performance of the system for each transmission. The
coding block length is introduced as a variable and its influence upon ile
minimum attainable transmission dislortion is tnvestigated.

The lower bound to transmission distortion 1s found to converge to
the distortion level dg (C 1s the channel capacily) algebraically as a/n.
The nonnegative coeffictent a is a function of both the source and channel
statistics, which are inlerrelated in such a way as to suggest the utility of
this coefficient as a measure of ‘“‘mismatch” between source and channel,
the larger the mismalch the slower the approach of the lower bound to the
asymptote dg . For noiseless channels a = o and for this case the lower
bound is shown to converge to dg as a,(In n)/n.

For noisy channels the upper bound to transmission distortion is found
to converge lo the asymplote do algebraically as b[(In n)/n)}. For nosseless
channels, the upper bound converges to dg as a,(In n) /n.

* The material presented in this paper is based upon the author's thesis,
“Coding Theorems for Discrete Source-Channel Pairs,” presented to the Massa-
chusetts Institute of Technology in November 1966 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.
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I. INTRODUCTION

By now the results originally obtained by Shannon® relating relia-
bility and channel capacity are well known. Roughly speaking, they
state that perfect transmission can be achieved if, and only if, the
capacity of the channel in the transmission link is greater than the
information content of the source. For amplitude and time discrete
sources the information content is the entropy of the source, but for
amplitude continuous sources the entropy and the information con-
tent are not the same since the information content is infinite. This,
of course, implies that perfect transmission of amplitude continuous
sources, or discrete sources with an entropy that is “too large,” is
impossible with a given finite capacity channel. Yet this is just the
situation that is often presented to the communication engineer who
must then try to reduce the average distortion to the lowest possible,
or practicable, level.

For communication systems in which the capaecity of the channel
is not sufficient to allow perfect transmission, there are two obvious
questions to ask:

() How small can the average distortion be made if any transmis-
sion strategy at all is allowed ?

(%) How much does the system complexity, or cost increase when
you are required to get “closer” to this minimum ?

To answer the first question, Shannon generalized his results in a
later paper? in which the channel requirements are found that are
necessary and sufficient to allow transmission at a given level of
distortion, or a given error rate. It is our purpose here to consider
the second question. We use the coding block length to measure the
complexity of the system, and study the behavior of the minimum
attainable transmission distortion as the block length is increased.

In the work we restrict our attention to sources and channels that
are discrete in amplitude and time, and that are constant and memory-
less. This means that successive events are independent and are
governed by the same probability distributions. The encoder is a
block encoder that we deseribe later in this section. To measure the
distortion in the system, we introduce a nonnegative function d(w,z)
which gives the distortion in the event letter z is presented to the
user at the decoder output when letter w was transmitted. Normally,
this function would be specified by the user of the system to reflect
how undesirable any particular misinterpretation of the source output
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is to him. We will assume that the distortion between two sequences
of letters is the averaged sum of the composing letter distortions.

Shannon’s theory associates with each source and distortion funetion
a rate-distortion curve which expresses the minimum attainable trans-
mission distortion in terms of the maximum allowable mutual in-
formation in the system. Associated with each point (dgK) on the
rate-distortion curve is a particular set of transition probabilities,
called the “test channel,” which has the significance that among all
channels that transmit the given source with distortion dp or less, it
operates at the lowest transmission rate, R. Equivalently, the test
channel is that channel which yields the lowest distortion dp among
those that transmit information from the source at a rate K or less.
It is in this sense the cheapest channel one could use and meet a
distortion criterion. The rate R can also be interpreted as the equi-
valent information content of the source when a distortion dp is
tolerable,

That the rate-distortion curve gives the channel capacity sufficient
to allow a preseribed performance is shown by Shannon through the
intermediate step of proving that the rate-distortion curve actually
expresses the entropy and resultant distortion in the “best” discrete
representation of an output sequence from the original source. This
discrete representation can then be transmitted with no further dis-
tortion, if its entropy is less than the channel capacity, by the use
of suitable channel coding techniques.

Shannon has found the rate-distortion curves for many discrete
sources and an explicit expression for this curve for time discrete
gaussian sources. These results, together with Shannon’s work with
vector sources, were used to get rate-distortion curves for gaussian
random processes.” * Bounds to the rate-distortion curve for non-
gaussian sources have also been obtained.® ¢

However, all of the rate-distortion results derived for both con-
tinuous and diserete sources are limiting results, that is, they can
be approached in general only when arbitrarily complex operations
on very long sequences of source output are allowed before transmit-
ting the “message” through a correspondingly large use of the channel.
T. Goblick was the first to study the rate of approach to these limit-
ing results as the source output block length increases, but limited
his work to source representation or source encoding, with a deter-
ministic map between the source and its representation.” Our work
includes a noisy channel, or probabilistic function, between the
source and user.
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A performance curve d(n) will be introduced for each source-
channel pair as the minimum possible average distortion obtainable
using & modulator that encodes a string of n successive source outputs
into an input signal acceptable by a channel composed of n uses of
the original channel. For a source with the rate-distortion curve of
Fig. 1 and a channel with capacity C, the performance curve might
look like the one shown in Fig. 2.

From Shannon’s theory it is known that the performance curve
starts at dp, the zero-rate distortion, and decreases to asymptotically
approach dg, the distortion corresonding to the information rate C
on the rate-distortion curve. The curve, of course, has meaning only
for integral values of n. Not all modulators and decoders provide a
distortion curve that approaches do for large =, but this curve ob-
viously must lie above the performance curve which alternately
could have been defined as the lower envelope to the set of distortion
curves corresponding to all encoder-decoder pairs.

11, THE LOWER BOUND

Upper and lower bounds to the performance curve have been
derived.® We present, the lower bound in the first part of this paper,
and the upper bound in Sections XI through XVII. Most of our
effort concerning the lower bound was directed toward finding infor-
mation about the rate of approach of the performance curve to its
asymptote. In particular, we tried to relate the source and channel
statistics, as well as the method of encoding that is used, to the rate
of approach of d(n) to de.

do

d—=

Fig. 1 — The rate distortion curve for .



TRANSMISSION DISTORTION 831

d(n) =

N —

Fig. 2 — The performance curve for § and €.

Concerning this rate of approach, several interesting situations
are known to exist. For one, there are some source-channel pairs for
which the minimum attainable transmission distortion is independent
of the encoding block length, with the consequence that it is possible
to attain the distortion level d; with a coding block length of one.
One example of such a pair is a binary symmetric source (equally
likely binary letters with d(z,7) = 1 — &, 1,j = 1,2) used with a
binary symmetric channel, where the optimum encoder is a direct
connection. Another example is a gaussian source used with an addi-
tive gaussian noise channel, where the optimum encoder is simply
an amplifier.®

When the source-channel pair is such that the minimum attainable
distortion is independent of the coding block length we shall say
that the source and channel are “matched.” For the more common
situation wherein the minimum attainable transmission distortion
decreases with increasing encoding block length to asymptotically
approach the distortion level dy, we say that there is a “mismatch”
between the source and channel, and suggest as a measure of this
mismatch the “slowness” of the approach of the distortion to de¢.

Another interesting situation occurs when there is a choice of
using one of several channels of different capacity. Although the
channel of highest capacity would be the best choice when one is
willing to use infinite block length coding, it might not be the best
choice with finite length coding. This could easily happen if the high
capacity channel were very much more mismatehed to the source
than some lower capacity channel.
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ITI. SYSTEM MODEL

Figure 3 is a detailed illustration of the transmission system that we
work with. The source $ produces a sequence of letters © = w,, w,,

., wy , each chosen from the alphabet W = {w,, ---, wg}, which is
mapped by the encoder into a sequence of channel input letters £ = £, ,
£, +++, £, each a member of X = {z,, --+, #x}. The channel then
transforms the channel input word £ into a sequence of channel output
letters n = 7., 72, - -+ , 1, which are members of ¥ = {y1, -+, ¥z},
and n in turn is decoded by the receiver into a sequence { = ¢,
Ca, -+, i of letters from the decoding space Z = {z,, - -+ , zs}-

The source and channel are both assumed to be constant and memory-
less; therefore, successive events on each are independent and governed
by the same probability distributions. In particular we have

Po(W) = H Do (W)

m=1

Py | X) = ﬁpqmlem(ym | ™),

m=1

n N USES OF n
SOURCE THE CHANNEL DECODING
OUTPUTS LETTERS

Ty

DE-
CODING

w| En-
CODING

]
Izo0

mn

Iko

g

Fig. 3 — Block diagram of the encoding and decoding.
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where the superseript on w™, =", y™ is used to denote the m’th letter
in the n-letter words w, x, y respectively, and is not to be confused with
the particular letters w,, , .. , and ¥,, in the alphabets W, X, and Y.
The subsecripts on the probability distribution are hereafter dropped
whenever no confusion will oceur.

The distortion in the system when the source word w is transmitted
but received as z is taken to be the normalized sum of the n letter
distortions, or

dw, 1) = 1 3w, ). )

m=1

Finally, although we have set up the problem so that a sequence
of n source letters is transmitted as a sequence of n channel letters,
different block lengths at the source output and channel input can be
allowed by considering a new source and channel that are products
of the original ones, with the order of each product adjusted to obtain
the desired block length ratio n,/n..

IV. THE SPHERE PACKING ARGUMENT

A generalization of the sphere-packing concept is used to derive
the lower bound. We assume the coding block length is n and derive
a bound conditioned on the event that a particular source word w has
occurred at the source output. We further assume that the chanuel
input word x is used to transmit w, but delay the selection of x until
the end of the derivation when the result is optimized over all possible
choices. The total lower bound to distortion is found by averaging this
conditioned lower bound over all source words in W". The asymptotic
form of this bound is studied in detail and from it a measure of mis-
match between the source and channel is defined.

The idea involved can be described with the following simple, but
poor, bound which is subsequently improved. Remembering that the
source word w is assumed transmitted by the channel input word x,
we list all possible channel output words, y, ordered in decreasing
conditional probability p(y | x), and pair with each the decoder output
word z(y) to which it is decoded by the optimum decoder. The resulting
(conditional) distortion,

dw) = Zy;'p(y | x) d[w, z(y)], 2)

is seen to equal the sum of conditional probability-distortion products
on this list. If the set of distortion values that appear on this list is
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now rearranged (with the list of conditional probabilities fixed) to
be ordered according to increasing distortion values, the resulting
sum of conditional probability-distortion products must be smaller
than, or at most equal to, the sum in equation 2. It therefore provides
a lower bound.

The improved lower bound uses the same sort of orderings and re-
arrangements but includes a probability function, f(y), in the ordering
of the channel output words. This function is defined over the set of
channel output words, Y™, and is later chosen to optimize the result.
The channel output words are now ordered according to increasing
values of the information difference I(x, y) = (1/n) In [f(¥)/p(y | )]
and each is again paired with the decoder output word z(y) to which
it is decoded by the optimum decoder.

The rearrangement of decoder output words is also slightly different.
To describe this rearrangement we visualize each channel output word,
y, as “occupying” an interval of width f(y) along the line [0, 1]. The
decoder output word, z(y), that is paired with a particular channel
output word y is also viewed as occupying the same region along [0, 1]
as y, but, because any particular word z, might be the decoding result of
several channel output words, the region along [0, 1] occupied by z,
could be a set of separated intervals. The rearrangement of decoder
output words is this time a rearrangement of occupancies in [0, 1]
toward the desired configuration wherein the decoder words are ordered
in increasing distortion along this line, and each occupies the same
total width in [0, 1] as it did before the ordering. Thus two monotone
nondecreasing functions can be defined along the line [0, 1]; one, I(A),
giving the information difference I(x, y) at the point 4, 0 = h = 1, and
the other, d(h), giving the distortion d(w, z) at h. The first theorem
presents a lower bound to the single word distortion in terms of these

two functions.

Theorem 1: The average transmission distortion, d(w), conditioned on
the occurrence of the source word w and its transmission using the channel
input word X, satisfies

dw) = f " e ™ dh. @)

Proof: Figure 4 is used to help prove the inequality. The distortion
resulting from optimum decoding is given by equation 2; the con-
ditional probability-distortion products on the previous list before
rearrangement of the decoder output words. For convenience this is
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rewritten here as

) = 3 diw, 2] 012 ) @
¥n y)

which can be seen equal to the “volume” in Fig. 4a enclosed by the

two “amplitude funetions” d’ and p/f and the “width measure” f.

The rearrangement of the decoder output words to obtain the mono-
tone function d(h) from d’(h) can be accomplished by a sequence of
interchanges of the following type. We consider any two points in
0 £ h =1, say h, and h, , for which d’(h,) < d'(h) and p/f(h,) £
p/f(h,). If we consider an interval Ah around each point in which
both amplitude functions are single valued and interchange amplitude
values of d’ in the two intervals, we effect a volume transformation
that decreases (or leaves unchanged) the total volume since

initial volume—final volume

— ’ P ’ P
= [d (hy) f (hy) + d’(hs) y (hz)] Ah

—Namy2 iy B
[d (2) ] (hy) + d’(hy) f (hz)] Ah

= [d'(hy) — d*(hﬂ][? (h) — ? (hz)] Ah

= 0.

Volume interchanges of this type are repeated until the desired
monotonic function d(h) is obtained. The resulting volume configura-
tion is then as shown in Fig. 4b. As each interchange of Ah width
volumes decreases the total volume, or leaves it unchanged, the total
volume in Fig. 4b is certainly no larger than that in Fig. 4a. We need
now only notice that p/f(h) = exp—nI(h) to recognize that the
integral in equation 3 is equal to the volume in Fig. 4b, and, there-
fore, to establish the inequality claimed in the theorem.

To be sure, the construetion in Fig. 4b, and the calculation of the
lower bound in equation 2 requires some knowledge of the structure
of the optimum decoder. Fortunately, this knowledge is minimal; it is
only the total width along [0, 1] occupied by each member, z, of the
decoding space Z". We refer to this occupancy as the “size” of the
decoding set for z and denote it by ¢(z).

From the construction of the lower bound volume in Fig. 4b, we see
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that
g(z) = 2 f(y)

Yi(z)
where Y (z) is the set of channel output words that are decoded into z
by the optimum decoder. Indeed, if we assume unique decoding by the
optimum decoder we have

; g(z) = ; E} i(y) = ;f(y) =1,

or that g(z) is also a probability function. Even this funection, though,
is unknown in the general case or at least is impractical to calculate.
The idea of the lower bound development, therefore, is to retain this
unknown probability function for the present and subsequently replace
it with another such function which minimizes the final lower bound
expression., Within this step an approximation involving the form of
g(z) is required which is detailed in Section 6.2.

V. FURTHER EVALUATION OF THE LOWER BOUND IN THEOREM 1

The integral in equation 3 can be simplified if we suppress the inter-
mediate variable % and relate the variables d and I directly. The pairings
of d and I through a common value of k, d(h) = I(h), does not by itself
define a function because several different values of d could be paired
with a given value of I, and vice versa. However, we will use the prop-
erties that exist among these pairs to define a distortion funetion d(I)
which has the property that for any I, the dependent variable d is at
least as small as the smallest d(h) among the pairs that have I'(h) = 1.

To do this, we reinterpret the monotone nondecreasing functions
d(h) and I(h). First, we view the distortion d(w, z) as a random variable
on Z" governed by ¢g(z). Its cumulative distribution function

Gd) = Z g(z) (5)

d{w,z) sd

is then seen to be the “inverse” of d(h). (Strictly speaking, the inverse
of a staircase function does not exist, so the term inverse is used here
only as an aid in relating d(h) and G(d) pictorially.) In a similar way
we also view the information difference I(x, y) as a random variable
on ¥Y" governed by f(y). Its cumulative distribution function is given by

F(I) = ; 1, (6)

I(x,y)sI
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or the “inverse” of I(h). The desired function d(I) can now be defined
in terms of G(d) and F,(I) by relating to any information difference
value I the distortion value that satisfies

F.(I7) = G(d). )

The following geometric interpretation of d(I) might be helpful. If
each size, or “volume,” g(z) of the decoding sets is successively placed
about the volume g(z,) of the decoded word with minimum distortion
d(w, z,), and each size, or “volume,” f(y) of the channel output words
successively placed about the volume j(y,) of the channel output word
with minimum information difference I(x, y.), the total volume in-
cluded by a point in the first construction at a distortion “radius”
d is G(d) and that included by a point in the second construction at an
information difference “radius” I is F,(I). The function d(I) then gives
(except for edge effects) the correspondence between the radii that
include the same volume in both geometrical constructions. Figure
5a illustrates the construction of d(I) through the chain I — F,(I7) =
G(d) — d.

It is convenient at this point to introduce a second random variable
of information difference; one which is governed by p(y | x) rather than
f(y). Its cumulative distribution function is

FI) = yE p(y | ). ®)

I(x,y) 81
To distinguish the two information difference variables, we will
denote by I, the variable that has the distribution function in equa-
tion 6 and by I, the variable that has the distribution function in
equation 8.

We are now in a position to rewrite the bound in Theorem 1 in
terms of functions that involve only d and I. The distortion function
d(I) has been constructed to lower bound all d(h) with I(h) = I,
thus we can replace d(h) in equation 3 with d[I(k)]. As this substitu-
tion replaces d(h) with a distortion function that is single valued
over subintervals of [0,1] in which I is a constant, we can perform
the integration in equation 3 by simply multiplying the integrand in
each such constant I interval by the interval width, dF,(I), and
summing. Therefore, we can continue the inequality in equation 3
with

Imsx

dw) = [ d(D) exp (— nl) aF (D),
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which, upon using p(y | x) = exp (—nI)f(y), establishes the lower bound
in the next theorem.

Theorem 2: The average transmission distorlion, d(w), conditioned on
the occurrence of the source word w and ls transmission using the channel
input word X, satisfies

aw) = [ am arym. ()

VI. AN ESTIMATE OF THE FUNCTION d(I)

6.1 The Random Variables I, and 1,

To obtain an estimate of d(I) we require an estimate of the two dis-
tribution funetions, G'(d) and F,(I), from which d(I) was defined. We
first foeus on F;(I) and the random variable I, . Since the lower bounds
in Theorems 1 and 2 can be derived for any choice of f(y), we choose
a form of f(y) that simplifies the following arguments. We specify that
f(y) factors as

fy) = H . (10)

One consequence of this assumed form is that the information difference
I(x, y) is given as a sum of n letter information differences:

Iy =2 S w SO LS ey

namt ply” 2™ n oo

Among these n letter information differences, however, there are
different types, depending on the corresponding transmitted letter
z™ in x. To separate these, we introduce the vector ¢ to denote the letter
composition of the channel input word x, letting ¢ = ¢,, ¢, -, ¢x
when there are ne, appearances of the letter z;, in x, nec, appearances
of z, in x, and so on. Thus we can write the information difference in
equation 10 as

neg

2 > 1. (12)

k=1 r=1

BN

I(x,y) =

in which f,, is used to denote the information difference between the
'th appearance of the letter x, in x and the corresponding letter in y.
The interpretation of the I, as letter information difference random
variables on Y governed by the letter probability function f(y) can
now be seen to be consistent with the previous interpretation of I,
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as a word information difference random variable on ¥" governed by
f(y). Using the abbreviations
fy) = fi
P |z = pur,s

the probability distribution function of I,, can be written as

Pl.fkr[ln%] =fi; 1

What this has accomplished is to cast I, as the sum of n independent
random variables, a step that enables us to use large number laws to
estimate F,(I)."""*

In an almost identical way, the random variable I, can be cast as a
sum of n independent random variables. This ean be done if we as-
sociate with the variable I,, the probability distribution funection

A

r < ne ; 1=k=K. (13)

Pz.u,[lnpf_!] = Pxr 1 =r ZEne 1=k=K (14)
kl

instead of that in equation 13. With this distribution the word informa-
tion difference variable I(x, y) in equation 12 can be seen to be governed
by the probability function p(y | x), therefore, it is equal to the random
variable [, .

6.2 The Random Variable d

In the work so far, the function g(z) is that probability funetion
induced on Z" by f(y) through the optimum decoder function and eannot,
therefore, be freely chosen once f(y) is chosen. On the other hand its
precise calculation from the optimum decoder is impractical. The only
alternative is to retain the unknown function g(z) in the lower bound
expressions and to minimize the final lower bound to distortion over
all possible probability functions on Z". Since g(z) is one such probability
function the inequality in the lower bound is continued. Unfortunately,
when this is done it cannot, in general, be shown that the funetion which
minimizes the lower bound factors into n letter probabilities, a form
which we were permitted to assume for f(y). However, to proceed
beyond the bounds in Theorems 1 and 2, it is necessary to approximate
this g(z) by such a product, as in

0z = I1 o6™). (15)

m=1
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The necessity for an approximation of this type is, of course, because of
the requirement that an estimate be made for the distribution function
G(d). The assumed form for g(z) in equation 15, will again allow us to
use large number laws to obtain this estimate.

More specifically, the assumed product form for g(z) allows us to
cast the word distortion random variable d(w, z) as a sum of n inde-
pendent letter variables. This is done in the following way. Among the
letter distortions d(w™, z™) that sum to the total word distortion there
are H different types, corresponding to each of the different letters
w;, 1 < 7 = H, that appear in the source word w.

If the composition of this word is ¢ = ¢, ¢2, - qu, that is, if
there are ng, appearances of w, in w, ng, appearances of w, , and so on,
the normalized word distortion can be written as

ngi

d(w, z) =1lz i > D, . (16)

i=1 r=1

In this expression D;, is used to denote the distortion between the
r'th appearance of the letter w; in w and the corresponding letter in
z. Equation 15 now allows the interpretation of the D;, as independent
random variables, having the probability distributions

P,..(dy) =g;; l1=r=mnq, 1=2:1=H (17)
d(‘w. ) Zi) = d,',-
g(zf) =i,

with the result that G(d) is an n-fold convolution of elementary dis-
tribution functions for which there exist many estimating forms.'*™"

We realize that the approximation in equation 15 is not entirely
satisfactory because it eliminates nonproduct probability functions from
the minimization of the lower bound and, as far as we know, one of
these functions could provide the minimization. However, there is
good reason to believe that this approximation does not significantly
affect the bound when n is reasonably large. For example, in the next
several sections we derive a lower bound to distortion that uses the
product from in equation 15. For this bound the required minimization
over all probability functions g(z) is reduced to one over all J dimen-
sional vectors g. It can be shown that if in the limit as n becomes large,
the product form requirement for g(z) is relaxed, and the minimization
of this lower bound is again made over all probability functions g(z),
then the optimizing function g,(z) still has the product form.

Even more significant is the asymptotic form of the lower bound that
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is derived using equation 15. We later show that it is only the final
value of the minimizing decoder set size vector g,(n = =) that affects
both the asymptote of the lower bound, dc , and the next lowest order
term, which is one proportional to 1/n . Values of the minimizing vector
for finite n, g,(n < «), affect only terms of o(1/n).

Further, it can be shown that a similar conclusion is reached even
if the independence property assumed over letters in equation 15 is
generalized to be over blocks of length r, that is if

n/r

g(z) = II g(z’™)

m=1

m

Z = Zj %41, "7 5 84— j=mr~r—|—1.

When g(z) is assumed to have this form, the minimization of the lower
bound over all decoder set sizes is a minimization over all probability
funetions g(z’) on Z". The conclusion that ecan be made from the bound
derived using this assumption is that it is again only the value of the
minimizing decoder set size function at n = «, g,(z, «), that in-
fluences both the asymptote and the term proportional to 1/n. And,
at n = o, the minimizing decoder set size funection on Z’, g,(z’, =),
factors into a product of single letter probability functions on Z. When
this solution is substituted in the bound (that uses r = 1) the asympflotic
form is the same for every choice of the constant . Only lower order
terms differ for different values of r.

There is one situation in which the assumed product form in equation
15 does not represent an approximation. That is the case of a doubly
uniform source, which is a source that has a uniform probability dis-
tribution over its letters and has a distortion matrix in which each row
and column is the respective permutation of another row and column.
For such a source it has been shown® that the probability distribution
g(z) which minimizes the lower bound in Theorem 1 is uniform for all
n, thus has the factorability property in equation 15.

6.3 A Lower Bound to d(I)

We now seek an approximation to d(I) that we can substitute in
equation 9 and preserve the inequality. A safe approximation to d(I)
can be had if, instead of equating F,(I”) to G(d) as in equation 7, we
equate a lower bound estimate of G(d) to an upper bound estimate of
F.(I"). Figure 5b illustrates this construction. The result is another
distortion function, d.(I), that satisfies

d,(I) < d(l) (18)
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which ean be used in equation 9 to obtain

dwy z [ dul) drD). (19)

min

Since the random variable I, is a normalized sum of n independent
random variables, its variance is proportional to 1/n. Consequently,
when n becomes large the distribution function F,(I) has almost all
of its “rise” around the mean of I,, which we denote by I. In this
region, I =~ I, d =~ d(I), the values of both distribution functions G(d)
and F,(I) are exponentially small. Therefore, the bounds to the tails of
distribution functions'™** are applicable to the estimation of G(d) and
F.(I) in this region. Indeed, it was with the intended use of these
powerful bounds that we formed both the distortion and information
difference random variables as sums of n independent letter random
variables. All of the bounds, though, are parametric in form and allow
only a parametric representation of d. (7).

We have elsewhere® applied strict upper and lower bounds to G (d)
and Fy(I), respectively, to obtain the function dr(I). However, when
these bounds are used, the resulting total lower bound to transmis-
sion distortion, though applicable for all block lengths n, does not
reveal the correct asymptotic behavior inherent to the sphere-packing
procedure which has been used. (This happens because the strict
bounds to G (d) and F;(I) themselves do not have the correct asymp-
totie form to large n.)

In addition, the resulting lower bound to the total distortion is
very complex and so does not provide much insight into the factors
which affect the rate of approach of the performance curve to its
asymptote. For these reasons, we instead use Shannon’s’ and Gal-
lager’s'® asymptotic forms for the tails of distribution functions to
bound G'(d) and F,(I). These are:

G(d) < + Ay, s)] exp n[u(s) — su’(s)]  (20a)

[41—_——.
V2

w(s) =d (20b)
with

0<d=Ed|g = 2 dw,z]|compw = q)g(a),
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and

, 1 -
[{1(1) ; [\/mj‘ + -‘11.(”; t):' exp n[')"(t) t'Y (t)] . (218‘)
Y =1 (21b)

with
Inw < T 2 E(I, | ¢) = X I(x,y | compx = ¢)f(y).
T

In these bounds, Ay(n, s) and A;(n, t) are sums of rather difficult
integrals but each has been shown by Shannon and Gallager to be

)
ol—=)-
(%
Also within the previous bounds, we have used p(s) to denote the
semi-invariant moment generating function of the variable d,

w(s) = 20 qunds)
i=] (22)

H J
= qulnzg,- exp s d; ,

i=1 i=1

and y(f) to denote the semi-invariant moment generating function
of the variable I,

(1)

K
Z ceyi(l)

K L
= ;):ck In ;Z 1ol
=1 =1

To guarantee the boundedness of «(t), we restrict the vector f to
have nonzero components. This does not affect the resulting bound.
(Actually, these bounds strictly apply only when the variables d and
I are nonlattice. For lattice variables the corresponding bounds' '
have in their coefficient a quantity A which does not change continu-
ously with the argument of the distribution function, and cannot be
used within our derivation. One alternative would be to decrease one
assigned letter distortion d(w, z) by an arbitrarily small irrational
number, and similarly, to change two transition probabilities on the
channel in a way consistent with a lower bound to distortion. The new
variables d’ and I’ would then be nonlattice.)

(23)
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The desired distortion function, dy(I), can now be defined by
equating the two bounds in equations 20 and 21. It can be con-
structed through the chain: I- —¢ —s —>d in which the superseript
could now be dropped since the bound to Fy(I) is continuous in I.
It is important to notice that the region of validity of the previous
two bounds allows definition of the function dy(I) only in a subin-
terval [I;, 1] of [Tmin, Imex] With

Imin < Ia < T < Ib é E(Il tc)! I[E(d h Q)]-

Outside the interval [I,, I,] we can define dr(I) equal to zero and
write the lower bound in equation 19 as

aw) = [ dull) dF(D). (24)

We are now faced with the difficult integration of a doubly para-
metric expression. Rather than integrate directly, we use the following
Taylor series expansion for d(I) within [I., In]:

a) = dM + d;DT =D + 3y - D* + 3 d’dNI = D
= TS8(d.)

with I, < I’ < I,. (The indicated derivatives can be shown to exist

within the restricted interval [I,, I,].) Using this form for dy(I)

within equation 24 we see that if the region of integration were [Iwn,

Imax] instead of [I,, I,], the resulting form would be a sum of central

moments of I» with the Taylor series derivatives as coefficients. To
restore this form we rewrite equation 24 as

Tmax Ig

dw) = f - oo = [T P8 dRAD.  (@5)

Imin Imin Iy

In these integrals, the lower limit Iy, is finite since f; is assumed
nonzero for all I, and I, can be taken as the largest finite value of
In fi/pw since this is the largest value of I for which the random
variable 7> has nonzero probability. Therefore the function T'S(dy) is
bounded in [Imm, I,] and [I5, Imix] with the result that the last two
integrals in equation 25 are exponentially small in n. The first in-
tegral in this equation has the desired form, involving the central
moments of Ia:

[ rS@) arn = .0 + aDEC - D + 3 DB - )
+ §d"(INEU — 1],
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In the above equation the second term is zero since we have specified
that I is the expected value of I,, and the last term can be shown to
be proportional to (1/n)°. This establishes the result in the next theorem.

Theorem 8: The conditional average transmission distortion, d(w), salis-

fies
ﬂ@gmm+%z®wum+iﬂ- (26)

Compared with the last low order term, the variance of I is propor-
tional to 1/x.

The simplicity in the form of the last result is due to the use of
the Taylor series expansion which not only has allowed us to evaluate
a difficult integral, but has provided a natural way of separating the
important terms in the lower bound to distortion.

6.4 The Evaluation of d.(T) and dy (I)

We shall denote by s, and {, the parameter values consistent with
I = T in equations 20 and 21. Since

K L
’Y’(_l) = LZ_I ;pu In fa/IPu ’

which is seen equal to E(I,) = I, we can conclude that {, = —1. We
also note here for future use that

v(—1) = 0.
The first of the two significant terms in equation 26 is immediate:
di(I) = '(s.).

Next, elementary differentiation of the parametric expressions in
equations 20 and 21 provides

diT) =

@ |ew

to. 80

1
8,

&%ﬁ_fﬁ®]

s )
S Ly"(—=1)  sou'"(s.)

and

/(1) =

@ | =
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Finally, the variance of I, is seen from equation 12 to equal

Var (I,)

K
Z ¢, Var (I,,)

K

= Z C:c|: ; Pu(lﬂ ]fr/?h-l)a - (; Pri In fJ/Pu) ]

k=1

S =

= y(=1).
With the substitution of these terms in equation 26 we obtain the

result in the next theorem.

Theorem 4: The conditional average transmission distortion, d(w), salis-

fies

dw) = w'(s) — QnIs,, [”; 1)) 1] + o(%’) @7)
in which s, is given by
o) = sae) = T — =G of2). 28)

It remains to average this lower bound over the entire source space
we,

VII. THE AVERAGE OVER THE SOURCE SPACE

To average the lower bound in Theorem 4 over the source space W™
we assume that channel input words of equal composition are used for
all transmissions. It has been shown® that this assumption does not
affect the asymptotic form of the lower bound to distortion. We first
notice that the lower bound in Theorem 4 depends upon the source
word w only through its composition q which enters in the form of
u(s). Therefore, we can average d(w) over the set of all compositions
for w rather than over all of W". As all composition vectors for w are
probability vectors, they are all located on an H — 1 dimensional
hyperplane, termed the composition space Q", which is in the ‘“first
quadrant” of R" and intersects each axis ¢; at one. Not all points in
Q" are possible word compositions for any particular n. For example,
with H = 2 and n = 2 there are only three possible compositions. But
as n increases, the points in Q" that are source word compositions be-
come quite dense.

The probability that any particular composition q occurs at the
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source output is

H
P(g) = N(g) ] pt* (29)
in which N(q) is the number of distinct source sequences with the
composition q and the product is the probability of each. The number
N(q) is given by
!
N(q) = Hﬂ'—
II (ng) !

i=1

We now write the total average source distortion, d(8), as

i) = > d@P(q

all source
compositions

which we can lower bound by substituting for d(q) the lower bound
found in Theorem 4. Rather than write out the entire expression each
time we want to use it, we let d;(q) denote the right side of equation 27,
thus have

d® =z 2 d@P@. (30)

all source
compositions

Viewed as a funetion over Q”, P(q) is a set of impulses. This allows
us to consider the distortion function d,(q) a continuous function over
all Q, rather than a function defined only at composition points, and
to write

a9z [ [ d@Pq dq. 31)

Qhl

Again because the expression for d,(q) in equations 27 and 28 is para-
metric, we use a Taylor series expansion of this distortion function to
evaluate the integral. The point chosen for the expansion is p, the
probability vector characterizing the source. The reason for this choice
is that the components of this vector are the means of the coordinates
of ¢ when the latter are considered (dependent) random variables
governed by P(q). The Taylor series then contains terms of the type
(¢: — po), (@ — p:)(g; — ps), and so on, which, when averaged by
P(q), are the central moments of the components of q.

Using the notation df;(p) to indicate the partial derivative of d,(q)
with the respect to ¢; evaluated at ¢ = p (and similarly for higher
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order derivatives), we have

a9z [ 0w+ 5 ama -9

+ 3} g_: a3 () g: — p)(g; — i)
+ % ZE dili(e)(g: — (g — p)(ae — pk):lP(q) dq (32)

with ¢ ¢ Q. The central moments of the components of q can be found
to be

E(g: — p) = 0,

Bl(q: — p)as — p)] = * (b 8 — B0
(33)

El(g: — p)(g; — pi)(ge — Pe)]
1 2
= (171.) [pi 8ise — Dips Bes — PiDr 8ij — Pul: 8 + 2ppipa],

which, when substituted in equation 32, yields

0®) 2 ) + o [ dop — T s+ o}) G

Referring to equatlon 27 we see that the required second derivative
need only be taken of u'(s,) as the two 1/n coefficients allow other
terms to be absorbed in those of o(1/n). The differentiation is lengthy,
but straightforward, and yields

pi(8,)
I
aq. w(s,,q = s,
and
@, 6:0;
So e

aq: aqr_#( Q) = & ”(Sg,p

where

0: = pi(S.) — Soi(80)-
Upon substitution of these derivatives in equation 34 we obtain

d(s) = d.(p) — Insa (s) "(S) [Z pibi ;p‘pieia’-] + 0(111)

1

= d.0) - 2nsop’’ (s,)

Var (6) + a(%)
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With the final substitution of the expression for d,(p) in equation
27 we have the result in the next theorem.

Theorem &: The average transmission distortion of the source 8, when
used with the channel @, is lower bounded by

1) 2 W, p) - g [TERECO ] ol e

2ns, L son’’(s, , p)

in which s, 1s given by

- rr

oo, B = s, p) = T— il (1) g
In this bound the vector g is, for the reasons previously stated, that
which minimizes the bound, the vector f is chosen to maximize the
bound in order to obtain the tightest bound, and the vector ¢ is chosen
to minimize the bound, that is to use the best composition for the
channel input code words. As formidable as the derivations of these
extremum appear, we show in the next section that the work involved in
establishing the asymptotic behavior of the bound is actually quite
simple.

It should be mentioned that these results do mot apply when
¥""(—1) = 0, which is a situation that occurs when channel € is noise-
less, for the reason that we have divided by and canceled factors equal
to ¥"'(—1). The result for this case is derived separately in Section IX.

VIII. THE ASYMPTOTE AND RATE OF APPROACH

8.1 The Asymptote
When n becomes large, the limiting form of the bound in Theorem
5 is:
d.(8) = ¥'(s,, p)

in which s, satisfies

.‘-"(sn ] P) - Sn“’(sn y p) = T
with

- K L
I =2 ¢ 2 punfi/p..

k=1 t=1

The vectors g, f, and ¢ must now be chosen to provide the extremum
indicated just after Theorem 5. Since only f and ¢ enter in the expression
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for T, we can minimize d.(8) with respect to g for a constant 1. This
minimization provides precisely the expression’ for the rate-distortion
curve for 8 at the information rate I. It is further shown in the same
reference that the value of g which provides the minimization is the
vector that describes the output statistics on the test channel for 8
at the point (di, I) on the rate-distortion curve.

The maximization and minimization of d,(8) with f and c, respec-
tively, can be accomplished by finding the same extremum of I. The
resulting values for f and ¢ are the output and input probabilities,
respectively, on channel @ when it is being used to capacity and the
value of T at the extremum point is —C. Therefore, the resulting ex-
pression for the asymptote of the lower bound is

d(8) = min 4'(s, , p) = de (37)

with s, satisfying
f-‘(sn ’ p) - S,,,u’(so ) P) = —C. (38)

This agrees with what we know to te the correct asymptote of the per-
formance curve.”’

8.2 The Rate of Approach to the Asymplote

Since the lower bound in equations 35 and 36 is parametric in s and
includes the vectors f, ¢, and g, which when optimally chosen are func-
tions of n, the complete asymptotic dependence of this lower bound upon
the block length n is not obvious. To establish this dependence, we
first find the full derivative of the lower bound in Theorem 5 with respect
to n and then integrate the result between n and infinity.

We first simplify the procedure slightly by using our freedom to
choose f by setting this vector equal to its value at n = oo ; f( ). This
does not change the end result. We also drop the terms of o(1/n) in
equations 35 and 36, because they clearly do not affect the asymptotic
result. Denoting the right side of equation 35 by d, and using the chain
rule several times, we can write the desired derivative as

dd, _ (@) (@i) ds (@d_) dg;
dan a an C.E. 8 + as - d’ﬂ+ JZ agl gk dn

c,n,s

adL) de,
+ ‘E (c')ck 1k dn
g.n,s
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with

o (8) Ly () oy g (m)
dn ~ \dn/,.. + Z dg; s dn ‘?‘ ac/ . ., dn

£.n

The notations outside each parentheses indicate the variables which
are momentarily held constant. Substitution yields:

ddy _ (@) n (@d_) (iS)
dn on C.E.8 as c,g.n on. E.C

85, ), )8
+ Z |:( as <8 ag,; “#, + 8g;/ gum; A dn

) () () e
+ ; I:( 68 C.E. ack cl#FEk + ack cl#k d’ﬂ,
n E.n E.n,8

The bracketed terms represent the respective partial derivatives
of d, with respect to g; and ¢, with s removed from those quantities
held constant. Since g(n) and c¢(n) are chosen for each value of n to
minimize the lower bound d, these partial derivatives must satisfy

adL) _ .
('_ag,- Lta=0 ==y (39)
(i‘ﬁ) 4,0 1<k<K. (40)
ack elFEE

E.n

This presumes that, at least for sufficiently high n, both g and ¢ have
only nonzero components. This is known to be true for c,'* which at
n = o equals the channel input probabilities that use the channel to
capacity.

The vector g, though, can at n = « have a zero component. For this
case, if the approach of g(n) to g(«) is from within the composition
space, that is, if the components of g(n < =) are nonzero, equation
39 is correct as written for all finite n. If, however, the approach of
g(n) to g(») is along the boundary of the composition space, that is,
having one or more components equal to zero for all n > N, then
equation 39 can be written, not for all 1 < j £ J, but only for the J’
nonzero components. Over the region (N, «) the other J — J' zero com-
ponents obviously can be treated as constants and not included in the
differentiation process, thus excluded from the previous summations
on j. We shall not attempt to deal with the only remaining possibility,
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which has g(n) approaching g( ) such that it oscillates between vector
values with all nonzero components and values with some zero com-
ponents, since no example has been found exhibiting this behavior.

We continue the derivation by substituting equations 39 and 40
into the derivative of d,, to obtain

(o) () (2) gy
dn ~ \on + 95 /e g.n\ON e A ,Z dn " ; dn (41)

Finally, since both g and ¢ are probability vectors, the last two sums
are equal to zero (this is true even when the first sum is only over the
J’ nonzero components of g). It remains only to find the required
partial derivatives from equations 35 and 36. These are given by:

) 1 (ke )
om/le.. 2n's\ sy’ !

(56). = o0

as) 1 ¥
= In
(c"m g.c Mmisu st

whence substitution in equation 41 provides

o [ ) e ] )
dn n2ISL|i2” lnzu‘l’zu + o0 (42)

At this point, the vectors g, ¢ and the parameter s are still functions
of n chosen to satisfy the prescribed minimizations of Equation 55
and the parametric Equation 35. If, for large n, these functions are
written as

g(wo) + Ag(n)
c(w) + Ac(n)
s(n) = s(w) + As(n),

the delta terms can be extracted from the first term in Equation 42.
Since each has limit zero for large n, they can, together with the (1/n)’
coefficient, be absorbed into the terms of o(1/n%). Thus, in equation 42,
we can use for g, ¢, and s their final values: g(«), ¢(®), and s(w).
Simple integration of equation 42 between n and infinity, and the
use of the known final value of d.(n), d.() = d¢, provides the final
lower bound to distortion. We again point out that the derivation has
included the approximation that g(z) factors as in equation 15.

g(n)

c(n)
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Theorem 6: A lower bound to the minimum attainable transmission
distortion in a system that includes the source $ and the channel @ is given by

a(s) = do + ﬁ%ﬂ [(sjﬁ" - 1) -ty +8—2-‘:}] + o(?—li) (43)
in which
C = capacity of €
de = the distortion at B = C on the rate-distortion curve for 8
u(s) = Z g; In :Z g; exp sd;

v(t) = e n D fit'pid
k 1]

q = p, the source output probabilities
g = the output probabilities on the test channel for 8 at (d¢, C)
c, f = the input and output probabilities on € when it is used to
capacity
1= —1
s satisfies y — sp’ = —C.

The lower bound in equation 43 is seen to approach its limit alge-
braically as a/n. Since (w—1) is at least as large as In w for any w
and ¢ and p” are variances, hence nonnegative, the coefficient a can-
not be negative. But it can in special cases equal zero. The conditions
for this are

v = s'u
o =0,

conditions that are necessarily met when the source and channel are
perfectly matched; that is, when d(8) = d. for all n.

They do not, however, constitute a sufficient condition for matching
since the low order correction terms in equation 43 could still be non-
zero. For the more common situations wherein a is nonzero, the form
of the lower bound suggests that the larger the value of a, the longer the
coding block length must be to obtain a tolerable level of distortion,
dec + A. In turn, the more complex the modulator and demodulator
must become. These relations all suggest the utility of the coefficient
a as a measure of mismatch between the source $ and the channel €;
the larger the value of @, the slower the approach of the lower bound
to its asymptote and the greater the mismatch between source and
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channel. Section X gives several numerical examples illustrating dif-
ferent types of mismatch.

IX. THE SPECIAL CASE OF A NOISELESS CHANNEL

As we have stated, Theorem 5 cannot be applied when € is noiseless
because factors equal to v//(—1) have been canceled within its deriva-
tion and, for a noiseless channel, y"'(—1) equals zero. We return to
the lower bound in equation 3 which is still valid. If the vector f is
chosen uniform over Y", we see from the definition of a noiseless channel
(L" outputs) and the definition of information difference in Section IV
that I(x, y) is equal to In (1/L) for the output y, that has p(y,/x) = 1,
and is infinite for all other outputs. Since {(y,) = L™, ™' is nonzero
only in 0 £ h £ L™, where it is equal to L". Therefore, equation 3 can
be written as

L—n

dw) = L* f d(h) dh. (44)

0
We remember that the distribution funection G(d) is the “inverse”
funetion to d(h) and write

d(L~—"™)
aw) = L° f (L™ — G(d)] dd

which ean be continued, with any d» < d (L), by

da
dw) 2 I [ L7 - 6()] dd.
o
Upon dividing the region of integration into two parts, 0 < d, < da,
and using the monotonicity of G (d), we have

dw) = dy — " dG(dy) — L fd " 6(d) dd. 45)

A further lower bound results if we use an upper bound to G(d) in
each of the last two terms. In particular, we use the asymptotic
bound in equation 20 which we denote here by

G(d) < H(n, s) exp n[u(s) — sp'(s)] (46)
W (s) = d.
We now set dz equal to u’ (s,) with s, given by

H(n, s,) exp nlu(s,) —s.u'(s,)] = L™ = ¢"". (47)
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The fact that G/(dy) < L= guarantees the inequality d. < d(L™)
which we have already used. The second term in equation 45 can he
shown to be exponentially small in n whenever d; < d.; therefore, we
also impose this inequality. To bound the last term in the same equa-
tion we use the well known Chernov bound inequality:

exp nfu(s) —sp'(s)] = exp nlu(s,) —s,d]
w(s) =d
together with equations 46 and 47 to obtain
dg

da
L“f G(d) dd é Dﬂ’u"u'“"’) f G*l’lxn(.’ dd
dy

dy

with

_ H(n, s) )
D= max i, s

The resulting bound for d(w), therefore, is

[1 — expns,(u'(s.) — dy)] + 0(111)

If dy is chosen in a way to approach p’(s,) with inereasing n, this
bound becomes:

aw) 2 W) + o

a

1
ns,

dw) = w'(s) + —[1 + o(1)] (48)

in which s, satisfies equation 47, rewritten here as

I

u(s) — su'(s)) = —C — }% In H(n, s,)

(49)

I

—C+ % Innfl + o(1)].

The remaining steps, averaging over the source space and minimizing
the resulting bound over all choices of g (we continue to use the approxi-
mation in Equation 15), are identical in procedure to those previously
used. We state only the result.

Theorem 7: The minimum attainable transmission distortion of the
source 8, when used with a notseless channel of capacity C, salisfies
1 Inn

d(s) = d. + 2 W [1 4 o(1)] (50)
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in which s, salisfies
,LL(S,, ) P) - S,,p.’(So ) P) = —C. (51)

We see by comparing equations 43 and 50 that while the lower
bound to distortion with a noisy channel approaches its asymptote,
de, as 1/n, the lower bound to distortion with a noiseless channel ap-
proaches dg only as (In n)/n. These bounds are not inconsistent
since for a noiseless channel the variance y” is zero with the result
that the coefficient of 1/n in equation 43 is infinite. A similar limiting
statement is also true. If a noisy channel is made to approach a noise-
less one by reducing the noisy transition probabilities toward zero,
at the same time keeping the channel capacity constant by appro-
priately reducing either the channel input alphabet size or the channel
dimensionality, the coefficient of the 1/n term increases and is un-
bounded. These results therefore suggest than when there is a choice
between using a noiseless channel or a noisy one of equal capacity,
the noisy channel is always the better choice. And, inasmuch as we
are using the coefficient of the 1/n term to measure the source-chan-
nel mismatch, the noiseless channel represents the worst possible
matech to any source.

X. EXAMPLES

In the first three examples, we illustrate different types of source-
channel mismatch and calculate the effect of each upon the coefficient
@ in the lower bound of equation 43. Each of these examples tends to
strengthen the suggestion in the lower bound result that this coef-
ficient is a measure of source-channel mismatch since it increases
monotonically as the channel is perturbed away from the matching
channel.

Because the channel statistics influence only the first two terms of
a, we use in these examples a doubly uniform source for which the ¢*
term equals zero. To further isolate the relative matching properties
of the source-channel pairs, we keep constant the channel capacity
per source output, C, as the channel is varied. Thus the distortion
per source component has the same asymptote, dy, for all source-
channel pairs and the only difference in the lower bound curves, at
least asymptotically, is in the coefficient a.

Ezample 1

This example illustrates a dimensionality, or coding block length,
mismatch between a source and channel. We take for the source §
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the m,'th product of a binary symmetric source, defined by p = (3, %)
and d;; = dy; = 0, dy; = dsy, = 1. For the channel @ we take the m./th
product of a binary symmetric channel, each component €; having a
crossover probability p. The channel capacity per source component
is m,/m, times the capacity of €; and is kept constant as m./m, is
varied by appropriately changing the crossover probabilities p.

Figure 6 shows the dependence of a upon m,./m, . When comparing
the two curves in this figure, notice that the ordinate has been normalized
by d. . We know that for m./m, = 1 the source and channel are pre-
cisely matched and this is indicated in the figure by the value a = 0
at that point. Above this point a inereases monotonically in m,/m, and
can be shown to have the asymptotic form a ~ k(m./m,)!. Below
m./m, = 1, a also becomes unbounded as m./m, approaches the ratio
that requires each component channel ©; be noiseless. This is not
inconsistent with the noiseless channel result (equation 50) which
indicated that the rate of approach of the distortion to dc was not as
a/n but as (In n)/n.

Ezample 2

Here we do not change the relative dimensionality, only the form
of the channel, The source is a binary symmetric source and the
channel a binary nonsymmetric channel of varying asymmetry. The
crossover probabilities are again changed in a way that does not vary
the capacity. We see in Fig. 7 that a is rather insensitive to small
perturbations from a binary symmetric channel and in most cases is
affected less by this type of mismateh than a dimensionality mis-
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Fig. 6 —The mismatch between a binary symmetric source and a binary
symmetric channel of different dimensionality.
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Fig. 7—The mismatch between a binary symmetric source and a binary
nonsymmetric channel.

mateh. A similar result obtains if the source is also allowed to be
nonsymmetric.

Example 3

For this example we use a binary symmetric source and a discrete
channel which models the m orthogonal signal modulator used in the
next example. The channel has m inputs and m outputs and has
from each input one transition of probability 1 — (m—1)p and m — 1
transitions of probability p. The numbers m and p are varied to-
gether in such a way that the capacity of the channel remains con-
stant. We see in Fig. 8 that the mismatch coefficient a is much higher
when the binary symmetric source is used with this channel than
when it is used with that produet binary symmetric channel of
Example 1 which has available an input alphabet of equal size. The
comparison can be made on Figures 6 and 8 at points for which

My/Mmy = logam.

Example 4

In this, the last example, we include in the system a continuous
channel which is to be used by a discrete source with a diserete modu-
lator. Now, as the modulator changes the discrete channel extracted
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from the actual channel changes and both its capacity and its mateh-
ing characteristics change. It turns out that both properties are not
necessarily optimized for the same modulator structure and, therefore,
one must strike a compromise (influenced by the block length of
interest) between a modulator design that minimizes the asymptote
dy and maximizes the rate of approach to de.

To illustrate this we assume the channel to be a band-limited chan-
nel with additive white gaussian noise in the allowed bandwidth.
During the interval (0,T), the discrete modulator is constrained to
transmit one of m orthogonal signals in each of B bauds and alto-
gether an energy no greater than E. To model the bandwidth con-
straint the mB product is assumed constant, but m and B can other-
wise be varied to optimize the system. Thus the equivalent discrete
channel is the B’th product of the m input doubly uniform channel
of Example 3. The source to be transmitted is a binary symmetric
source with an output rate of M, digits every T seconds.

In Fig. 9 we show the minimum attainable distortion d. (deter-
mined through the channel capacity) and the mismatch coefficient
a as a function of m. For the values shown in figure, we see that
while dg is minimized at m = 15, the coefficient a is then quite large.
And, around m = 22, where ¢« = 0, the minimum distortion d¢ is
higher than that which can be realized with a smaller m. The con-
clusion from this is that the modulator should be designed with m =
15 (to maximize capacity and minimize d;) only when one is willing
to use very long coding block lengths. For shorter block lengths, a
larger value of m, and a corresponding smaller value of a, could result
in a smaller average distortion even with the larger value of dy. For
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/ — ]
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Fig. 8 — The mismateh between a binary symmetric source and the m-orthog-
onal signal channel.



862 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1968

0.05 T |
de E/Ng = 4630
004 \ P N Ms = 2570 BITS / TSEC ,/ -jo.1e
\ \ mB = 12,000 /

0.03 ;—o.2
X N A o
0.02 // / ={0.08

\ a
0.0l S~ >< // 0.04
0 \__./ o]
o 4 B8 12 6 20 24 28 32

m

Fig. 9— The influence of the modulator design in Example 4 on the minimum
attainable distortion and the mismatch coefficient.

this example a compromise design with m about 19 would probably
be best over a range of intermediate block lengths.

It is interesting to notice in this example that the coefficient a can
be zero even when the source and channel are not matched. This is
consistent with our previous interpretation of @ = 0 as a necessary
but not sufficient condition for matching. We remember that the
coefficient @ being zero does not imply that the lower bound in equation
43 is precisely dgo for all n. There are several other terms of o(1/n)
in this equation that have not been specified which are not neces-
sarily zero when a = 0.

XI. THE UPPER BOUND

Now let us present an upper bound to the minimum attainable
transmission distortion as a function of the coding block length. As
with the lower bound, the upper bound approaches the asymptote do,
but only as [(In n)/n]*. The reason for the difference, we believe,
is that within the upper bound derivation the transmitting signal set
was restricted to contain at most M = e"’ members, a restriction
that was not necessary to impose in the lower bound. We also present
an upper bound to the transmission distortion with a noiseless chan-
nel. This bound does agree, asymptotically, with the corresponding
lower bound.

XII. THE RANDOM CODING ARGUMENT

All of the upper bound derivations in this paper use random coding
arguments. That is, we do not explicitly find the encoder and decoder
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which, when used with 8§ and @€, provide the distortion in the upper
bound, but show that one pair does exist. More specifically, we con-
struct a set of encoder-decoder pairs with a probabilistic rule according
to which each system is selected to be used. This defines an ensemble
of transmission systems, each with its own distortion, corresponding
to all possible coding selections. What we calculate is a bound to the
average distortion of this ensemble. Clearly, this provides an upper
bound to the minimum distortion in the ensemble, hence to the mini-
mum attainable distortion in any system that includes $ and @.

12.1 The Construction of the Ensemble

We denote the set of points on the rate distortion curve for § by
(dr , R) and assume the capacity of € to be C. We first choose any point
(d*, B*) on the rate-distortion curve below (d;, C) and design the
code in such a way that the ensemble average distortion approaches
d* with inereasing block length. We know this to be possible from
Shannon’s results.” Moreover, we expect, since the situation is some-
what analogous to a channel coding problem with R* < C, that the
distortion can be made to approach d* exponentially fast. The point
(d*, R*) is subsequently varied to obtain the best result at any particular
block length of interest.

For any selection of (d*, B*), we then choose the number of signal
points, M = "%, used to transmit . To attain a transmission distortion
level d*, we certainly must have the number of signal points large
enough to represent the source to at least within d*, and this requires
that R be greater than R*. We also require that R be less than C so
that in the limit as n becomes large, we are guaranteed correct decoding
among the signal points at the receiver. Therefore we have

R* <R <C (52)

and, for the corresponding values of distortion on the rate-distortion
curve,

e = d* > dr > dc . (53)

The value of R can also later be chosen to optimize the result.

An ensemble of codes of length n is constructed for each selection of
R and R*. We use the probability distribution p(x, z) to generate the
ensemble by picking, according to p(x, z), M independent pairs (x, z)
from X"Z". Thus we have a set of codes containing all possible mappings
of the integers 1 through M into pairs of n-letter words (x, z), or (JK)™
codes in total. (We continue to use here the notation defined in the
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earlier part of the paper dealing with the lower bound.) Each of these
codes has the associated probability

Pr (code);= fI p(x; , Z,).

Any probability function p(x, z) could be used to obtain an upper bound,
but we use a distribution that factors into p(x)g(z); therefore, in the
ensemble, each set of M decoded words, 6, , is independent of each
set of M channel input words, 6, . Thus we can write

M M
Pr (code) = p(6; , 62) = p(8,)p(0) = H p(x) 11 g(z).
Turther, we use for p(x) and ¢(z) the product forms
II p@") and H g(z")

in which the letter probability distribution p(z) is that which yields
a mutual information € on € and the letter probability distribution
g(z) is that which gives the output statistics on the test channel for
8 at the point (d*, R*) on the rate-distortion curve.

The encoding and decoding is done as follows: In every ensemble
member there is a list 8, of allowed decoded words and a list 8, of usable
channel input words. When a source output w occurs, the encoder scans
8, and chooses any member z, in this list for which

d(w, z,) = d*. (54)

If there are none, the encoder chooses any member at all on the list
g, , say z,. Since the lists are chosen together, there corresponds to
z, or z, a particular x in 6, , and this word is used to transmit w. The
decoder uses a maximum likelihood decision rule to decode y into a
member of 8, , which is then associated, through the pairings among the
two lists, with a member z in 8, . The resulting distortion, by definition,
is d(w, z).

12.2 The Ensemble Average Distortion

Each member, 6, of the ensemble is a complete transmission system
in itself, and has an average transmission distortion dependent upon
the codes, 6, and @, that are used. This average distortion, which is
an average over all possible source and channel events, is equal to

d(6) = d(6, , 6;) = Z p(w) ; p(y | %) d(w, 2).
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The ensemble average distortion is obtained by averaging d(6;, )
over all choices of #; and 6., hence

(d(6))ue = WZ?(W) ; [; azp(y | ) d(w, 2)p(6.)p(8:)].  (55)

We next separate the events w, 6, , 6, , and y into two sets: (z) those
quadruples for which either there does not exist a z in 6, satisfying
equation 54 or the received word y is decoded into a member of 6,
different from the transmitted word x(w), and (i) its complement.
For quadruples in set one, the distortion d(w, z) is surely upper bounded
bY @umex ; the maximum entry in || d(w, 2) ||. For those in the second
set, we use equation 54 and the fact that the decoder returns us through
x(w) to z, to upper bound the distortion by d*. Therefore, if the char-
acteristic function & is used to indicate the quadruples in set one, we
can upper bound the ensemble average with

@d(6))a = Z‘, p(w) ,E BZ ,,Z p(y | X)p(0)p(0:)[d*(1 — &) + duue®]
= d* + (dumex — d¥) Pr (®).  (56)

Finally, we use the union bound to upper bound Pr(®) and the ensemble
average distortion, (d(6)).,, to upper bound the minimum attainable
transmission distortion, d(8), and obtain the result in the next theorem.

Theorem 8: The minimum attainable transmission distortion of the
source 8, when used with the channel @, satisfies

d(s) = d* 4+ (duux—d*)[Pr(3’z, in 6,) + Pr(channel error)] (57)

in which 3’ means “there does not exist,” d* is any distortion greater
than d¢, and B (a variable in the bracketed terms) is any rate in the
interval B* < R < C. The bound is a function of n through the quantity
in the brackets.

The last term in the brackets, the probability of error on the channel,
has been approximated by many people, but we will use Gallager’s
bound'®

Pre) = ¢ F'® (58)

in which E(R) is a positive monotonically increasing function of the
difference C' — R. The next section is devoted to the evaluation of the
first term in the brackets, which is the probability that the source
word w and the list 6, are such that equation 54 is not satisfied for
any z in 6, ,
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XIII. THE PROBABILITY OF FAILURE AT THE ENCODER

We say that failure occurs at the encoder, for the source output w,
when each of the M allowed decoded words on list 6, are at a distortion
d(w, z) from w greater than d*. Because each of the M words in 6, is
selected independently, we can write the total probability of this failure
as
> p(w) Pr(3’z,in 6, | w)
wn (59)
= Y pw)[1 — Pr(zadlw, z) < d*|w)]".

wn

Pr(3’z,in 8,)

Il

The last probability is seen equal to the distribution function of the
distortion random variable described in Section 6.2 and defined by
equations 16 and 17. In these equations q = ¢, g2, *** , ¢ is the
composition vector of the source word w, and D, is the letter distortion
random variable between the 'th appearance of the letter w; in w and
the corresponding letter in z.

We again notice that the distribution function of d(w, z) depends
only upon the composition g of w. Thus we are able to perform the
average over W™ in equation 59 as one over all possible compositions
of w. All possible compositions can be represented as points in the H — 1
dimensional hyperplane within the first quadrant of R” which intersects
each axis g; at one. This hyperplane is called the composition space
Q”. The probability of any composition point is equal to the product
of the number of different source words having this composition and
the probability of each, therefore, we have

P(g) = N(q) Hzﬂ“‘

LR =
= l;Ilp" .
Il(nQe)!

Interpreting P(g) as an impulse function over Q" we can now write
equation 59 as

Pr(3zino) = [ - [ P@N - G@* @) da.  (60)

QH

To continue the inequality in equation 57, we require a lower
bound to G(d*). For our present purpose, Fano’s lower bound** is
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sufficient :
G(d*|q) = K(n, q) exp nlu(s, @) — sp'(s, @) (61)
=K(n, q) exp — nR(d* q)
in which
w'(s, q) = d* (62)
0 <d*<E(d]|q) (63)

H

J
w(s) = 22 giln Z g; exp sd;
i=1

i=1

and K(n, q) is a rather complex function of q and n that goes to zero
algebraically in n with increasing n. Its precise form is otherwise un-
important in the following derivation. (The bound in equation 61 can
still be used for points q that violate equation 63 if one uses the value
of s = 0 rather than that which satisfies equation 62.) We can therefore
write

Pr(3'z,in §,) = f fP(q)[l — K(n, q) exp — nR(d*, ¢)]"* " dq.
S
(64)

The next step is to divide the composition space Q¥ into two dis-
joint subspaces, @ and Q’, that are defined by

Q
Q!
with 8§ any positive number satisfying R* < R — 3. The idea behind
this separation is illustrated in Fig. 10. The bracketed term in the
integrand of equation 64 has the form [1 — exp (— nd) ] "B which
approaches zero with increasing n when A < B, and one when 4 > B.

In the first region, which, except for the 8, corresponds to the set Q,
we shall use the upper bound

[1 — exp (— nd)]"*"® < exp [— expn(B — 4)] (67)

{q: R(d*, q) < R — §} (65)

I

{a: R(d* @) =z B — &} (66)

and in the second region, corresponding to @', the (poorer) bound

[1 — exp (— nd)]™"™ = 1. (68)
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Fig. 10 — The division of the composition plane QF into the sets @ and Q.

The use of these bounds in equation 64 results in
Pr(3’z,in 6,)

< f f P(q) exp {—K(n, q) expn[R — R(d*, ¢)]} dq
Q

+ [ [ P@w da

Q

< [ - [ P@ exp (—Ktn, 9 da + Pr (@)
Q

IIA

exp [—K®)e™] + Pr (@) (69)

in which K(n) denotes the minimum of K(n, q) over @. The first term
in this upper bound is a double exponential in # which will turn out
to be unimportant. Thus it remains to evaluate Pr (Q").

We shall use what we call the hypercube method to upperbound
Pr(Q"). Although the resulting bound is not as tight as others that
could be derived (see, for example, the maximum probability point
method in Ref. 8), it has the advantage of being simpler both to derive
and to use and, in addition, does not seriously degrade the final bound
to transmission distortion. What is done is to enclose the set @ by
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another set Q/ that has a relatively simple configuration, and to upper
bound Pr(Q") by Pr(@Q7).
We construct in R” a hypercube of dimension 2u centered at ¢ = p,

Kﬂi{qipf—uéq.-ém-l-u},

and intersect with it the composition space Q¥. The intersection forms
a “‘solid” Q,

Q= QHF\KH

which contains vertices of the form q. = qi., @20, - Qu., With the
components, of course, summing to one. When H is even, ¢, equals
either p; + u or p, — u, and when H is odd, ¢;, has the same values
with the addition of one component equal to p;. The vertices of @,
are joined by straight lines.

At this point we use the fact that @ is a convex get,® that is, for
0 <\ =1, + (I —Nq,is a member of Q whenever both q, and
q, are. This property ensures us that whenever the vertices of @, are
in the set @, the entire set @, is in @,

Q. C Q,
with the consequence that
Pr(@) = Pr(@). (70)

The remaining step is to bound the total probability of the set @ .
Because this probability equals the probability that any of the dependent
events ¢; ¢ [p; — w, p: + u] occurs, we can use the union bound to
upper bound Pr(Q}) by the sum of the individual probabilities. Thus

H
Pr (@) = Z:Pr[q.» < pi —ul + Prig. > pi +ul.

These quantities can be further upper bounded by a simple applica-
tion of Chernov bounds. This has been done for us in Ref. 16, page
102, where the result found is, in our notation,

H

Pr@) < 2 e™ 4™ (71)

in which
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and
di = p: —u for X,

=p;+u for Y,.

In these bounds, the hypercube dimension 2u should be maximized,
to obtain the tightest bound, subject only to the constraint that all
vertices q, be in region @, that is, that they satisfy equation 65.

The bound in equation 71 can be simplified still further by writing

Pr(Q!) £ 2H exp [—n min (X, Y,)]
=K, exp — nE,(R). (72)

Indeed, it can be shown,® that there are two, and not 2H, candidates
for the minimizing quantity in the exponent.

XIV. THE SET OF UPPER BOUNDS
Combining equations 57, 58, 69, and 72, we have the following result:

Theorem 9: The minimum attainable transmission disiortion of the
source 8, when used with the channel C, satisfies

A(S) < d* + (duue—d*) [exp [—K(n)e™]
+ K, exp [—nE.(R)] + exp [—nE(R)] (73)

for any d* and R that satisfy
dmnx ; d* > dR > dc (74)
R* < R < C. (75)

The freedom provided by equations 74 and 75 can be used to generate
a set of upper bounds, corresponding to all possible choices of d* and
R, the properties of which depend upon those of the two exponential
functions in equation 73. It has been shown elsewhere® that E,(R)
is a positive monotone increasing function of the difference B — R*,
that E,(R*) = E/(R*) = 0, and that E/"(R*) s 0. Comparing these
with the corresponding properties of the channel reliability function:'
E(R) a positive monotone increasing function of the difference C — R,
E(C) = E'(C) = 0, E"(C) # 0; we see that the two functions are quite
similar. Typically, their curves would look like those in Fig. 11.

With these curves, we can examine the behavior of the set of
bounds in Theorem 9. As shown in Fig. 12, when d* is chosen much
larger than d¢, the nonzero slope of the rate-distortion curve allows
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E(R) Es®R)

E(R), Es(R) =

, ]
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™
R R C

Fig. 11 — Typical behavior of E.(R) and E(R) near their zero value.

a choice of B that can make both the differences C — R and R — R*
large. In turn, the exponents E,(R) and E(R) in equation 73 are large
and the exponential terms decay very rapidly with n. But for this
choice, the asymptote d* is much greater than the level d¢, which we
know can be approached.

On the other hand, if we choose d* only slightly greater than de,
we have an upper bound with an asymptote that is nearly dg, but
now the differences C — R and R — R¥, and therefore the exponents
E.(R) and E(R), are much smaller and the rate of approach to the
asymptote d* is correspondingly slower. Thus, in the selection of
d* and R there is a trade-off between a small asymptotic value and
a fast rate of approach. This is illustrated in Fig. 13 in which we
show a set of curves obtained from the upper bound expressions in
equation 73. The best compromise for any value of n is given by the

Fig. 12 — The rate-distortion curve for § illustrating the relations among the
parameters in Theorem 9.
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‘Fi‘ig. 13 — The upper bound in Theorem 9 with three different values for d*
and R.

lower envelope to the entire set of bounds in equation 73, therefore
we have

Theorem 10: The minimum attainable iransmission distortion of the
source 8, when used with the channel @, satisfies

d(8) < min dy(n, d*, R) = du(8) (76)

in which the function dy(n, d*, R) is used to denote the right side of
equation 73.

In the next section we study the asymptotic behavior of the lower
envelope. At this point, though, we wish to include an important
conclusion that can be established from the set of upper bounds
in equation 73. Each individual bound indicates that, in a system
where the distortion level d¢ is attainable in the limit, if one would
tolerate a distortion d* = dy + A, this level could be approached ex-
ponentially fast as the coding block length is increased.

Actually, a much stronger statement is possible. Since the distor-
tion curve for d* = dg + 1A approaches this level in the limit, it
must cross, at some finite », the level dg¢ + A. Because both curves are
for the same source and channel, this proves that the distortion level
de + A is not only approachable exponentially fast, it is in faet at-
tainable with a finite coding block length. This is true for any A > 0,
no matter how small.
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XV. THE ASYMPTOTIC BEHAVIOR OF THE UPPER BOUND

From the previous discussion it is clear that as n increases, the
optimum value of d* must approach dy and therefore that the ex-
ponents E,(R) and E(R) must approach zero. For this reason we
use the Taylor series representations for these functions at E* and
C in equations 73 and 76, respectively, and obtain

dy(8) &~ min {d* + (dp — d*%)

‘[Ky exp — nb,(R — R*)* + exp — nb(C — R)"]}  (77)

with b, = 3E2(R*) and b, = 3E"(C). In using the Taylor series for
E(R) and E,(R) we have dropped the cubic terms since both E''(C)
and E!"’(R*) are finite and ¢ — R and R — R* are o(1). The double
exponential term involving & is also dropped since it can be shown to
contribute nothing important in the asymptotic bound.

We next avoid the minimization on R by choosing that value of R
which equates the two exponents:

b(R — R*)® = b,(C — R)™. (78)

While this selection of R is nonoptimum for finite n, it can be shown
that it asymptotically approaches R,,, and that it does not affect
the asymptotic behavior of the upper bound. This particular choice
of R allows us to combine the two exponential terms in equation 77.
If we start with equation 78 and the obvious equality

(C—=R)+ (R - R*) =C — R¥

we can establish

Vb,
C—R) = ————(C —R* 79
( ) \/bl+\/ba( ) @
/b, .
(R — R*) = —Y-"*_ (¢ — R", 80
) '\/b1+‘\/bz( ) .

which further allows us to write the two exponents in terms of the
common difference C—R*.

Next, we wish to express the difference C—R* in terms of the
difference do—d*. Taylor’s formula with remainder is again used:

R(d*) = R(dc) + R'(de)(d* — dg) + o(d* — d¢)
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or

¢ — R*

I

—R'(dc)(d* — dc) — o(d* — de) (81)
—s,(d* — do) — o(d* — d¢).
In the last equation we have used the fact that the slope of the rate
distortion curve at the point (dg, C) is equal to the value of s which
satisfies p(s) — sp’(s) = — C."8

Finally, we substitute equations 79, 80, and 81 into equation 77,

subtract dy from both sides of this last equation, and change the
minimizing variable to d*—d, to obtain

I

d(s) — de < min [z + (A — 1)K, exp — Bna®] (82)

in whichz = d* —dp, A = dpax — de, Ka = K; +1=2H + 1, and
B = bbsi/(V/by + V)

We next find the asymptotic hehavior of the lower envelope in equa-
tion 82.

If = is considered the parameter, each function of n in the set
f(x, n) starts at f(z,0) = + (A — x) K, and decreases exponentially
to f(x, ) = x. For any two parameter values, z; and z,, with z; >
Zo we have

flz,,0) — flze, 0) = (1 — Ka)(x, — )
= —2HU(I]: °°) - f($2; °°)]

Consequently, any two curves must cross as in Fig. 14.

It follows that the parameter z,(n), which identifies the minimum
of f(z, n,) at the value n = n,, must change with n. Since this param-
eter is the solution of

ﬁ(x: ‘ﬂ,) =0,

we have

exp (nBxl) — K, = 2nK,Bz,(4 — ). (83)

Figure 15 shows the required graphical solution which clearly always
exists. The substitution of z,(n) in f(x, n) specifies the single func-
tion of n, f[z,(n), n], which is the desired lower envelope. Un-
fortunately, an explicit solution is not possible for z,(n), nor for
flzo(n), n], but we can obtain bounds to both that are adequate for
our purposes.
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xa+ (A-x2)Kz

X+ (A- 11.‘1:' Kz

T

T2

N —

Fig. 14 — Two members of the family of curves: f(an) = 2 + (4 — 2)K,
exp(—Bnz®).

From the graphical solution in Fig. 15, we see that any conjec-
tured solution, x,?, must be too large if, in equation 83, the left side
exceeds the right and too small if the reverse is true. This eriterion
could also be used on a trial functional solution z,(n)?. Now, if the
left side of equation 83 is functionally stronger in n than the right,
we know that our trial solution x,(n)? is too strong in n. Again the
reverse is also true.

After several guesses we are led to the trial functional solution
T,(n) = [a(ln n)/Bn]% with which the right side of equation 83 is
greater than the left for a < 14, and the reverse is true for a > 4.

2
2nK,Bz(A-x) enBx_ik,
I
]
I
|
I
I
! A .
_/ Xo(n)
1-Kz

Fig. 15 — The graphical solution of equation 83.
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This determines the highest order term of z,(n) and we can write

(5211 4 o] = 20 = @ + (B 10+ o).
It follows that

fin,nl 2 () (22)'0 + o)

and, since the lower envelope is smaller than any individual f(z, n),
that

et = 1 () (22) 0 ] = () (22 0 + on. @0

Although only an upper bound to f(x, n) is required, both upper
and lower bounds were found to show that the method used to obtain
the desired lower envelope provides asymptotically tight results. Con-
tinuing the inequality in equation 82 by that in equation 84 provides
our final upper bound to transmission distortion.

Theorem 11: The minimum attainable transmission distortion of the
source 8, when used with the channel @, is upper bounded by

1 = do + o(20)'11 + o) (85)

b= (Ezlﬁ)i - & lea | [(bll)* + (bla*]

b, = 3E/R* = ()
b, = 3E"(C).

For a fixed source 8, we see from this theorem that the coefficient
b is smallest when § is used with that channel (among those of equal
capacity) for which the constant b, is largest. In the same way, the
coefficient b is seen to be a decreasing function of b, when the channel
is fixed. Since the constant b, is independent of the source and b, in-
dependent of the channel, our upper bound does not provide an in-
dicator of matching between the source and channel as we obtained in
the lower bound. This was actually expected since here we were forced
to separate the source and channel with an interface containing at
most ¢"® points.

The coefficient b, , though, has an interesting significance. It is
equal to one-half the derivative E}/(R* = C) which can be thought to

in which
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indicate how fast the boundary of @’ initially moves away from p with
increasing R. In turn, this indicates, in a reciprocal manner, the neces-
sary rate of change of the rate required to handle source words with
compositions just around p, which are just less than typical. Thus, we
can think of the coefficient b, as a type of “stretch factor’”'® for the
source.

When the result in equation 85 is compared with the lower bound to
distortion, we see that the [(In n)/n]! rate of approach to d. is slower
than the 1/n rate of approach of the lower bound. Mathematically,
at least, the reason for the upper bound decreasing more slowly than
(1/n)t is that, for small arguments, the lowest order term in the two
exponents E(R) and E,(R) is quadratic. Their form for large n, exp
—n(AR)?, shows that values of AR larger than (1/n)! are required to
have these terms go to zero with increasing n. Because the slope of
the rate-distortion curve is nonzero, the corresponding values of dis-
tortion difference (Ad) must also be larger than (1/n).

There is reason to think that this type of exponential term, and the
consequential [(In n) /n]! rate of approach to d. , is present in the upper
bound because we have used threshold devices in the transmission
system. One at the encoder leads to the first exponential term in equa-
tion 73 (we again disregard the double exponential term). It uses the
rule in equation 54 to choose, for each source word w, any decoder word
z in list 6, at a distortion less than d*. When list 8, is lacking such an
entry, any z at all on the list is chosen which, since the members of
6, are chosen independently, is then independent of w. The resulting
distortion in this circumstance is usually much greater than d*. In the
next section we compare the performance of this encoder with another
that does not use such a threshold and show that the source encoding
alone need only contribute to a rate of approach to d. equal to (In n)/n.

A second threshold operation in our system is at the channel decoder,
but it is really dependent upon the coding of the entire system. It leads
to the second exponential term in equation 73. To isolate its effect on
the system performance, we assume that failure has not oceurred at the
encoder, that is, there does exist a z on 0, with d(w, z) < d* Now if
the channel decoder makes no error, we are assured that the resulting
distortion is less than d*. However, if an error is made, the believed
channel input word x, is different from the actual word x; therefore the
decoded word z, is different from z, . Moreover, since the lists 8, and
6, are chosen independently, z, and z, are statistically independent.
It follows that z, and w are also statistically independent, and in con-
sequence that the distortion d(w, z,) is usually much greater than d*.
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Tt is this threshold which, it is believed, cannot be eliminated when
the signal space is constrained to contain at most M = ¢"® points, even
if the lists 8, and 6, are chosen dependently. A heuristic argument in
Ref. 8 suggests that with such a constrained signal set, the transmission
distortion can approach d. no more rapidly than as n~Y, This, of course,
is a slower rate of approach to d¢ than the a/n rate of approach of the
corresponding lower bound to distortion that was derived using a
signal set not constrained in size.

XVI. AN IMPROVED UPPER BOUND FOR NOISELESS CHANNELS

For the special case of a noiseless channel, the previously derived
upper bound can be improved. Since such a channel contains e noise-
less transitions, or “direct” paths, transmission of the encoder output
is trivial and the communication problem is only one of source
representation. For this representation we are allowed to choose, from
an e letter representation alphabet, one representation letter for
every source output letter. Just as one is allowed n uses of the channel
to transmit an n-letter source output, one is allowed an n-letter
representation word to approximate an n-letter source word.

We first state that if the threshold source encoder defined by equa-
tion 54 is used in the ensemble of representation codes 6; of Section
XII, the ensemble average representation error is very similar to the
ensemble average transmission error derived in the previous sections.
The only difference in the derivation is that the Pr(channel error)
term is no longer present in equation 57, nor in any succeeding equa-
tion, with the only result being that b, = o in equation 85.

We note here that this particular result is valid only for sources
that are not doubly-uniform, that is, having a uniform probability
distribution and a distortion matrix in which all rows are permuta-
tions of one row vector and all columns are permutations of one col-
umn vector. The reason for this exclusion is that for doubly-uniform
sources the exponential term in equation 73 involving E,(R) also
vanishes, and the double exponential term involving 8, previously
dropped as insignificant, now remains as the only term. It is instrue-
tive to delay further evaluation of the bound in this case until after
the following upper bound to representation distortion is derived.

16.1 Optimum Source Encoder

We now derive an upper bound to the source representation error
when an optimum source encoder is used in place of the threshold
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encoder of the previous section. The resulting upper bound will be
seen to approach the asymptote, dg, as (In n)/n. This represents an
improvement upon the best previously known upper bound to source
representation distortion”™ which approached dy essentially as n%,

The coding ensemble used here is very similar to the set of codes,
6, used in Section XII. But now the size of the set, M, is set equal to
e"? for all m, rather than have it approach this size with increasing
n. And, the probability with which each ensemble member is used,

Pr (code) = p(6,) = I_Il 9(z),

is now governed by that probability distribution g(z) equal to the output
probability distribution of the test channel at the point (d¢, C) on
the rate distortion curve for 8. Within each ensemble member the
encoder chooses, for any occurring source word w, that member z
on 6, for which d(w, z) is minimum. Therefore, for each ensemble
member the average distortion over all possible source events is

d(6,) = ;p(W)[EEI d(w, z,)]. (86)

Zieby

The ensemble average distortion is given by

(d(8.))ue = ; p(w) BE P(BI)[II;‘}EK d(w, z,)]. (87)

Ziel,

The set of quantities d(w, z;) in equation 87 could be thought of as
a set of M independent and identically distributed random variables,
each conditioned on w and governed by the word probability distribu-
tion g(z). The minimum of this set, d.i.(W), is then also a random
variable, governed by the code probability distribution p(6,). The inner
sum in equation 87 is, therefore, the expected value of dni.(W) and
we can write

dmax

(O = T ) f d dF sy, ou(d | W)

which, upon integration by parts, becomes

dmax

(@O = T p(w) f [l — Funru(d | W)]dd.  (88)

The conditional distortion random variables d(w, z,) are the same dis-
tortion variables used in Section XIII. Since they depend only upon
the composition of w, we can again perform the summation in equation



880 THE BELL SYSTEM TECHNICAL JOURNAL, JULY—AUGUST 1968
88 by integration over the composition space, thus

oo = [ [P@da [0 = Faad | @) dd @)

QH

= [ - [ P dadus(@)n. (90)

The inner integrand in equation 89 is the probability that all M
points on 8, have a distortion d(w, z) from w greater than d. Using the
independence property of the members of 8, , we can write this proba-
bility as

1 — Fopiad] @ =1 — G@ | @]™ (91)

It can be seen from equation 16 that the variance of the variable d is
proportional to 1/n for every q. Therefore the function [1 — G | q)],
which for every n decreases monotonically from one to zero, approaches,
with increasing n, a negative step at the value of distortion d = E(d | q).
The same is also true of [L — G(d | q)]" which approaches a negative
step at some lower value of distortion, d¢(q). This can be established
using the following asymptotic upper and lower bounds to the dis-
tribution function G(d | q) which are from Shannon'' and Gallager':

h(n, q) exp —nR(d, q) = G(d|q) = H(n, @) exp —nR(d, q) (92)
with
R(d, @) = p(s, @) — s¢'(s, @) (93)
0<pi(s,q) =d=Ed|q

and in which h(n, q) and H(n, q) are algebraically small functions of n.
Therefore, within the range 0 < d = E(d | q), the function in equation
91 can be bounded by

1 — He ™" =1 —G(d] Q)" = [1 — he ™™
(94)
which proves that [l — G(d | g)]" must approach one when E(d, @) > C
and zero when R(d, q) < C. That the function E(d, q) is monotone
decreasing in d within 0 < d £ E(d|q) now establishes the stated

limiting step function form of [1 — G(d | q)]" with dc(q) equal to the
distortion value for which

R[dc(q), q] = C. (95)
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The region of integration in equation 89 is thus conveniently divided
into two parts: one over [0, do(q) + A] in which the integrand is upper-
bounded by unity, and the other [d.(q) + A, du.) in which the integrand
is upper-bounded by its value at the lower limit. The result is

(dnin(@)er = do@) + A + [duee — de(@) — Al — G(de(@) + A @]
(96)

which, with the use of the lower bound in equation 92, can be continued
by

(dmin(@))ov = de(@) + A + [duu — do(@) — A
(1 — hexp [-nR(de(q) + A, @]} .
Equation 67 allows the further continuation of this bound by:
(Ouin(@))er = de(@) + A + [duax — de(@) — A]
-exp (—hexp {n[C — E(dc(q) + 4, @)]})).  (97)

Again the monotone decreasing property of R(d, q) in d provides that
the quantity C — R(d.(q) + A, q) is positive when A is positive and,
therefore, that the last term in equation (97) is a decreasing double
exponential in n.

Equation 97 actually provides, for each q, a set of upper bounds to
(dnin(q))uy very similar to the family of curves studied in Section XV.
In the choice of the parameter A there is once again a trade-off between
a small asymptote, do(q) + A, and a fast rate of approach. It should,
in general, be chosen to optimize the bound at each n. Since we want an
upper bound to (dmin(q)).. that approaches d.(q) with increasing n,
the optimizing parameter A,(n) clearly must approach zero as n in-
ereases. But A,(n) must approach zero in a way that also allows the
last term of equation 97 to vanish.

Since an asymptotic bound is our goal, we extract the essential be-
havior of this term for small A by forming a Taylor series of R(d, q)
at d = de(q):

C — R{dc(q) + A, q) = —AR'(dc(q), @) + o(a)
= —sA + o(4).

In this expression s is the parameter value in equation 93 when d equals
d¢(q). Thus the lower envelope to the set of bounds in equation 97
can be written, for the purpose of an asymptotic bound, as

<dmin(q)>uv é min {d(*(Q) + A + [dmu!f - d(‘(q) - A] eXp (—h(*,_md)}-

A
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The minimization is found using the same method used in ection XV.
In this process, it is 1mporta.nt to notice tha.t Shannon’s coeflicient
h(n, q) in equation 92 is proportional to »~°. The result is that the
optimizing parameter satisfies

Hon g oy s am s 3+ 22
and that (dn;.(qQ) ). satisfies

oia@er S de@ + (§ + ¢ 22 (98)

Returning to equation 90, the ensemble average representation error
therefore can be upper bounded by

o s [ - [ P@fdc@ + (5 +¢) 2 L PP

Qn

The above integral is evaluated in the same way similar averages
were found for the lower bound. The bracketed quantity is expanded
in a Taylor series about ¢ = p and is truncated after three terms with
a Lagrange remainder term. Upon integration of this expansion we find

(d(6,)s = de(p) + (% + f) lfn

s.n

+ o0 [dc(q)+( )_n;lE(m - )

+ e ~Naw+ 3+ ‘:’lﬂLEuq.- — p)g; — 2] (100)

N

with s, = s(p) and o € Q".
Using the following expected values in equation (100),

E’(q.— - P.’) =0

El(g: — p)(g; — p))] = ;Ll‘ (p: 8:; — D1,

we have the following upper bound to the ensemble average distortion
and, therefore, to the minimum attainable representation error.

Theorem 12: The minimum attainable transmission distortion (rep-
resentation distortion) of the source S, when used with a noiseless channel
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of capacity C, is upper bounded by

d(s) < de + (l + )

5+ ¢) 01+ o) (101)

in which s, satisfies
u(8., p) — sp'(s,, p) = —C.

Except for the arbitrarily small positive ¢, the bound in equation 101
agrees precisely with the asymptotic lower bound that we found earlier
in this paper.

We see by comparing equation 85 (with b, = o for the noiseless
channel) and equation 101 that the replacement of the threshold source
encoder with an optimum encoder increases the rate of approach to
the asymptote from [(In n)/n]' to (In n)/n. To obtain some feeling
for the reason for this improvement, we might think of the optimum
encoder as a threshold encoder, but with a threshold that varies de-
pending on the particular source output. Indeed, we used this step
within the mathematics when we separated all events (equation 96)
into two sets with the separation dependent upon the source word. In
particular, for any source output word with composition q, we used
a threshold, d¢{q) + A, just large enough so that for large n there is
almost surely a representation word in 8, that is acceptable. It does
not require, as does the fixed threshold encoder, that the set of source
words not meeting a fixed distortion level of d* have a total probability
that goes to zero with n. This restriction is really more severe than one
would think we need, since some of the source words w discarded by
the fixed threshold encoder are just outside p, having characteristics
just less than typical, for which some of the distortions d(w, z,) might
be only marginally greater than any fixed d*.

18.2 The Special Case of a Double Uniform Source

There is one situation for which both source encoders provide a
representation distortion that approaches the limit d. as (In n)/n.
This is when the source § is doubly-uniform. Since u(s, q) is independent
of q for such a source, R(d* q) in equation 61 is also independent q,
with the result that the set @' in equation 66 is always empty. There-
fore, Pr(Q’) = 0in equation 69 and we have for the set of upper bounds
to representation distortion, using threshold encoders:

d(8) = d* + (dwx — d*) exp (—he™).
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In this bound we have used the lower bound in equation 92 rather
than that in equation 61. It can now be shown, using precisely the
same procedure as before, that this set of bounds approaches the
limit dg as (In n) /n.

XVII. SUMMARY

We have presented upper and lower bounds to the minimum at-
tainable transmission distortion of a source measured by a specified
distortion measure. The bounds, which were derived for both noisy
and noiseless channels, have all been shown to converge to the same
level of distortion, dg, algebraically in the block length n. The quan-
tity do is that level of distortion shown by Shannon to be the mini-
mum attainable transmission distortion when the channel capacity is
C and arbitrarily complex transmission methods are allowed.

For noisy channels, the rate of approach of the lower bound to de
is as a/n and that of the upper bound as b[(In n/n)]*. The non-
negative coefficients @ and b are both functions of the statistics of the
source and channel, but have different forms. The lower bound coef-
ficient, a, interrelates these statistics in such a way as to suggest its
utility as a measure of “mismatch” between the source and channel,
the larger a, the slower the rate of approach of the bound to dg, and
the larger the source-channel mismatch. This coefficient is, of course,
necessarily equal to zero whenever the source and channel are per-
fectly matched, that is, whenever the minimum attainable transmis-
sion distortion is equal to d¢ for all block lengths, n.

The coefficient b in the upper bound, though, does not present an
indicator of source-channel mismatch. It is the sum of two terms
which separately contain the source statistics and the channel sta-
tistics. The cause of this separation is the interface between the
source and channel that results from the use of a transmitting signal
set constrained to contain at most "¢ members, a constraint which
we found necessary to introduce in the development of the hound.

For noiseless channels, both the upper and lower bounds to the
transmission distortion (or the source representation distortion)
have the same form. They both have been shown to approach the
asymptote dg as a; (In n)/n.
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