Gain of Antennas with Random Surface
Deviations

By H. ZUCKER
(Manuseript received March 20, 1968)

On-axis gain of antennas with rough reflecting surfaces is computed
as a function of rms surface deviation e, correlation distance ¢, antenna
area A and wavelength \. Gaussian stationary surface deviations, Gaussian
correlation junctions, and uniform illumination are assumed. Antennas
with rectangular and circular apertures are considered. It is shown that
a normalized gain can be defined which has the same functional form for
both. A principal result of this work is quantitative calculation of the
on-axis antenna gain when the normalized variance (4we/\)* of the rough
surface is larger than 4. The off-axis gain 1s also considered, and it s
shown that in the asymptotic limit (as N — 0), the gain reduces to that
obtained by using geometrical optics.

I. INTRODUCTION

The gain of shallow paraboloid reflector antennas with random
surface deviations has been derived by Ruze.''* The deviation was based
on scalar Kirchhoff approximation to the radiation from reflector
antennas. The surface deviations were assumed to be gaussian stationary
with gaussian correlation functions. On these bases, an approximate
solution for the antenna gain was obtained in terms of an infinite
series. The series has been evaluated for relatively small rms surface
deviations, e, in comparison to the wavelength, \, namely (47e/\)* < 4.
Asymptotic limits (as A — 0) for the gain were also given by Ruze’
based on a similar analysis by Scheffler’. On-axis gain measurements
of large reflector antennas as a function of frequency, exhibit the char-
acteristics as predicted theoretically by Ruze.

The present work was motivated primarily to determine the gain
in the intermediate region between very long and very short wave-
lengths and to establish a criterion for applicability of the asymptotic
limit. Of primary interest was the near axis field distribution in the
focal plane of a paraboloid reflector antenna illuminated by an inei-
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dent plane wave. However, since hoth the far-field radiation pattern
and the field distribution in the focal plane are Fourier transforms
of the antenna aperture illumination, the derivations by Ruze are
applicable for determining both the far-field and focal-plane dis-
tributions.

The series solution for the antenna gain obtained by Ruze does
not seem to be suitable for numerical computations for large argu-
ments. This is beeause some of the terms in the series will assume
large values before the terms begin to decrease. However, the series
for the on-axis gain is related to an exponential integral. The expo-
nential integral also has an asymptotic series representation, which
is particularly suitable for numerical computation for large argu-
ments. On this basis, the on-axis gain has been computed as a fune-
tion of the rms surface deviation to the wavelength ratio and for a
range of correlation parameters. The asymptotic limit for the gain
is evident from these computations.

The off-axis gain is also considered. Asymptotic representations of
the series which may facilitate the off-axis gain computations are dis-
cussed. The limiting value (A = 0) for the off-axis gain is obtained,
and it is shown that in this limit, the gain reduces to that obtained
from geometrical opties.*

The gain of antennas with rectangular apertures and gaussian
stationary surface deviations is presented by assuming uniform il-
lumination. A generalization to include certain types of nonuniform
illuminations is discussed. The on-axis gain for antennas with cir-
cular apertures also is given. It is shown that the on-axis gain for
antennas with rectangular and circular apertures can be normalized,
such that the normalized gain is the same for both. The off-axis gain
is expressed in terms of series with known asymptotic expansions.

II. ANTENNA GAIN

The far field gain, G (4,®), in the vicinity of the axis of a shallow
paraboloid reflector antenna with surface deviations, z(v,y) is, using
the scalar Kirchhoff approximation®

GG, @) = 35

f f [ E,(x, NE*%(x, , y,) exp (j1B.u+B0+2kz(x, 1) —2(x, , y))]}) dsds,

f f E,(z, y)EX(x, y) ds (1)
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where E, is the projected electric field on the antenna aperture and s
is the aperture area.

k= 2%' _ free space propogation constant

A = wavelength

B, = k sin 8 cos @ (2)
B, = ksin 0 sin @ (3)
@ and @ are the spherical coordinates indicated in Fig. 1.
U=x—o (4)
v=y — % (5)

The Kirchhoff approximation is based on the assumption that the
surface is locally plane, and hence equation (1) is applicable to sur-
faces for which the curvatures are small.

Equation (1) can also be used to determine the power distribution
in the focal plane of shallow paraboloid reflector antennas in the
vicinity of the focal point, in which case (referring to Fig. 1)

B. = kx,/] (6)
B, = ky,/f (7)

where z; and y; are the coordinates in the focal plane and f is the
focal length.

If z(z,) is a Gaussian stationary random variable with zero mean
it has been shown® ¢ that by performing the statistical averaging, the
expectation value for the gain, (G (6, ®)), is:

1l

Il

(G0, By = 55 exp (—5Y)

f f f B (x, ))E4(, , 1) exp (8. + B.2)] exp [8%(u, v)] ds ds,

ff Bz, )B4z, v) ds )

where

6= ¢ )
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Fig. 1 — Antenna coordinates.

¢ = rms surface deviation
8°r(u, v) = correlation funection.

To evaluate equation (8), four integrations have to be performed.
It is shown in Appendix A that for antennas with rectangular aper-
tures two integrations can be readily eliminated for certain types
of illuminations, truncated cosine illuminations, for example.

In particular for uniform illuminations, E,(x, ) = 1, and for a
gaussian correlation function with

r(u, v) = exp (— 7 (10)

w4 vz)

where ¢ is the correlation length, it is shown in Appendix A that the
expectation value of the gain is:

(G(8, ®))., = exp (—8)Go(0, ®)

+ (%) exp (=) gn'n[ (_ i_:a) - A":l (1)

where G (6, ®) is the antenna gain in the absence of surface devia-
tions.
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For an antenna with a rectangular aperture

_ 4nd (sin B.a sin B,,b)z
Go(o, @) = "1 (T T (12)
where A = 4ab is the aperture area.
B = el sin 6 (13)
A
and
¢ 1 1
A < o) [E T b] (14)

Equation (11) agrees with the gain derived by Ruze for antennas
with circular apertures except for the term A,. This term is small, if
the correlation distance ¢ is small compared with the linear dimen-
sions of the antenna. This assumption is made in the subsequent
computations,

For antennas with circular apertures the exact evaluation of equa-
tion (8) is in general more difficult. However, for uniform illumination,
the on-axis gain (G(0, 0)}),, is evaluated exactly in Appendix B with

the aid of @ functions. The gain has the same functional form as equa-
tion (11) with 8 = 0. In particular for 2,/2(D/c)* >> 1

2c
An = D(rn)

(15)
where D is the antenna aperture diameter.

III. ON-AXIS GAIN

Equation (11) can be readily computed for small values of §. For
large values of 8 the terms §°"/n!n will become very large; therefore,
the series is not suitable for direct computation if §* is large. Never-
theless, the gain on-axis can be readily computed by noticing that
the series in equation (11) for 8 = 0 is related to an exponential
integral, which also has an asymptotic representation.

The exponential integral, E;, can be written?

Ex) =v+ Iha+ i 2

n
mnln

(16)

where v is Euler's constant. The asymptotic series (x — o) for
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E:(z) 1s

B = 2@ T 1l o(1)] )

n=0

Though the asymptotic series diverges for all finite values of z it can
be used to evaluate E;(z) for large # by using up to N terms}? where
N is an integer nearest to the value of z.

In terms of the exponential integral, the on-axis gain for both
rectangular and circular aperture antennas is

(G(0, 0)).. = (722)2

2 ) 2¢\ . ) 2 )
-{5' exp (—4&) + (Di) 6 exp (—&)[Ei(8) — In s — ‘v]} (18)
where D, is related to the antenna area, 4, by

~ D;
4 =" (19)
One parameter in (18) is readily eliminated by defining a normal-

ized on-axis gain, (g (0,0) ).y, by

(G0, 0Dy
(g(01 0)>uv = (Dn/4£)2

= 5 exp (—52){1 + [%C—]Q[E.(ﬁz) — s — 7]}- (20)

The normalized gain thus depends only on two parameters, §° and
(¢/Do)*.

Equation (20) has been computed by using a SHARE program for
the computation of the exponential integral*. This program computes
E;(x) with at least four-decimal accuracy.

Computations have been performed for 10™* < § < 80 and for
107* = ¢/D, = 0.1. The computed normalized gain is shown in Fig. 2.

The computations show the normalized antenna gain has three
distinet regions which are characterized by the normalized rms surface
deviation to wavelength ratio, 6.

In the region 0 £ §* = 1 the normalized antenna gain is nearly
independent of the correlation length ¢, and increases almost linearly
with &°. In the region 1 < & < 20 the gain is dependent on both §°

* Contributed by D. 8. Villars.
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Fig. 2— Normalized antenna gain.

and ¢. In the region &° > 20 the gain is almost independent of &* and
is a function of ¢/D, only. This region is the asymptotic region. For
the range of parameters used in the computation, the gain in the
asymptotic region, for a given ¢/D,, deviates by less than 5 percent
from the asymptotic value.

The curves shown in Fig. 2 seem to confirm the general charac-
teristics of the measured gain as a function of frequency of large
reflector antennas presented by Ruze.? The presented measurements
extend only slightly from the first into the second region but not
sufficiently far to determine qualitative agreement between the theory
and experiment in much of the intermediate and all of the asymptotic
regions. A detailed comparison of the measured and computed gain
can not be made since uniform illumination has been assumed in the
computation.

IV. ASYMPTOTIC VALUES FOR THE OFF-AXIS GAIN

Computation of the off-axis gain directly from equation (11) can
only be readily performed for relatively small values of 8. An
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alternate representation for the off-axis gain for large values of &
is obtained by expanding the exponential in the second term of equa-
tion (11) in a power series. By using this expansion and neglecting
Ay, (11) can be rewritten as follows:

(@0, ®).. = exp (~596G,(0, ) + (£) 5 (—n A= (BT

-t m!

where

) ) L] (62)n+m+l
A,.(8%) = exp (— &) Z; o (22)

The series for A,,(8%) are special cases of functions considered by
Barnes® who obtained their asymptotic expansions. These functions
were also studied by Ford* who also presented a recurrence relation
for the coefficients of the asymptotic series. The above functions

designated by Gg(z,®) are:
Gy, ©) = 3 — & .
e Sl + )
The functions 4,,(8*) can be written as:
A,(8°) = (8™ exp (— 8°)G,.2(8%, 1). (24)
Only the asymptotic limit for the off-axis gain is considered. For
T = o

(23)

Gi(z, ©) = S [1 + OG)]

hence for 8 —

1
A, =1+ O(Erz) (25)
The off-axis asymptotic gain will be designated by G (6, ®), and is
given by:
G, ®), = (3) ex [—(isin 9)] (26)
T P = ) P [ T \4e

The corresponding normalized gain is found as

0(0, ®)., = (%—D)Z exp |:——(4£e-sin 9)] @7)
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The asymptotic value for the gain, equation (26), is in agreement
with the gain obtained, based on an approximation to the gaussian
correlation functions,® and also with results obtained by using geome-
trical opties.* Equation (24) is independent of frequency but strongly
dependent on the ratio e/c. This ratio has been interpreted as an
average surface slope.? The range of & over which the above off-axis
approximation applies has not been determined precisely, however,
it is reasonable to assume that this range will correspond to the asymp-
totic region for the on-axis gain.

V. CONCLUSIONS

The on-axis gain of antennas with gaussian stationary random
surface deviations and gaussian correlation functions has been deter-
mined for antennas with rectangular and circular apertures by assum-
ing uniform illumination. For both types a normalized expression for
the gain was derived which depends only on the normalized rms sur-
face deviation g, to wavelength A ratio, 8(=4=€/A), and the ratio of
the correlation length ¢ to a defined linear antenna dimension D,.
For circular antennas, D, is the diameter.

The antenna gain as a function of § exhibits three distinet regions:
(0= =1,3#)1 8§ =20, and (&) & > 20. The last is called
the asymptotic region. In this region the gain is nearly independent of
wavelength.

The computed gain exhibits in general the characteristics of the
measured gain as a function of frequency of large reflector antennas
reported in the literature. These measurements extend only partially
into the second region and have not been obtained in the third
(asymptotic) region.

For large values of & the off-axis gain can be expressed in terms
of series with known asymptotic expansions. The limiting value for
the off-axis gain has been obtained and reduces to that obtained by
geometrical opties.
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APPENDIX A

Gain of Antennas with Rectangular Apertures

To evaluate equation (8) for antennas with rectangular apertures,
consider the following integral

o= =8 [ [ [ B pBe
cexp [5'(u, )] exp (B + f)] de dry dy dy, (29
with
U=z — (29)
v =Yy — Y. (30)

Since equation (28) contains the correlation function in terms of
uw and v, it is preferable to introduce the w,v coordinate system.

In the x,x; coordinate system the integrations are over the square
region shown in Fig. 3a. In the y, y; system the region is similar. With

X, XLy
_ _ U=x-x,
(-ad) a @a (O (a,a)
a
X u
a3 (@,-a) (-a,-a) (~8,a)
(a) (b)

Fig. 3 — Coordinate transformation.

the coordinate transformation equation (29), the transformed region
in the x,,u coordinate system is also shown in Fig. 3b.

In the @,,u plane the integration with respect to @; is readily per-
formed for certain types of illumination functions.* In particular, let

E“(iﬂ, y) = Euz(x)Ear(y) (31)

* A similar method has been used by Hoffman in his treatment of scattering
of electromagnetic waves from a random surface.®
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where

Boo ) = 3 0.6 (32)

with a similar equation for E,, (y: + v). An example of such illumina-
tions are truncated cosine illuminations, where equation (32) will
consist of two terms.

It is sufficient to consider the following integral

e = [ [ gt duda (3)

Referring to Fig. 3, equation (33) can be written as
2a a—u
Tav = f f g()f(u, v) dz, du
0 —a

+ f_’: f_ﬂ_ g(x)f(u, v) de, du  (34)
let

G = [ o) dn
then

I = [ 116G — ) — G-,
+ (6@ — G(—a + )f(—u,0)} du.  (35)

Using equation (35) and assuming uniform illumination, E,(z,y) = 1,
two integrations are readily eliminated and equation (28) reduces to

(I = 4 exp (— &) fh fu (2a — w)(2b — v)

-exp [8%(u, v)] cos Bu cos B, v dudv.  (36)

By expanding the exponential function in a power series, equation
(36) can be divided into two parts corresponding to the coherent and
incoherent parts of gain, as follows

Low = I, + Line (37)
where
I = A% exp (—52)(5%% *”—”;—f;—@)- (38)
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and

] 2a 2b 2 n
I = 44 E f f M:ﬁ-v)—] cos B.u cos B dvdu — Al;,. (39)
0 n .

n=1

where

AL, = 4 exp (— &) Zf f 2(bu + av) — w] ——— [6'(“ ol

n=1

- cos fBu cos B,y du dv (40)
and A = 4ab is the aperture area.

The coherent part of the gain is the same as the antenna gain in
the absence of surface deviations but multiplied by exp(—8%). This
follows from equation (28) by expanding the exponential function
which contains the correlation function in a power series.

To obtain an estimate for the on-axis gain, equation (39) is eval-
uated for 8, = B, = 0, and for a gaussian correlation function with

r, v) = exp (— TLJL—”) (41)

where ¢ is the correlation distance.
On-axis

1,.0,0) = vdc . @y [ 2(7:,1); (é + ) + FA]] (42)

aln

In equation (42) terms of order exp[—n(2a/c)?] and exp[—n(2b/c)?]
were neglected.

By extending the limits of integrations in equation (39) to o, the
integration of the first part of this equation can be performed and
gives equation (11).

APPENDIX B

On-Azis Gain for Circular Aperture Antennas

For circular aperture antennas the on-axis gain for uniform il-
lumination and a gaussian correlation function is obtained from
equation (8) by expanding the exponential function and performing
the integrations for the n = 0 term, and the integration with respect
to the azimuthal coordinates for the remaining terms, resulting in

0.0 = () ew (=) + (2 Sy
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where D is aperture diameter, and

n/2 pD/2 ) 0
- j; ‘/; exp |:_ n(p ;IZ- m)]l—n( ncgm)p dop dpy . (44)

I, = Modified Bessel function of order zero.
The two integrations in equation (44) can be performed either with
the aid of the Q (1, a,) function defined by

Qe = [ " exp (— : ?f)f,,(m da (45)

or by means of recently evaluated integrals of products of Bessel
functions.’? Let us use the former method. Let

x = (2n)p/c (46)
= (2n)ip./c (47)
a, = D/c(n/2)". (48)
With equations (45) through (48), equation (44) can be written
62 )'.’ f::n
Icn - (2?1 o [1 - Q(yv an)]y dy' (49)
Integrating by parts results in
— —_— — —_ g ¥ =4
Icn - (‘)n){ [1 Q(an lari)] + f 2 BJ (h} (')0)
The derivative in equation (50) can be expressed as
0 _ (_aﬁ + ?JE) -
ay a, exp 2 I(a.y). (51)

Equation (51) is readily derived from (45) and the following integral*®

&+
2

fm exp (—t/2)J (xt)J (y)t dt = exp (— )I..(fﬂy) (52)

where J, is a Bessel funetion of order v. Substituting equation (51)
into (50) and integrating by parts yields the result

I, = (gn){“{ — Qla, , a,) — exp (—a)Ii(a})]

an

n s o d
+ % - exp [—3(an + 9] i [yl (a.y)] dy}- (53)
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Using the relation

d
dy W1@)] = awy To(a.y) (54)
and the definition of the @ function, equation (45), yields
Lo = (S - 0. 001 - B exp (—adr@df 69

To evaluate Q(a,,a,), the following relation, readily derived from
(45) and (52), is used.

Qe §) + QB @) =2+ [ e (—%f){% [Jn(awu(mn} ar.  (56)

Integrating (56) by parts and using (52), gives the known relation

Qw9 + Q@) = 1+ ew (-EE D)@ @)
With equations (55), (57), and (48), (44) is given by

- 2 e [ T2 2] s

The gain on axis (43) can therefore be written by using equation
(68) as

G, 0) = (D) [.s oxp (— 8% + ( ") 5* exp (— &) i::’; [— A,.]]

n=1

(59)

-G HGE) +GH)] o

For n/2(D/c)* > 1, when the modified Bessel functions can be
approximated by the first terms of the asymptotic series, A, is then
given by equation (15).

with
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