Quantizing Noise and Data
Transmission

By JAMES E. MAZO
(Manuseript received February 20, 1968)

Methods for calculating the power in the quantizing moise on digital
transmission facilities have been known for some time. A more difficult
but unavoidable problem is the effect that this noise has on data signals
intended for analog transmission. This paper demonstrates that to assume
that the noise will behave as a white Gaussian noise process will always
(except for a simple factor) yield an upper bound on the probability of
error when no companding is present. We assume that linear detection will
be used, as for a PAM system, and the result is true whether or not filtering
or demodulation is involved. Results are illustrated by applying them
to @ model of an existing V.SB modem whereby the additional degradations
resulting from data set tmperfections are included as added baseband noise.

A modem operating perfectly would make no errors at all at the higher
transmission levels. For example, with no companding, a set with an eight-
level eye closed by even 30 percent would not yield errors for input powers
down to — 15 dBm. Thus quantizing noise 7s not a bastc limiting factor in the
error rate for all input levels. A similar rigorous theory is not available for
compandored systems, but for special situations reasonable estimates can
be made. For logarithmic companding and eight-level V SB transmission,
worst case estimates indicate error rales about 107° for ome link of T'1
carrier.

I. INTRODUCTION AND SUMMARY

The T1 carrier system is a digital transmission scheme for analog
signals.® Even though the digits in the coded bit stream might be
transmitted without error, when the analog signal (which may in
fact be a data signal designed for analog facilities) is reconstructed
at the receiving terminal, quantizing noise is inevitably added and
can be large enough to cause errors in the customer’s data.
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We show that, under some simple constraints between sampling
rates and bandwidths which are satisfied in practice, and independent
of the particular data signal used, an upper bound on error rates is
obtained if the quantizing noise is assumed to be a white Gaussian
process of power A2/12 and bandwidth 1/2T,.* We assume that linear
detection will be used, and the result is true even if additional filter-
ing is done (as one might do with a receiving filter). And it is true
whether or not a demodulation process takes place. Using the model
in Fig. 1 for the digital transmission scheme, results are specialized
to obtain error rates for eight-level VSB transmission (Fig. 2).
Imperfections of the data set are included as added baseband noise.
If it were not for these imperfections, error free transmission would
result over an appreciable range of power levels (see Table I). For
a logarithmic compandor and VSB data, even using worst case esti-
mates, the error rate for one link is quite low, about 10-°.

II. QUANTIZED TRANSMISSION SCHEME

Let us consider a transmission scheme for a single channel that,
for our purposes, typifies the T1 carrier system. As suggested in Fig.
1, the signal to be transmitted is assumed not to have any power
beyond B Hz. The signal is sampled at the Nyquist rate T, = 1/(2B)
and these samples are passed through an instantaneous nonlinear
device with characteristic von: = F(v1). The compressed samples are
then quantized by a uniform quantizer of step size A, and coded into
binary sequences. The binary sequences are assumed to be trans-
mitted without error and the process is reversed: sequences are de-
coded into pulses, expanded according to the inverse function F-*(z)
and the impulses are used to excite an ideal filter of bandwidth B
and amplitude T;.7 A receiving filter G generally follows the ideal
filter and we include this in our deseription, although it would not
be part of a T1 transmission system. If the bandwidth of G is en-
tirely contained in B then one may consider the impulses to excite

TG directly.
To be more specific, we are concerned with two particular com-
pandor characteristics F(z). One is F(z) = =, that is, quantizing

* Here A is the quantizer step size and 1/7%: is the sampling rate. Also this
statement is true only modulo a simple factor given in the text.

i The amplitude gain of the ideal output filter for the carrier system is chosen
to be Ty in order that the signal component will undergo no gain relative to
its sampled values at the transmitter.
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Fig. 1 — Essential elements of quantized transmission scheme.
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TaABLE I — QUANTIZING NOISE*

Mean

square

P(dBm) fnax
— 5 0.221
—10 0.394
—15 0.698
—20 1.245
—25 2.21
—30 3.94
—35 6.98
—40 12.45
—45 22.1

* Peak values of quantizing noise as a function of input power P. The noise scale is
such that a perfect receiver would make no errors for flma < 1. The power scale is
such that the quantizer overloads at an instantaneous power of +6 dBm.

without compandoring. The other case is (in normalized units)

F(x) = —F(—x)
~ In(1 + px)
=1 z>1,

where p, the degree of compandoring, is large. Typically, p = 100
for a good approximation to existing devices.

Finally, when specific values are required, we assume 7 bit coding
to be used for the quantized samples and use A = 1/63.

We hasten to add that quantizing noise is not the only degrading
factor for the existing T, facilities. Apparently mismatch and mis-
tracking of compressor and expandor cause nonlinearities which are
responsible for peculiar behaviors of error rate versus signal power
curves.?

III. GENERAL THEORY

Let us represent the signal I(¢) which is to be sampled and quan-
tized by

I(f) = z(f) cos w,it — y(t) sin w,t, (2)

and the sampling wave as

X6t — kT, — 7), 3
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where the random timing phase is uniformly distributed over the interval
0 = 7 = T,. The pulse trains representing (2) immediately after
sampling, compression, and quantization are given by expressions (4),
(5), and (6), respectively.

ZUET, + r)é(t — kT, — 7); 4)
Zleomp(kTy + 7)8(t — kT, — 7); (5)
Zloompk Ty + 7)8(t — kT, — 7), (6)

where

loomp(ETy + ) = F[IET, + 7)]

is the compressed sample value and I,,u,(t) is the particular one of the
(2" — 1) levels that the quantizer output gives as the value for l,om,(f).
If we let the subsecript “exp’” stand for the result of operation of the
expandor at the receiving terminal, then the impulse associated with
time (kT + 7) has area

[znomn(le + T)]e:p = l(le + T) + f(le + T)- (7)

Because the expandor has as its input an estimate of the compressed
pulse area, the error term (kT + 7) is not zero but may take any
value in an interval, that is,

e =20 A0], ®

The spread A(f) that the quantizing error may take is not neces-
sarily equal to the quantizer step size A when companding is present,
but is given by the formula (see Appendix A)

A
IO ©

In (9), F'[I()] is the derivative of the compressor characteristic
evaluated at that input amplitude of the signal at the time of the
sampling. The error signal generated at the output of the receiving
filter is obtained by convolving the impulse train

A(t) =

Ze(kT, + 1)6(t — kT, — 7) (10)
with the impulse response T:g(t) of the receiving filter.* Denoting

* Again, g(t) is associated with the receiving filter of the data set and the
constant 7, is the gain of the ideal output filter of the carrier system,
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this noise by n,(t) we have
‘n;(t) = T]ZE(ICT]_ + T)g(t - kT] - T)- (11)

To proceed further we make the assumption that the quantizing
error e(f) of the output sample in (10) is uniformly distributed over

the interval
—5() A()
2 "2 !

thus having mean zero and variance A®(¢) /12, and that different sam-
ple errors are independent. Notice that the latter assumption is not
the same as assuming that different sample values are independent.

IV. SUMS OF UNIFORM VARIATES

As (11) illustrates, a basic problem which must be dealt with is
the probability distribution of sums of independent and uniformly
distributed random variables. We will obtain an upper bound on the
tail probabilities of interest by applying the technique of the Chernoff
bound.® * This bounding technique states that if a probability den-
sity p(z) has a moment generating function (mgf) M (s), where

M@ = [ lew (@) do, (12

then
Q = Prob [z = a] £ M(s) exp (—sa), s = 0. (13)

Thus to obtain an upper bound one simply multiplies the moment
generating function by an exponential, both evaluated at an arbi-
trary positive s. Actually it is known that there is a best s to choose,
and it is that one, if it exists, which satisfies the equation

%In M) = a. (14)

Equation (14) assures a stationary value for the right side of (13)
and it can be shown that such an s in fact minimizes M (s)e™**

For example, for a Gaussian variate of mean m and variance o,
the moment generating function is well known to be given by

M(s) = exp [ms + 322—02]- (15)
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Thus the best s to choose is, using (14),

(a — m)

o

s = (16)
Notice that only if @ = m is this s = 0. Thus, as long as a is greater
than the mean, we have for the Gaussian case

(a — m)?:|
< - _

Q = exp I: 357 , (17)
where (17) results from using (15) and (16) in (13). For the Gaus-
sian variate under discussion the exact answer is also well known to
be given by

_ . (a—m)
Qg%@lfﬂ(g)—%g,

where erfe z is the coerror function.® In addition, equation (7.1.13)
of Ref. 5 states that

exp (—2°) = (m)iz + (@* + 2)}[} erfe 2], (19)

and hence the difference between the Chernoff answer (17) and the
exact answer (18) for the Gaussian case is no more than the multiplicative
factor (m)'[(p)! + (o + 2)*] where (0)} = (@ — m)/[(2)%0].

We modify this procedure for our problem with the following obvious
lemma.

(18)

Lemma 1: If G(s) is an upper bound for the moment generating function,
that is, M(s) < G(s) for all s, then

Q = e "G(s), s = 0. (20)

In particular, a positive s = s, which satisfies

d |
7 In G(s) L =a (21)

is legitimate.

Next consider a random variable x which is uniformly distributed
over [—A/2, A/2]. The variance of this variable is A?/12, and it has a
moment, generating function M (s) ynie

., 8A
sinh 5 -
ﬂ[(s)"nif = == Z (%) (4_-1; (22)

sA n=0
2
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Now the nth term of the sum in (22) is positive and upper bounded by

IGHE

Mowi = 5[ (2) L L= o E 8_2]. )

Thus we have shown that the moment generating function of a zero-
mean uniform density is upper bounded by that of a zero-mean Gaussian
having the same variance.* If the uniform variable has mean m the
theorem is still true if we use instead the moment generating function
of a Gaussian with mean m.

We are now ready to write down a whole class of random variables
which have moment generating functions upper bounded by those of a
Gaussian of the same variance. Suppose the result is true for two inde-
pendent random variables, z and y, of variances o2 and ¢Z, namely

o’
M.(s) = exp[ 2”]

1,0 < e | 124

Then using the theorem that the moment generating function of a
sum of two independent random variables is the product of their
individual moment generating functions, we have

MM e[ °F |ew [2]

2 2 2
exp [% (o + aﬁ)] = exp [S a;"] :

Uiﬂ,- = '-Ti + Ufp
is the variance of (z + y). Thus the moment generating function of
a sum of any number of independent uniforms of arbitrary means
and variances is upper bounded by the appropriate Gaussian one
(same mean and variance as the sum), and thus use of (17) through
(21) provides a rigorous upper bound for tail probabilities of the sum.

Hence

(24)

M., ()

I

where

* A gimilar theorem was discussed by Saltzberg for the case of equally spaced
delta functions.® We have followed his method of proof here.
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V. FURTHER ANALYSIS WITHOUT COMPANDING

When no companding is present, the independent random variables
e(kT, 4+ 7) have variance A?/12 and the variance of the noise (11) is

2 o

= () = T1- 12 2 gt — KTy = 7). (25)

We evaluate the infinite sum in (25) by using the Poisson sum for-
mula, namely

S U=k =) = & 5 e[ =25 (20)

k=—c0 l m==0

where (@, (w) is the Fourier transform of g2(#). Now since the band-
width of the filter G is assumed not to exceed 1/2T; Hz, only the
m = 0 term of (26) contributes and we obtain

A?
o; =T, -E-GE(O) . (27)

Equation (27) implies that the noise power measured before the
receiving filter is A%/12. This result has been obtained by Bennett’
who also showed that the spectrum of this noise is flat across the
band. Further, equation (27) is consistent with filtering white noise
since

G.0) = [ Z ) dt = o "6 1 do. 28)

An important fact about (27) is that the received passband noise
power without companding is independent of many properties of the
signal. Thus it is independent of signal power and multilevel struec-
ture. It is not independent of rate, however, since this enters implicitly
into the factor G,(0), and likewise it is not independent of roll-off.
By halving the speed and doubling the number of levels, one decreases
the noise by 3 dB, but loses 6 dB in noise margin, thus leaving one
with a net loss of 3 dB in noise margin. Thus it is best to use as few
levels as possible consistent with given speed objectives, at least if
the quantizing noise behaves anything like Gaussian noise.

Let us discuss further some statistical aspects of the quantizing
noise at baseband. The “line” signal must be demodulated as in VSB
transmission by multipling the (filtered) received signal by cos w,t
and eliminating double frequency components. We represent the
impulse response g(t) of the passhand receiving filter G by

g(t) = g.(f) cos w.t — g,(t) sin w,l. (29)
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Further we specialize to the practical constraints® o, > B; and 2= /T,
> 2(w, + B;). The demodulated noise is

T,

n,(f) = 3 Ze(kT, + ) {g.(t — kT, — 1) cos (w kT + w.7)

+ g,(t — kT, — 7) sin [w kT + w.r]}. (30)

The general expression (29) can be simplified for a VSB receiving
filter which is symmetric about midband frequency ;, and linear
phase characteristic, by writing

g(H) = g.(f) cos wt (31)

w, — w = 7/2T,

where 1/T is the symbol repetition frequency. Of course a g. and a g,
may be immediately written down from (31).

From (30) we derive in Appendix B, equation (32) for the baseband
variance o;(1):

it = L (A 2)110..0 + G0, (32)
where G;;(w) is the Fourier transform of ¢3(t). We now will show that
this result is identical to the baseband noise power that would appear
if flat Gaussian noise of power A®/12 were on the line. We do not regard
this as obvious; in fact it is not true that the signal power at baseband
is the same as if one had Gaussian noise of the same power and spectrum
on the line that the signal has. The proof depends on a few simple
abservations. If passband Gaussian noise is represented by

n(f) = n.(t) cos w it — n,(f) sin w.t, (33)
then
o2 = (') = () = (), (34

and so baseband noise power is ¢, /4. Next we notice that white Gaussian
noise, having same total power as quantizing noise over the band
(—=1/2T,, 1/2T,) Hz, has two sided spectral density

2
Nw) = No/2 = %T] watts per cycle. (35)

* B, ig the bandwidth of g.(¢),? =z, v.



QUANTIZING NOISE 1747

Thus the Gaussian noise power out of the receiving filter G would be

)

A’ = d 2
=5 [ 5166 P

A? ° .
=& .[.,, o(0) dt

2

& T‘[ﬁ eO £ 80 gy 4 |7 60— 80 55,1 4

& © —= 4

+ fﬂc g-()g, (1) sin 2.t dﬁ:| . (36)

Since neither g,(f) nor g,(t) are assumed to have any frequencies as
high as w, the last two integrals above vanish. The final remark that
completes the proof is

[ dwa=6.0.

Thus noncompandored quantizing noise behaves, at least conecerning,
its power, as zero mean white Gaussian noise, flat over the band
(—1/2T,, 1/2T,) Hz, and total power A?/12. This statement is true
with or without demodulation.

One would like to go further and treat the baseband noise as zero
mean Gaussian of variance given by (32). There is a justification
for making this additional step. Recall the result of Section IV, which
stated that if

z = ZA;
@ = =(a) (37)
o = varz = ve=A’

is a sum of independent and uniformly distributed variates A, , then
(provided ¢® = 1/12ZA? < =) for all A such that A > Z(A,),

Prob (z > A) = (m)'[()* + (0 + 2)}]P,(A). (38)

In (38), (p)* = A/[(2)%c], and P,(A) is the probability that a
Gaussian variate of the same mean and variance as z is greater than
A. Since P,(A) depends exponentially on p, the coefficient structure
in (38) is not nearly as important as P,(4). We would like to argue
(but not prove) that ignoring the coefficient in (38), that is, simply
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assuming Gaussian behavior, is quite accurate for the baseband noise
(30) for the error rates of practical interest.

Thus consider eight-level, 50 percent roll off, transmission over
our hypothetical “noncompandored T,” transmission facility. From
(30) and (31)

mi(l) = 2t X kT, + Dt — ¥T2 = 1)

k
-cos [(w, — @)t — kT, — 1) + w (T, + 7)], (39)

where, according to an appropriate normalization,

cos 1r_l'
40, T
h(t) = F —7os (40)
1= (?)

Notice that since h, =~ 1/t, ¢ large, the sum in (39) is bounded.
A computer study of (39) for various values of ¢ and 7 shows this bound
to be not too sensitive (about 5 percent variations) to choices of ¢ and r.
Numerically we find

T, A (4o,
| = 22 (26530, )
From the sum formula (26) the variance of (39) is obtained. We

calculate

14" T
412 T
Thus a peak-to-mean square ratio of the baseband noise power may
easily be shown to be 15 dB. To obtain some insight from this value,
consider the question of how many () identical independent, zero-
mean uniform densities one would have to convolve to get a peak to
rms value of 15 dB; the answer is N = 10. Ten uniforms generate,
we feel, & reasonable approximation to a Gaussian curve. As a check,
consider that our ten uniform densities each have range [—0.5, 0.5].
To check (not prove) the approximation on the tails we calculate

T

(42)

2
oy =

Prob [sum = 4.5] = 1_167 =275 X 107",

The Gaussian assumption gives 4.46 X 10~". Thus we will assume
that for error rates > 107 the Gaussian assumption will yield rea-
sonably accurate answers, not just being a bound in the sense dis-
cussed above.
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The above theory showing that noncompandored quantizing noise
may be considered to be additive white Gaussian noise with zero
mean, variance A%/12, of 4 kHz bandwidth has been compared with
the experimental results of Gustafson on the performance of the VSB
(203) data set which operates at 5400 bits per second. Fortunately
an experimental curve is available for error rate versus signal-to-
noise ratio without companding and this is shown in Fig. 3 along

10-2 I
THEORY
(UPPER BOUND) [
| N\ 4 |
1072 e :
|
a |
w0 —
b= |
< |
@ THEORY
@ GAUSSIAN |
[e] | 7
P MEASURED _/]
w 1o~5——F— = - S
/ |
/ |
1076 ——————
) | |
|
|
|
1077 I
~10 -20 -30 -40

AVERAGE INPUT POWER IN dBmM

Fig. 3— Comparison of experimental and theoretical error rates for one link
of noncompandored transmission. Theory neglects overload distortion. Instan-
taneous input power of 46 dBm is the onset of overload.

with the results of present theory* (for one link of T1.) The rise in
the experimental curve at high input signal power results from over-
load distortion of the quantizer which has been neglected for the
present analysis. Overload occurs at a peak power of +6 dBm on the
scale used in Fig. 3, and thus the peak power to average power for
the eight-level VSB set (including pilot tones) appears to be around
11 dB. In general the observed error rate is higher than the theoret-

*To model the performance of the actual 203 receiver, an additional noise
source is included at baseband, as suggested by Saltzberg® and shown in Fig. 2.

The baseband S/N for this noise is chosen to be 2808 dB. This noise alone
would yield an error rate of 2.5 X 107,
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ical prediction, and for low P, is even higher than the theoretical
upper bound. Perhaps this is caused by other distortions in the system
not considered here.

For multiple links of transmission one should take the quantizing
noise to have the same properties as ahove, but the total noise power
i« N - A?/12, where N is the number of links.

We wish to emphasize that the curve drawn in Fig. 3 does not
represent any theoretical ideal; we have tried to understand the
performance of an existing data set and its imperfections. Actually,
if the data set were functioning perfectly, there is a range of input
power where no errors would be made. We have normalized units so
that no errors can be made if the baseband noise is less than unity
in magnitude. Table I shows the peak value of quantizing noise cal-
culated from equation (41) as a function of input power measured
in the same units as in Fig. 3. An input power of —15 dB would be
near typical operating levels. If the data set were imperfect but the
eight-level eye were no more than 30 percent closed (but one had
perfect timing), then one would still not make errors down to —15
dBm. In general we see that quantizing noise is not a basic limiting
factor on the error rate for all input power levels.

VI. ANALYSIS WITH COMPANDING

Equation (9) indicates that the derivative of the compressor char-
acteristic is an important quantity. For the logarithmic curve given
in equation (1),

ey _ u 1 ,
PO = maswitale]

The average of A%(t) now is not A?/12 but is

2 2 A* ]
o = (A1) = ﬁ<|7(_r)—|>

A In(1 : )
&[G 4o + 4P, (44)
where the average power P = (2?). Now (|z|) cannot be less than zero

nor more than (P)%. Hence

K1+ 'P) < ok < k[l + u(P)T (45)

_A O+
K‘—12|: p ] (46)

(43)

where
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The lower and upper bounds in (45) indicate that for large u(P)}
the average noise power is not a sensitive function of the probability
density of the input signal. The knowledge of o>, cannot be used here
to obtain a strict upper bound for the probability of error as was done
in the uncompandored case, for the “instantaneous” noise variance is
correlated with signal values. Thus large input signals “see” bigger
step sizes, in effect, than smaller inputs would. One concludes from this
that for multilevel transmission the outermost levels would have the
greatest noise associated with them.

To make exact calculations on this matter is a difficult task, and we
confine ourselves to some estimates of the effects. Estimates can be
obtained by restricting attention to special sequences. Thus for an
eight-level PAM system let an arbitrary sequence consisting only of
the outer levels (47) be transmitted, and compare this with another
sequence consisting of (=4=5) transmitted in place of (7). Then the
quantizing noise will be—considering the ux° term in (44) to be of prin-
cipal importance—in the ratio 7°/5°. Thus the outer level will have,
in this circumstance, 3 dB more noise than the next inner level. The
contrast between these levels will be somewhat lessened in a random
sequence using all levels, but it is clear that the 3 dB number quoted
here provides an upper bound to the difference.

Worst case estimates of error rate in the compandored case may be
made by replacing A’/12 in (42) by the upper bound for ¢, given in
(45), and finally using peak power instead of average power in (45).

For the eight-level VSB system considered previously, operating
on T1 facilities, this procedure yields error rates of 107° — 107° over
one transmission link (for the interesting ranges of input power).
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APPENDIX A

Derivation of Quantization Error

Equation (9) of the text relating the output sample error A(t) to
step size A, compressor characteristic F(z), and signal amplitude
I(t) at time of sampling is easy to derive if the chain rule is used
to differentiate the relation

F'[F(z)] = = (47)
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to obtain
dF(v)

u=F(z) dv

dF(—ul) _
Ju = 1. (48)

Now clearly, if the error made when leom, is quantized is small, that is,
if A is small, then

output _ ar-’
sample B eomn) + A5, w=loomp (49)
or
output A
sample TF " (50)

where (48) has been applied to (49) to obtain (50).

APPENDIX B

Derivation of oy

Squaring (30) and averaging over {e} gives

ai(l) = —-—- E (g2t — kT, — 7)

-cos’ [wkT, + w.r] + g;(t — kT, — 7)
-sin’® [wkT) + w.7] + 2¢.(6 — kT, — 0)g,(t — kT, — 7)
-sin [wkT, + w.7)] cos [wkT, + w.r]} (51)

or,

() = ( 1 12) 2 62 + il

T: 2 2
+1 (I ﬁ) S (g7 — ) cos [2wkTs + 2w,.7]

+ 2 X g.g,sin 20T, + 2w.7]}. (52)

All the sums in (52) may be evaluated using the Poisson sum formula
quoted in equation (26). The first term on the right of (52) is simplest
to handle. Since g; has no frequencies higher than 1/27,, the Fourier
transform G,;(w) of ¢*(f) has support contained in [—2x/T,, 2=/T\],
and further, since it is a convolution, Ga;(4=2x/T,) = 0. Thus

; (4 12) 2@+ (1 /132)""1[6%(0) + G,(0].  (53)
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The other sums in (52) are all zero, for a typical sum is (where 8 =
2w, T,)

> f(t — nT — 1) cos [n6 + ¢

_ L3 _ 18 T — ) eos (1 — _ b
= cos l:t T, + ¢ TJ:I > f(t —nT — 1) cos (t — nTy, — 7) T,

+sin[t%+¢—%] i — ' = Bysin (¢ = Ty = 7) -

(54)

The sum formula is now directly applicable to the functions

f(®) cos 2w,t and f(f) sin 2w,t. The functions have Fourier transforms
which, according to the discussion following equation (29), vanish at

w

= +2x/T,-k, where k is any integer, including zero. The results

claimed follow.
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