On the Solutions of Equations for
Nonlinear Resistive Networks

By A. N. WILLSON, JR.

(Manuseript received December 13, 1967)

Several theorems are proved concerning the solutions of equations that
artse in the study of resistive nonlinear electrical networks. The first, an
existence and unigueness theorem, applies to equations describing an
interesting class of networks which includes certain active and nonreciprocal
networks for which the existence and uniqueness of solutions has not
previously been established. A method of computing bounds on the location
of the solutions is given, and two iterative techniques are presented for
computing the solutions. It is proved that the iterative technigues converge
for a subclass of the equations which also includes equations describing
certain active and nonreciprocal networks. Finally, the rate of convergence
of the dteralive lechniques is compared with that of another well-known
tterative technique and some practical computational aspects are pointed
out. Computations for two example problems, not reported here, were carried
out to show the practicality of applying these iterative techniques to the
equations of specific networks.

I. INTRODUCTION

In this paper we consider the solution of the equation

F(x) + Az = B (1)
x

where z = is a point in the n-dimensional Euclidean space E",
z,
1)

F(z) = is a nonlinear function mapping E" into E", A is an
fala)
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b,
n X n matrix of real numbers, and B = |- | is an arbitrary point

b,

in E". We prove (Theorem 1) that there is a unique solution of (1) if:
() Each f; is a strictly monotone increasing function mapping
E' onto E*,
and
(#7) The elements a,; of the matrix A satisfy the inequality

ai > 2 lay|, for i=1,--- ,n.
N

We then demonstrate a straightforward method of computing bounds
on the location of this solution. Finally, we present two iterative tech-
niques for computing the solution; and prove (Theorem 3) that the
two additional assumptions:

(#33) Either all of the functions f; are convex, or else all f; are concave,
and

(@) a; < 01if ¢ = j,
are sufficient to guarantee that the iterations converge to the solution.

Equations of type (1) occur often in the study of nonlinear electrical
networks. For example, if a linear n-port containing resistors, inde-
pendent sources, and dependent sources has a two-terminal device
whose V vs I curve is specified by I; = f:(V,), fori = 1, -+ , n, con-
nected across each port, then the port voltages may often be expressed
as the solution of an equation of type (1). In this case the matrix A
will be the y-parameter matrix of the nm-port, the constant vector B
will account for the presence of the independent sources, and the com-
ponents of the vector z will be the desired port voltages.

II. ACTIVE AND NONRECIPROCAL 7N-PORTS

In case the nm-port of the above example contains no dependent
sources and the functions f; satisfy condition (z) above, the existence
and uniqueness of a solution of (1) follows immediately from the
well-known result of R. J. Duffin.* In fact, with the additional as-
sumption that the slope of each f; is bounded by positive constants
the computational technique of J. Katzenelson and L. H. Seitelman
may be used to compute the solution.? This computational technique
is based upon a theorem of I. W. Sandberg which relies upon the
contraction-mapping fixed point theorem.®



RESISTIVE NETWORKS 1757

Sandberg’s theorem may, in fact, be used to prove the existence
and uniqueness of a solution of (1), and to construct a convergent
iteration process for computing this solution, whenever the matrix
A is positive semidefinite* and the slope of each f; is bounded by
positive constants. Other theorems which do not require that the
slopes of each strictly monotone increasing f; be bounded by positive
constants also exist. (For example, see Ref. 4.) These theorems guar-
antee existence and uniqueness of a solution of (1) whenever 4 is
positive semidefinite but do not specify a procedure for computing it.

Suppose, however, that the matrix A is not positive semidefinite;
that is, suppose the n-port in the above example is active. Then the
above results no longer apply. It may often happen that the matrix
A is not positive semidefinite but still satisfies condition (iz) above.

The matrix
5 7

for example, has this property. It is interesting to notice that in this
case the matrix A will necessarily also be nonsymmetric (the corre-
sponding n-port will be nonreciprocal). This follows from the fact
that for symmetric matries A, condition (i) implies that A is a
dominant matrix® which, in turn, implies that A is positive semi-
definite. It is for this class of active nonreciprocal n-ports that our
work provides entirely new results. Even for the passive case, how-
ever, notice that our computational techniques do not require that
the slopes of the functions f; be bounded. Also, there is reason to
believe that for certain problems our iteration schemes may converge
more rapidly than the ones based upon the contraction mapping
theorem, More is said about this in Section VII.

III. EXISTENCE AND UNIQUENESS

Before proving the existence and uniqueness theorem we first prove
a lemma which is used many times in this and the following section.
Lemma 1: Let the n X n matriz A of real numbers satisfy condition
(4%) of Section I. For j = 1, --- , n let p; denote the jth component of
peE" Let ke {1, -, n} be chosen such that |p:| = maz {|p;| : j =
1, --- , n}. Then,

ll‘ The n X n matrix A is said to be positive semidefinite if (z, dz) > 0 for
all z in E".
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>0 = Zak,-p.-éo.

i=1

and
P <0 = X aup; < 0.
=1
Proof:
aw | P | 2 _leﬂk:' || pe | 2 Zlakipi | 2 _Zlakipa' \
ink ik ik
Thus,
[+ 799 |Pk ! = :I:Z_: Ap;iPj -
ot
But then,
P >0 = aupr = — Z app; = E ap; = 0,
pols =
and,

P <0 = —aupe = 2 ap; = 2 ayp; =0. O
Tk =

Theorem 1: There exists a unique solution of (1) whenever conditions

(i) and (i) of Section I are satisfied.

Proof: We first prove that if a solution exists it is unique. Let 2!
and 22 be solutions of (1). Then,

F(z*) — F(z") = A(x' — a°).

Forj = 1, -+, nlet z! and 2? denote the jth components of z' and 27,
respectively, and choose k {1, --- , n} such that
|2p —2i | = max {|2; —2j|:j=1,-- ,n}.

If 2} > z; then, by Lemma 1,
flad) — fulz) = E ai(z; — z7) = 0.
i=1

If 2, < 2? then, by Lemma 1,

fk(xi) - ](k('r';) = Z ﬂ.;,.,—(J::- - 'lf) < 0.

i=1
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Both of these conclusions contradict the fact that f, is strictly monotone
increasing. Thus, z; = 2} and hence 2} = 27 forj = 1, --- , n. That is,
the solution of (1) is unique, if it exists.

We prove existence of a solution by induction. Fork = 1, --- , n let

11(-'31) Ayt Qg b,
Fiu(x) = , Ap=|reeereen ) B, =
Tl Ay *** Qe b

Clearly, the matrix A, satisfies condition (#7) of Section I. Also, it is
clear that there exists a unique solution®* of F,(z) + 4,z = B, for
every strictly monotone increasing function f, mapping E' onto E.

Assume that there exists a solution of Fi(z) + A,x = B, for arbi-
trary strictly monotone increasing functions f;, 7 = 1, - -+ , k mapping
E' onto E'. Then, for every real number z.,, the equation

@y, k+1
Fl’c(:c) + A + Tysr = B,
@ g+1
has a (unique) solution; since for 7 = 1, --- , k the function f,(z;) +
@i ri1%ks1 1S strictly monotone increasing from E' onto E'. Let the
components of this solution be denoted by x; = m;(z;.,) fori =1, --- , k.

We have thus defined & functions m; on E'.
We now prove that for every a},, , 2},, ¢ E',

| @b — 2o | = | my(aie) — my(@isd) |, for j=1,--- k. (2

This inequality, incidentally, implies that each m; is continuous.
Let z},,, ;,, ¢ E' and choose l ¢ {1, --- , k} such that

| mu(xi) — mu(ha) |
= max ” ?Tl;(-’l‘iﬂ) - mi(-’v.:-n) | j=1,--- ,k}

Assume that | m,(z}.,) — mi(z}.,) | > |2i., — zi., | . Clearly, then,
my(xi,,) — m(zy,,) #Z 0. If my(x.,) — ma(xs,,) > O then,

filmi (2.1 — filmi(xea)] > 0.

* We take the liberty of using the same symbol z to denote points in any of the
spaces E¥, 1 < k < n. No confusion should arise since the subscripts on F and A
will make our choice clear.
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Also, since the matrix Ax41 satisfies condition (%) of Section I, letting

pi = mi(“-’:-*l) - mi(I;+l)s fOI' j = 11 ] kl
Pr+1 = x:u - $:+l '
we have, by Lemma 1,

k
3 ayimiate) — mi@i)] + aen@ia — 2ea) 2 0.

i=1

Thus,
k
f![ml(xi+1)] + El a;,-m;(xfu) + al.k+lz:+1

k
> f:[’m:(ﬂ?lﬂ)] + Z} a,,,-m,-(x}‘ﬂ) + aa.mz}m , (3)
which is a contradietion since the quantity on each side of this inequality
is equal to b, . If my(z}.1) — ma(zien) <O then,
flmu(xisn)] — filmi(2ha0)] < 0.

By applying Lemma 1 again, as above, one arrives again at (3) with
> replaced by <. This is also a contradietion. Thus, we must have
I$:+1 — Thu l = 1 m1($:+1) — mz($:=+1) l'

and hence (2) is proved
Now, consider the function

k
E Qv iMi(Tre1) T Brsr pTrer - (4)

i=1

Let 7., , 22,, ¢ E' with z},, < %3, . Then.

k
Apv1, k41 ; E I L7 I

i=1
implies
2 1
er1 pe1(Thar — Tps1)

k
= Qg+ ,k+1 |ﬂ7:+1 - xllz+1 | = Z (I Qr+1,i Il x:u - Iln D

i=1

But, using (2),

k
ak+1.l—+l($:+1 - Illﬁ-l) = Z l al—-«-l.i[mi(z:d-l) - mi(xin)] i
i=1
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k
- Z akH-r‘[mj(x:H) - m,'(ﬂ!::...l)],
which implies

k k
E ak+l,imi(x11:+1) + Gk+1.k+1$}:+t = Z ak+1,:'mi(zf+l) + ak+1,k+l$:+] .

i=1 i=1

That is, the function (4) is monotone increasing. Clearly (4) is con-
tinuous. It follows, therefore, that if f;,, is a strictly monotone in-
creasing function mapping E* onto E*, then so is the function

k
Freei(®ein) + E akn.im;(mhl) + @eirke1Trar -
=1

Thus, there exists a unique solution of the equation

x
feer(Tesn) + Z Qe ;M (Zae1) F Crsr pr1Zesr = biar -
i=1

If x7,, denotes this solution then

m,(Ty41)

mk($:+l)
]
Tp s

is the (unique) solution of

Fk+1(37) + Az = By
Thus, we have proved that there exists a unique solution of (1). O
IV. BOUNDS ON THE SOLUTION

Having established the existence and uniqueness of a solution of
(1) a natural question to arise is: What can one say about the loca-
tion of this solution? It turns out that we can say quite a bit (again
assuming that conditions (z) and (47) of Section I are satisfied). One can,
in fact, with little effort (compared with the effort required, in general,
to actually compute the solution) determine a finite region R in E",
in which the solution must lie. This region is the cartesian product of
finite intervals I; C E', for7Z = 1, - - - , n, each of which has the property
that if
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0
T

0
T,

is the solution of (1) then z} & I; and, as

Z |a:; | —0,

i=1
the length of I, 1(I}) — 0. Thus, when the off-diagonal elements of
A are small, the region R will also be small.

In many applications it may be sufficient to know only that there
exists a unique solution of (1) and to know the region R in which it
must lie. If, however, one actually does want to compute the solution
by some iterative technique, the knowledge of R should be useful in
determining a starting point for the iteration. In fact, it will be
shown that if the point z* is the solution of

F(I) + djag [a'll, e raun] T = B’ (5)

then z* is also in R and thus might be a reasonable starting point
for an iterative computation of z°.

The computation of bounds for the solution of (1) proceeds in two
steps. First, one solves each of the equations

f.‘(x.') = b.‘ y fOl‘ ?: = 1, s, N (6)
Letting «; denote the solutions of (6), and defining

a=max {|e; |12 =1, ,n},

-
n

Zlalil

i=1
il

Lzl l Qnj l
one then solves each of the equations

F(z) + diag [ayy, -+ , Q] @ = B — aB’, (71a)
F(x) + diﬂ-g [a'lll ] a‘nn] x B + aB’o (7b)
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Denoting the solutions of (7a) and (7b) by

™ &
n= and f= '
M £,
respectively, one has B = I, X .-+ X I,, where
Ij = [ni,&], for ¢=1,---,n.

It is clear from the fact that each component of the vector aB’ is a
nonnegative number and from the monotone nature of the left-hand
sides of (7) that z*, the solution of (5), is (as claimed) always in E.
It is also clear that, for7 =1, -+ , n, as

n
Z l a;; | — 0,
oY

the 7th components of both B — aB’ and B + aB’ approach b, , and
hence n; — z* and ¢, — z* . Thus, I(I;) — 0. We now prove that the
solution of (1) is in K.

Theorem 2: If R s constructed as described above, then the solution of
(1) s contained in R whenever conditions (i) and (i%) of Section I are
satisfied.

Proof: Let z° be the solution of (1) and let k & {1, --- , n} be chosen
such that |z} | = max{|z{|:7 = 1, --- , n}. Then, by Lemma 1, if

n
z) > 0, 2 a;;2? = 0 and hence,
i=1

0= fﬁ(TZ) + "Z ﬂn-'r? — b, = fk(il':) — b

or f(al).< by .

Thus, beeause of the monotonicity of fy,

lIA

]xg | = xg é 291 O!,

and hence | 2} | < afor? = 1, - -+ , n. Similarly, by Lemma 1, if 2} < 0,
> ax? £ 0 and hence,

j=1

fk(xg) :=> bk ]
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and thus
IJJ:': Hfzé —a, = «,
and hence | 27| £ @, for i = 1, --- , n. Thus, in any case, | z;| = a,
fori =1, -+ ,n
Now, for all x with |z;| £ a« for j=1, -+, 0, and for each
iell, --+, n} we have,
n n n
a*_ZM.-fl: Zﬂan‘|a); ZlﬂffWiI:
i=1 i=1 =

ivi i i
which implies

n n
ed E‘Gi:’ | = Zﬂwxi )
i=1

i=1

i=i i#
and
— Z I a;; ‘ g Z] ;T .
ol i
Thus,

n n n
a;t; — a Z |a;z| = Z a;T; S an%; +a Z | ai; |
i=1 i=1 i=1
i i

In particular, for 2 = x°, we have

f-(x?) + a2l — E | a:; i =0b; = f.(m?) + a;xi + a E l aij 1
i=1 i=1
L) i
Comparing this result with (7) we have, as a consequence of the
monotonicity of the functions on the left-hand sides of (7),

o .
mExz;=<¢%&, for i=1--,m

Hence, 2° e B. O

Since in the above proof it was shown that | z{ | £ efori =1, ---,n
it might seem to some readers that the intervals I; might be reduced
in length if we simply define them to be: I; = [—a, &l M [n:, £;]. This,
however, is unnecessary since it is easily shown that —a £ 7 = & = «,
forz=1,:---,n.

V. EXAMPLE

We now give an example of the use of the above method for the
computation of solution bounds. Consider the equation
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E‘(m} + [ 5 4} H
2($2) =3 4]z
where f; and f, are defined by

N

15
13

& — 1,  z, <0,
and
x, + 9, T = 3
fo(zs) = 4, , 3 < <3
Lﬂa -9, r = —3.

Figure 1 shows the graphs of f, and f, . Since we know that the region
R will be small if the off-diagonal terms of A are small enough, we have
intentionally chosen an example in which these terms are rather large.

The computation of e by solving (6) may be done by inspection for
this example. One finds that 4** = 17 implies that «, is slightly greater
than 2, and since e, = 4 we have @ = 4. Using this result in (7) one

readily computes
0 2.23
n - 1 ] ! E % [ ] -
0.125 3.2

iz falxz)

Fig. 1 — The nonlinear functions f, and f. for the example.
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Actually, it is easily verified that the solution of this example is z° = (é)

VI. COMPUTATION OF THE SOLUTION

ForZ = 1, -- - , n we denote by f!(z,) the right-hand derivative of f; at
the point z; e E'. For each z £ E" we denote by F'(z) the following matrix:

F'(x) = diag [f{(z,), -+, fr(za)].

It is easy to prove that if F satisfies condition (¢) of Section I then
F'(z) exists for all z e E". Also, it is clear that each element of the main
diagonal of F'(z) is nonnegative for all z ¢ E". (Each element is in
fact positive if, in addition, F satisfies condition (#%Z) of Seetion I.)
Finally, we note that

i)
Fi(y) =
f ' ()

is defined for all ¥ & £", assuming again that F satisfies condition (z) of
Section 1.

The following two iteration schemes are proposed for the computation
of the solution of (1):

Scheme 1: For given z' £ E” the sequence z', z°, z°, - - - of points in E" is
constructed by use of the formula

' = [F'(a") + AI'(B — F(") + F'(a")a"). (8
Scheme 2: For given z' & E” the sequence z', 2°, 2°, - - - of points in E” is

constructed by use of the formula
Y= [FETE) FAITB =y + FETIGNDFTE)), )

where ¥ = —Az* + B.

In order to explain the origin of (8) and (9) we make the following
observations: If for 7 = 1, +-- , n (zf, ¢ is a given point in E*, and
if we draw the graph of each of the functions f; , then each of the points
in the sets { (2%, fi(z})): 4 =1, ---, n} and {(f7'@0), y0):d =1, -+~ ,n}
lies on the graph of the corresponding function f; . Suppose we now
replace (approximate) each f; by the straight line which is tangent to
it at the corresponding point in one of the above sets.* Choosing the

* Qur definition of tangent coincides with the usual one, except that the right-
hand derivative is used at those points where the derivative fails to exist.
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first set of points we approximate F' by
F(z) = F'(z"2 4+ F(2*) — F'(2")2".
Choosing the second set gives

F) = FFWNe + 4 — FEGNFG.
If we now define y* = — Az* + B and compute the solution of the
equation

F(z) + Ax = B

and call it 2%+!, we obtain (8). Calling z*+* the solution of
F(z) + Az = B,

yields (9).

The above remarks have a very meaningful interpretation for problems
arising from nonlinear electrical networks of the type described in
Section I. Iteration Scheme 1 implements the following procedure:
Given the vector z* of port voltages for the linear n-port, replace each
two-terminal nonlinear device with a linear Thévenin’s “equivalent”
circuit whose ¥V vs I curve is a straight line, tangent to the given curve
at the point (z%, f.(z¥)). Compute the port voltages in the resulting
linear network to obtain z**'.

Iteration Scheme 2 has a similar interpretation; this time, how-
ever, the vector of port currents, y* = —Az* + B, is used to determine
the linear equivalent circuit replacing the nonlinear devices at each
step.

In view of the above remarks it is apparent that if one has some
facility for solving linear network problems (a computer program, for
example) then it might easily be adapted to solve many nonlinear
problems as well.

We finally remark that the use of the first iteration scheme is, in
essence, the same as using the Newton-Raphson technique to compute
the root of (1).

We now prove a theorem which specifies conditions which are suf-
ficient to ensure convergence of each of the above iteration schemes.
We emphasize, however, that these iteration schemes will converge
for many problems in which the conditions of the theorem are not
satisfied—especially if a good enough starting point is provided.

In the following we denote the origin in E" by 6 and, for the points
z, y ¢ E", the notation * < y means z; < y; for<v = 1, --- , n. The
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relations ¢ < y, ¢ = y, * > ¥y are defined similarly. We also make use
of the concept of a matriz of monotone kind.® The matrix 4 is said to
be of monotone kind if x £ ", Az = 6 = x = 6. It is easy to show that 4
is of monotone kind if and only if A™' contains only nonnegative
elements. It is also easy to show that if A is of monotone kind and
z, y e B" with Az < y, then z £ A™'y. Ref. 6 shows that if the strict
inequality > holds in condition (7z) of Section I, then conditions (%) and
(i) are sufficient to ensure that A is of monotone kind.

Theorem 8: For an arbitrary starting point x, both of the above
iteration schemes will converge to the solution of (1) if conditions
(i) through (iv) of Section I are satisfied.

Proof: We give here only the proof for the second iteration scheme,
assuming that all of the functions f; are convex. The other three
cases are quite similar and it will be apparent to the reader how
this proof may easily be modified to take care of them.*

We first remark that the iteration scheme is well defined. The fact
that for every 3 & E", F'(F™'(y")) is a diagonal matrix containing all
positive numbers on the main diagonal, and the fact that A satisfies
conditions (¢7) and (i) of Section I, assures us that the matrix
[F'(F™'(4*)) + A] is nonsingular (it is, in fact, of monotone kind—see
Ref. 6, p. 376).

Let ' be an arbitrary point in E". Then, since forz = 1, --- , n
and & = 2, 3, 4, - - each of the points (2%, ¥*) lies on some straight
line, tangent to the corresponding function f; , and since each f, is strictly
monotone increasing and convex, we have that F7'(y*) < 2* for k =
2, 3,4, --- . We now show that F~'(y*) = 2* implies that z**' < 2*.
Obviously,

FrE ()" — F'(") = o.
But, by definition, Az* + y* — B = @, hence,
FIF ' y")GE — F'@") + Az + 4 — B 2 4,
which implies
[F'(F'(") + AR* =2 B — * + F'(F' (" )F ().
But then, since [F'(F*(y*)) + A] is a matrix of monotone kind,

* After this manuscript had been completed, the author became aware of
J. 8. Vandergraft’s paper (Ref. 7). With a certain amount of reformulation, the
(monotone) convergence of the first iteration scheme, when all fi are convex,
can be shown to follow, in essence, from his Theorem 5.1.
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= [F'(F'(N) + AT7'(B — " + F/(F'()F' (M),
or, 2¥ = z*"'. Thus, the sequence z°, z°, z*, - - - has the property

rzrzatz .

We now show that fork = 2, 3,4, --- , 2" = 2°, where z° is the solu-
tion of (1). For each z*, k = 2, 3, 4, --- , there is some point p ¢ E"
(p = F~'(%*™")) such that

Az* — B = F'(p)p — F'(p)a* — F(p). (10)

Furthermore, from the convexity of each f;, it is clear that for every
pair of points ¢, ¢* € E*,
F(¢) =z Fi@") + F' ()¢ — ¢)-
In particular,
F® z F(p) + F'(p)@" — p).
Hence,
F'(p)p — F(p) + F(2°) = F'(p)2°
which implies
F'(p)(p — 2") — F(p) + F°) =2 F'(p)a" — a").
Using (10) we have, therefore,
Aa* — B+ F@E") = F'(p)a" — 2.
But, F(z*) = — Ax* + B, hence
AR — 2" = F'(p)°® — 2f)
or,
(F'(p) + Al@=" — 2°) = 6.

But then, since [F’(p) + A]is of monotone kind, z* — z° = 6, orz* = 2°.
Thus, we have shown that each sequence z?, 2%, z!, --- is a bounded
monotone sequence and hence the sequence 2% 2°, z*, --- converges
to some point z* in E". We now prove that z* = z°; that is, we show
that x* satisfies (1).

Let y* = —Ax* 4+ B. Then, as k — «, 2" — z* and 3* — »*. Thus,
F~'(*) — F~'(y*) and each element of the matrix F'(F " (y*)) approaches
the corresponding element of F'(F~'(y*)). Now, from (9), we have

Axlu-l + F'(F‘l(yk))fl:k+l = Aﬂjk + F’(Fil(yk))F_l(yk)
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which implies

PP )EF @5 — ) = AR — 2
and hence
FIF'WE G — 2* = A — 2f) — FE'Q)E* — ).
But as k — =, (""" — 2*) — 6 and hence A(z""' — 2*) — 6; also,
(z* — 2**') — 0 and hence F'(F~'(y*))(a* — 2**") — F'(F'(y*))8 = 6.
Thus, as k — o,

FEIGNE G —a*) — 6

which implies
F'(y) —a*— 6
or
F(y") — o*
and therefore
y" — F(a¥).

Hence, y* = F(z*), and thus,
F(x*) + Az* = B.

Thus, the iteration converges to the solution of (1). O

Although Theorem 3 states that both of our iteration schemes will
converge for the same class of problems, only one of the schemes
might converge for some problems for which all of the conditions
(1) through (iw) of Section I are not satisfied. Also, for some problems
a prior knowledge of the region in which the solution lies might dictate
the choice of one iteration scheme over the other. For example, if it
is known that some of the functions f; are quite steep in the neighbor-
hood of the solution then perhaps F-* may be evaluated in this region
more accurately than F. In this case Scheme 2 might be preferred
to Scheme 1.

VII. SPEED OF CONVERGENCE

Section II mentions that in certain situations our iteration schemes
may converge to the solution of (1) more rapidly than those based
upon the contraction-mapping fixed point theorem. To illustrate this
property we have chosen to compare the rate of convergence of
Sandberg’s iteration scheme to that of our schemes.®
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If we define the operator G mapping E* into E* by
G(z) = F(z) + Az,

then, as a special case of Sandberg’s Theorem I, we have the result:
If there are positive constants k&, and k- such that

G) — G,z —y) 2k |lz =yl (11)
and
|G) — G |I* £ ko [lz — y [, (12)

for all z, y € E", then there is a unique solution of (1) and the solution
is given by lim z*, where z' is an arbitrary point in E", and

k-0
k+1 "c'l k k
T = FD[B—G(IE)]'}_I,

for k = 1,2, 3, --+ . The proof of this theorem consists of showing
that the mapping

H@) = 2B - 6@)] + «

Co

is a contraection.
Tt is interesting to observe that if the inequalities (11) and (12)
are satisfied then positive constants kg and k4 exist, such that

G) — Gz — ) Sk llz —yll’ (13)
and
|G@) — G |I* = k|l — v I (14)

for all z, y ¢ E". In fact, a simple application of the Schwarz inequality
to (11) and (12) yields (13) and (14) with ks = (k,)! and k, = k.
Now (13) and (14) are of the same form as (11) and (12), except that
the inequalities are reversed. Thus, if one uses (13) and (14) in the
proof of Sandberg’s theorem, reversing all inequalities, one obtains:

|H@) — Hw) ' z K ||z —y [

where,

K=1- Q(k?/kz)i + (kf/kz)z-

It is readily seen that if 4k? < k, , then K is positive. If we let 2° denote
the solution of (1), and hence H(z") = z°, we have, fork = 1,2, ---,

|a* = a® || = [[HE" — H@) || =2 K ||2* = 2° |
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Thus, (K)! represents, in this case, a lower bound on the rate of con-
vergence of the iteration scheme. It is true that (K)} is always in the
interval (0,1), for indeed Sandberg has proved that the sequence
z* does converge to z°. However, as k, becomes small, and as k, becomes
large, K approaches 1 and the sequence converges quite slowly. For
(1) the largest value that may be used for &, and the smallest value that
may be used for &, will many times be dictated by the positive constants
which are bounds on the slopes of the functions f; . If, for example,
the slopes of the f; become so large for large z; , and so small for large
negative z; that one must choose k, = 107" and k, = 10° then one
easily computes (K)* ~ 0.99. Thus, no matter how close any iterate
is to the solution, the next iterate will be no more than about one per-
cent closer.

It is of course true that Sandberg’s iteration scheme is applicable
to a much more general class of problems than we consider in this
paper. If, however, for any problem to which it is applied, the con-
stants k&, and k., must be restricted such that k,/k. is quite small,
then the rate of convergence will always be adversely affected. In
the Katzenelson-Seitelman application of Sandberg’s iteration scheme,
their “heuristic refinement” (see Ref. 2) attempts to overcome this
difficulty.

Although the classes of equations to which our iteration schemes
and the Katzenelson-Seitelman algorithm may be applied are not
identical, in those cases where both techniques may be used the ad-
vantage that our schemes offer is now clear. From (8) and (9) one
easily obtains

' — o = [F'@) + A'(FG) — F@) — F@H@E° - 2),
and

xk+1 _ 330 —
(F'(F'Y) + AT (@) — y" = F'FT' W) E — F7'ON),
respectively. These equations show that || 2" — 2°|| will be small
(even if || 2* — z° || is rather large) so long as for¢ = 1, - -+, n,

13
T, — X%

flwd = F:&) oy
for Scheme 1, or

f"(x?‘) uy‘: ~ 7
& — fwhH 11 (ya),
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for Scheme 2. That is, as soon as the kth iterate comes close enough to
the solution that each of the functions f; is approximately linear, the
rate of convergence of our iterations becomes quite rapid. In fact, the
rate of convergence increases without bound as the iterates approach
the solution. It is also clear that if each of the functions f; is piece-
wise linear then our iterations will converge in a finite number of
steps.

From the standpoint of computational efficiency it is, of course,
the amount of time required to compute an approximate solution
that is the major concern. For those problems to which both our
iteration schemes and the Katzenelson-Seitelman algorithm may be
applied, it can happen that our methods might still be slower than
theirs even in the ecase when the convergence rate of our methods is
faster. This can happen because, for some problems, the equation
with which we are concerned may be of a higher order than theirs,
and also because we must compute the inverse of a matrix at each
iteration step. On the other hand, it is clear that for many problems,
even from the standpoint of total computation time, our techniques
will be more efficient.
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