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Two basic problems in the equalization of data channels using pulse-
amplitude modulation are considered. The first of these is to determine just
what pulses can be equalized and what the general equalization solution is
when using a transversal filter. The second problem is lo determine if a
simple ilerative search routine will converge to a solution if ils exists.

The unequalized channel impulse response is represented by a polynomial
whose coefficients are the sample values of the impulse response. If no
roots of this polynomial lie on the unit circle, the channel can be equalized.
The transversal filter which equalizes the pulse has tapweight values given
by weighted sums of powers of the polynomial roots.

Various mecessary and sufficient conditions for ileralive convergence
are developed. Tterative convergence can be guaranteed if the proper linear
weighting of the output sample errors is used in adjusting the tap-weights.

I. INTRODUCTION

This paper is concerned with certain aspects of the automatic equal-
ization of low-noise, linear channels which are to be used for multi-
level pulse-amplitude modulated (PAM) signals. The purpose of the
equalizer is to compensate for the channel transfer characteristics in
such a way that the over-all impulse response of the channel is a
Nyquist-I type of pulse,> > * that is, as is illustrated in Fig. 1, a pulse
with a central peak and uniformly spaced zeros with period T'. If
such an impulse response is achieved, a sequence of amplitude modu-
lated impulses with period T can be transmitted and the sequence of
amplitudes can be recovered at the receiver by simply sampling in
synchronism with period 7'

Certain obvious questions such as how to achieve synchronism and
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4~ ~ —CENTRAL SAMPLE VALUE

Fig. 1 — A Nyquist-I pulse with central sample and zeros at periodic sample
times.

the effects of sampling jitter, nonlinear distortion, and additive noise,
although of great importance, are neglected in this presentation in
order to concentrate on the methods of adjusting the equalizer. Thus,
we assume a perfectly synchronized, noiseless, linear channel with
an ideal sampler. Some further constraints which should simplify and
clarify the presentation are as follows., We specify that the equalizer
is to be a transversal (tapped delay-line) filter with tap weights {e}
which can be adjusted. If the input to this filter, illustrated in Fig. 2,
is B (¢), then the output, y(¢), is

N

(1) = .-?:., a;8(t + iT). e))

Notice the tap-weight numbering convention and the treatment of
the delay-line as being composed of negative as well as positive delay.
These conventions will simplify the notation in future derivations.
Although the equalizer may be placed at many points within the
communication system, for convenience we will consider it to be the
final component other than the final sampler. Thus, the objective is

B(t)y—e

©
—b——‘?m

Fig. 2 — A transversal filter with input g(¢), tap weights a;, and output (¢).
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to adjust the tap weights so that the output, y(t), is a Nyquist-I
pulse when the input, 8(¢), is the impulse response of the system be-
fore equalization.

As a final simplification we assume that the tap-weight adjust-
ment is to be carried out when the impulse response is available at
the input. This “training period” assumption avoids the added com-
plexities of extracting channel characteristies when data are being
transmitted.* However, the properties to be developed can be readily
extended to continuously adaptive equalization.

II. TIMING AND THE ROOTS OF THE IMPULSE RESPONSE

Since the output of the equalizer is to be sampled, we need con-
sider only its effect on the output sample values {y;}. Ideally, with
an impulse applied to the channel input, one of the output samples,
say vyo, should have unit amplitude while all the others are zero. The
tap weights are to be adjusted in order to approach this goal. An ad-
ditional parameter which will affect the equalization is the timing.

Let the sample values of the impulse response at the equalizer
input be the set {8;} where

B; = BGT) (2)

and

Bt) = At + 7). @)
Equation (3) is to indicate that the sampling times are arbitrary.
This is, if h(#) is the channel response to an impulse applied at t =
0, then the sample set {8;} is a function of the factor r. Notice that
our assumption of perfect synchronization means that the periodicity
factor, T, in equation (2) is the proper value. But it does not imply
that = is preseribed. We shall see that the operation of the equalizer
depends very strongly upon the value of .
This impulse response is to be equalized by the transversal filter
with tap weights {a;}. The transversal filter output sample set is
{yr} where

Ye = _E“,—an . (4)
b
The sample set {#;} will be considered finite in extent, that is,
;=0 for j< —m and j> M. (5)

This is a reasonable approximation for any actual channel,
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This sample set may be treated as the coefficients of a polynomial
B(z).

B(z) = Baz™"™ + Bar2™ ™™ + -1
+ Boz” + -+ + Bz + B (6)
In factored form B (z) may be written as

B() = Bulz— )z — 0) -+~ (2 — 0)(z — b))z — ¢ba) =+ (2 — ¢a) (V)
where the roots inside the unit-circle are denoted by the 6 values and
the roots outside by the ¢ values.

o]l <1< |o¢] ®)
I4+Q=M+m. (9)

As we have noted, the sample set {8;} is a function of the factor +.
Thus, for any particular channel, the roots of equation (7) will
wander as = is varied. Each root will wander on some cyeclic path
which has a period 7. That is

0;(r + nT) = 6,(r) (10

This is illustrated in Fig. 3 where a pulse shape is shown and in Fig. 4
where the root loci are shown for variations in r. Notice that as r in-
creases from 0 to 7', at least one of the roots, regardless of the pulse
shape, will cross the unit circle.

Perhaps the periodicity of the roots can be better understood if
the sampling is thought of as multiplication by a comb of impulses
with spacing 7. Each impulse has associated with it a power of z. For
example, in equation (6), we see that the impulse yielding the earliest
nonzero sample (8_,) is associated with the zero power of 2, the next
impulse yielding B8_, 1, is associated with the first power, and so on.
As the comb is moved relative to the pulse, 8(t), the impulses produce
different samples and when moved a whole period T, the comb will
reproduce the original samples again, However, each sample would
be paired with a one-higher or one-lower power of z than previously.
Thus, for example, if the comb were shifted by T so that the powers
of z were one higher, the factorization of equation (7) would be ob-
tained with the same roots except for an additional root at z = 0
since the original polynomial is multiplied by the first power of z.
As the comb is shifted along, the additional root, which must even-
tually go to z = 0, comes in from z = o0 and at some particular shift
crosses the unit circle.
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Fig. 3— A pulse and four nonzero sample positions which yield a polynomial
with roots marked 1 in Fig. 4. Nine additional sets of roots are obtained by mov-
ing the positions above to the right in increments of 7'/10.
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Fig. 4 — Root loci for pulse of Fig. 3. Scale inside circle is magnified four times.



1780 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1968

IIT. IDEAL TAP-WEIGHT ADJUSTMENT

Let us now consider the problem of forcing the y, to zero. The
desired conditions are

Yo = Zaiﬁi =1 (11)

and
Ye= 2 aBiu=0 k0. (12)

Equations (11) and (12) in the form of a matrix array is as follows.
We shall assume temporarily that the number of taps is infinite.

00 By e e B2 By Bo By Bz v s B-n 0
00 Bar =+ By B2 By Bo By Bz -+ -+ Bom O ---
0By +++ Bs Bo By By B o »vv -+ B-m O ---
0By -+ Bs 5zﬁlﬁ03—| Bog ove e B -
Qo 0
(231 0
@ | |1 g
o, 0
X_o 0
a_g 0
L] L
Now let us consider a typical equation of the form,
) 2:_* @ifre; = 0 (14)

where we will take either the case where & < —m or kb > M. If these
conditions on k are satisfied, then equation (14) involves « values with
only positive subseripts or only negative subscripts. Equation (14) is
a linear homogeneous difference equation in the variable «;. Such
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equations have solutions of the form

a; = zi. (15)
Substitution of equation (15) into equation (14) yields

.B."-rzM_lt + ﬂM—\ZM-k-l + -+ ﬁlzlqt
+ B2 A+ B T A B
= z_m—k[ﬁﬂ!—z}‘”m + BM—lzﬂHm_l + oo 4 B 4 Bonl
=2z "Bz = 0. (16)
Equation (16), and hence equation (14), will be satisfied for 2
equal to one of the roots of the impulse response polynomial B(z).

And since we have a linear homogeneous equation, any linear com-
bination of solutions is a solution. Thus, the general solution is

ai=019i+020;+ "'+010§+D1¢{+ +Dn¢’§1 (17)
The constants, Cy, Ca, ..., C;, Dy, Ds, ..., Da, are arbitrary and
will be adjusted to meet the boundary conditions. One boundary con-
dition which should be imposed is the following. Eventually, we must
approximate this infinite delay line with one of finite extent. This
truncation should throw away only taps of small magnitude, and thus
the tap weights should decrease in magnitude away from the center
tap. Consequently, we demand that a;j — 0 as |j| = eo. Thus,

C, =0Cy= - =, =0 for jnegative.

D =D;=:-- =Dy =0 for jpositive. (18)

In effect, we have two solutions; one for taps with negative sub-
seripts and one for taps with positive subseripts.

a; = C|Gi+029£+'+0]6} for j>0

a; = Dipi + Duogi + - + Doy for j <O0.

The region of overlap in equation (13), that is, the region where
the equations involve tap weights with both positive and negative
subseripts, will determine the arbitrary constants. To illustrate this,
let us consider the impulse response of Fig. 2. For one set (No. 8) of
samples, the samples are —2, 3, 11, —6 and the roots are 0.5, 3, —2.
Thus

II

(19)

C,(0.5) for 7>0
a; = D\(3) + Dy(—2) for j<0.

o

(20)
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Now, C;, D,, and D, may be found by using equation (20) in equa-
tion (13). However, first we must assign an origin in our pulse. That
is, we must decide whether —2, or 3, or 11, or —6 is to be called B,.
Solutions exist for each of these possibilities, but only one of these has
certain desirable properties which we will discuss later. In this case,
Bo should be the sample of magnitude 11. With this assignment, equa-
tion (13) may be written

—2[C,(.5)"] + 3[C,(.5)°] + 11[C.(.5)°] — B[C.(.5)] = 0 (21a)
—2[C,(.5)"] + 3[Cy(.5)"] + 11[C\(.5)] — by = 0 (21b)
—2[C,(.5)"] + 3[C,(.5)] + 1lay, — 6[D,(3)"" + D.(—2)""] = 1 (21¢)
—2(C,(.5)] + Ban + 11[Dy(3)™" + Dy(—2)7"]
— 6[D\(3)* 4+ Dy(=2)*] =0  (21d)
—2a, + 3[Di(3)7" 4+ Do(=2)7"] + 11[Di3) " + Dy(—2)7]
—6[Di(3)" + Du(—=2)"] =0 (21
—2[Dy(3)"" 4 Do(=2)""1 4 3[Di(3)" + Dy(—2)7"]
+ 11[D,@3)7" + Do(=2)7"] = 6[Di(3)" + Du(=27' =0 (21)

Equations (21a) and (21f) and all others above and below these two
are automatically satisfied for any choice of C;, D;, D.. Consider
equation (21b). In order for it to be satisfied, «p must be equal to C,
(0.5)°. Similarly, for equation (2le) to be satisfied, ap must equal
D;(3)° + Dy(—2)°,

C] = Dl. + D2 = (22)

and equation (21) yields the following values for the C and D con-
stants,

D, = 2/951
D, = 5/95(8, = 11. (23)
C, = 7/95[
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If we had chosen to let 8y be the sample of magnitude 3, we would
obtain

D, = —10/95
D, = 15/95¢8, = 3. (24)

If the sample of magnitude 2 is made f,, then

Dl = 9/25
D, = 4/25¢8, = —2. (25)
C, = 1/50[

In these last two examples, the solutions may be considered inferior
because the tap weights away from the center tap will be larger than
in the first example. However, stronger objections to the last two
choices for 8, will be raised shortly.

A point of considerable interest is apparent in the development
above. If any of the roots fall on the unit circle, then no solutions
exist in which the tap weights decay in magnitude in both directions
away from the center tap.

IV. TRUNCATION EFFECTS

In any practical equalizer, the number of taps available is not
infinite. Thus, we must investigate the effects of limiting the number
of taps to some reasonable finite value. For example, let us suppose
that we have N + n + 1 taps.

@, =0 for {3 < n, (26)
j>N
Let us consider two schemes for setting the truncted tap weights.
A more or less obvious way is simply to take the infinite solution
[for example, equation (23)] for all available taps. This can be rep-
resented in matrix form:

[Boller] = [v]. 27

The matrix [B.] is the infinite matrix of 8 values shown in equation
(13). The truncated tap set is [ar],
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laz] = Qg (28)

and [y] is the matrix of output sample values. Notice that [ar] may
be written as

lar] = [ow] — [a)] (29)
where [a,] is the infinite set of tap weights which give us the desired
output and

Qo

QN +1

[ =] 0 | (30)

[ S|

A_yp—2
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Thus, equation (27) becomes

[B.llar] = [B.le.] — [B.lla] = [u] — [el. (31)

The desired output [n], all zero samples except the central one with
unit magnitude, is given by [B.][a.] while the error set [e] is given
by [Be] [e:].

It is possible to ealeulate this error set exactly, but an approxi-
mate bound should suffice. Assume that N and n are large so that the
« values in [a;] depend only on the roots which are the nearest to the
unit eirele. Let the magnitude of nearest inside and outside roots be
8, and ¢,. Then approximately
g, for j>N (32)

¢l for j < —n
Consequently the largest component of any error term in [e] will be
about

Max comp =2 Boue Coll ' 22 Bne Dugpl™™" (33)

and each error term is the sum of less than N + n + 1 components.
Thus, an upper bound on the error terms is

| max | < | (N +n)C,00"" | = | (N +n) D" ™| (34)

which vanishes as N and n are made very large.

V. A SECOND METHOD OF TRUNCATION

This second method offers no improvement in ultimate equaliza-
tion over the method just discussed. However, it does lend itself to
iterative adjustment techniques whereas the first method tacitly as-
sumes a computation which provides the proper infinite solution to
begin with. In this second method we require that all the output sam-
ples (excluding vyo) corresponding to the N + n + 1 taps, that is,
YNy YN-1y - = 3 Y2, Y1y Y12 ¥=2, « « - 5 Y-n+1, Y-n, D€ zero. This criterion
may be called the Lucky criterion since it is the one R. W. Lucky
has used in his work.®

What does this criterion mean in terms of the solutions (powers of
impulse response roots) we discussed for the infinite tap case? We are
essentially constraining our system further by another set of boundary
conditions. We will call these boundaries the positive boundary at ay
and the negative boundary at «,, in addition to the central boundary
around ap where we have already discussed satisfying boundary con-
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ditions (those specifying Cy, Cs, ..., Dy, Ds, ... ). As an example,
let us consider the equations at the positive boundary.
Boay + By, + - - + B_man-m = ¥n =0 (353)

Biay + Booy—1 + -+ + Bty ms1y = Yn-1 =0 (35]3)

Br—iany + Br—son—r + o+ Boply—mir—1) = Yv—ar-n = 0 (35'3)

Buany + Bu—ay-y + <o+ o + BomOy—(meary = Yn-u = 0 (35d)
Equation (35d) can be satisfied with the solutions determined by
the central boundary, that is

a; = Clgi + 0295 + -+ CIB; . (36)
However, this solution will not satisfy the M equations above equa-
tion (35d) since the complete set of 8 values is missing in these equa-
tions. The exponentially growing solutions which were discarded
earlier must be used now. Thus,

a; = Ci8f + -+ + Ci0 + 0] + i + -+ + epi for j>0
37)

a; = D¢} + -+ + Dol + di6] + du8i + -+ + d;6; for j<O
(38)
must be used in order to satisfy all the boundary equations. If & = M,
then the lower case ¢’s in equation (37) provide just enough con-
stants to satisfy the M equations of equations (35a through ¢). Fur-
thermore, I will equal m and the I lower case d’s will provide just
enough constants to satisfy the m boundary equations at the nega-
tive boundary.

To illustrate the preceding discussion, let us return to the specific
example discussed previously. We use the results of equation (23)
with

ﬂﬂ = _2: }Gl = 3: ﬁo = 11, IB—-I = —6. (39)
The positive boundary equations are

11[C.(E)Y + e + e(—2)"]

- 6[01(-5)“”“1 + CI(B)N_I + 02('_2)N_l] =0
3[Ci(5)" + &)Y + ex(—2)"] + 11[Ci(.5)"" + eo(—2)"7"]
— 6[C(H)" + a7 + (=2 =0

(40)
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[ 3V-4(33 — 6) —2V¥"i(—22 — 6) }[ﬂ
3327 4+ 33 —6) —2"7%(12 — 22 — 6) |l
B N
_ L S5Y11 — 12)C, } )

5Y(3 + 22 — 24)C,

If we assume that N is large enough so that the value of the C
and D variables are unaffected by inclusion of the other roots, then
these € and D values may be used to determine the ¢ and d values.
With C; = 7/95, equation (41) becomes

ST
6 —4le e

where
¢! = 3% et = (=%, e = (1)( 5)Y (43)
1 1 2 2 95 * .
Thus,
¢ = ©/12 s = —C/8
7 N l. A%
o= =T
3) (—2)

Similarly, d; can be found by the single houndary equation at the

negative boundary.
2 —n B gy
;{2(95)(3) +9(95)( 2 }
12

= (.5)". (45)

The results worked out above can be roughly represented graphi-
cally as in Fig. 5 where the magnitudes of the roots to the tap-number
power are illustrated. This figure shows what will be called a “good”
solution. That is, the decaying solutions predominate with the grow-
ing solutions contributing only a small amount at the positive and
negative boundaries. The residual errors, that is, the yj values for k& >
N and k < —n, will be of the same order of magnitude as those of
the first truncation method.

In order to have a good solution as demonstrated above, the proper
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Fig. 5 — Solution behavior for truncated equalizer.

number of arbitrary constants must be available to satisfy the posi-
tive and negative boundary equations. The number of equations at
the positive boundary is M, and the number of available constants
(outside roots) is Q; similarly, there are I constants (inside roots)
available for the m equations at the negative boundary. Thus, the
necessary conditions for a good solution are

no. outside roots = @ = M = no. of samples following ,80}_ (46)
no. inside roots = I = m = no. of samples preceding 8,

We may use the same simple pulse to demonstrate a “bad” solu-
tion. If we go back to equation (24), we see that an infinite (non-
truneated) solution exists for the situation in which we decided to let
Bo = 3. The number of inside and outside roots remain the same in
this case, but M and m are both changed. Now M = 1 and m = 2,
and equations (46) are no longer satisfied. All the boundary condi-
tions can still be satisfied, but not in such a simple manner. That is
to say, in the preceding example, satisfying equations (46), a sepa-
ration of solutions is possible. The central boundary specifies the
values of the upper-case constants, then the lower-case constants are
set to compensate for the truncation effect at the positive and nega-
tive boundaries. Since the necessary compensation is small, and since
the effect of the lower-case constants dies out towards the central
boundary, only minor or negligible corrections to the upper-case con-
stants are necessary to keep the central boundary conditions satisfied.

Now let us consider what takes place when this step-by-step solu-
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tion is attempted when equations (46) are not satisfied. Suppose Cj,
D, and D, are set to satisfy the central boundary according to equa-
tion (24). At the positive boundary, only one of the lower-case ¢'s is
needed so no difficulty arises and the positive tap solutions will, to this
point, be little different from that illustrated in Fig. 5. However, at
the negative boundary, the single available arbitrary constant d; is
not enough to satisfy the two boundary equations which occur in this
case. All the upper and lower case d-constants can be adjusted to
satisfy the negative boundary conditions, but this will destroy the
equilibrium of the central boundary solution since any change in the
upper-case D’s does effect the central equations. If one of the upper-
case D’s is constrained by the negative boundary, then the remaining
unused lower-case ¢ can be brought in to provide enough arbitrary
constants to satisfy the central boundary conditions. The net effect of
all this will generally be that a growing solution must be made to
have a nonnegligible contribution at the central boundary. Conse-
quently, it will be large at the positive boundary. This is illustrated
in Fig. 6.

When the situation discussed above and represented in Fig. 6 oc-
curs, the residual values of yi outside the equalization region will be
large and will generally grow larger as the number of taps is increased.

As an actual example of a bad solution of the type discussed above,
consider the pulse illustrated on page 563 of Ref. 5. The polynomial

— J
_———IC487l
¥
J
lCyeyl—~__
N\
J
[Co®al~~

Fig. 6 — Typical solution behavior when the conditions of equations (46) are
not satisfied.
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which represents this pulse with 8, set as the peak value is
B(z) = 152° — 202" + 402° — 602° 4 0z* 4 1152°
+ 602* 4+ 20z + 10. (47)
Notice that with this choice for g8,
M=5 m=3. (48)

The root locations for this polynomial are illustrated in Fig. 7. There
are four inside roots (I = 4) and four outside roots (0 = 4). Con-
sequently, equations (46) are not satisfied and no good truncated
solution exists. This is verified by the fact that when Lucky at-
tempted to equalize this particular pulse, the equalizer gave an output
pulse with large yx, & > N. This indicates that a solution such as that
shown in Fig. 6 has been approached.

%

\
\
y-
L -

B / =Re(Z)
al ~
K\f N
/ o
UNIT CIRCLE—
|
|

f

Fig. 7— Root locations of pulse page 563 of Ref. 5. B(z) = 1528 — 2027 + 40z° —
6025 + 0z* + 11528 + 6022 + 20z + 10 6, &,* = 0.404 £ o4 89.8° 8y, 6.* = 0.652
£ £ 169.9°%¢, ¢1* = 1.642 £ 4 27.7° ¢, dpo* = 1.8904 £ + 94.4°,

b Im(2z)
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If B, were shifted (delayed) one sample so that it would be the
coefficient of the fourth-degree term of B(z), then equations (46)
would be satisfied and a good truncated solution would exist. Notice
however, that in this case 8, would be zero which presents a severe
problem in iteratively searching for this good solution.

VI. ITERATIVE SEARCH FOR EQUALIZATION

The discussion has indicated that, except for singular cases where
one or more roots of B(z) are on the unit circle, equalization solutions
exist (for the infinite tap case) in which tap weights decrease expo-
pentially in both directions from the center tap. Furthermore, good
truncated solutions exist which force all v, (—n = k = N, k # 0)
to zero if B, is selected to satisfy equations (46), which can always
be done. The question which now arises is whether a simple iterative
search routine will lead to a desirable equalization.

When presented with an impulse response to be equalized using a
truncated equalizer and the Lucky criterion of foreing output samples
to zero, a hierarchy of questions must be considered:

(1) Is the pulse equalizable? That is, are all the roots off the unit
circle? (If there are roots on or very close to the unit circle, a change
of timing, that is, varying = in equation (3), will usually move the
roots off the unit cirele.)

(1) If the pulse is equalizable, does a good truncated solution exist?
A shifting of 8 subscripts can always guarantee the existence of a good
solution by satisfying equations (46), but will sometimes create con-
vergence problems.

(i) If the pulse is equalizable and a good truncated solution exists,
will a simple iterative search find this solution?

The iterative method of searching for a solution which we consider
first consists of measuring the value (yz) of the kth output sample,
then subtracting some part of this from the kth tap weight.* That is

"t =" — Av” (49)

where the superscripts indicate the iteration number and A is a posi-
tive number less than one. This iterative process is not identical to
the method presented in Ref. 5 which increments the tap according

_*This is not the only possible iterative search method, but it is one of the
simplest.
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to only the sign of y;.

(r+l) r)
Qg

= — Asgn [v,]. (50)
However, the two methods are very similar, and convergence of one
will almost always guarantee convergence of the other.
In matrix notation, the linear iterative search of equation (49) can
be written as

2 = g A -
e = Ba®™ —a (52)
where
P 0]
' 0
ay_, :
0
a= " w= |1
- 0
le.:.l 0
LX—n | o]
By By Bog rrreieeeee B.. 0 0 0 0—!
Br Bo By Bz s 8.,
Ba Bi Bo Boy Bog cerreeeees B
B2 B Bo By By e 8.
B = Bo
Ba
Bo
- B

(53)
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Equation (52) can be modified by using equation (51),
e(r) — B[a(r—l) _ Ae(r—n] —u
= (I — AB)é" ™"
= (I — AB)¢” (54)
where I is the identity matrix.
Clearly, the iterative routine will converge if
lim 7 = 0. (55)
However, it does not quarantee convergence to a good solution as
illustrated by the pulse of equation (47) and Fig. 7. There, con-
vergence does occur as was illustrated in Ref. 5 and hence, equation
(55) is satisfied but convergence is to a bad solution. In that case
no good solution exists to which the routine can converge.
The necessary and sufficient condition for convergence is that
lim (I — AB)" = 0. (56)

The matrix of equation (56), that is, the matrix I—AB will converge to
zero if and only if all its eigenvalues are less than one in magnitude.®
This is equivalent to the condition, illustrated in Fig. 8, that the
cigenvalues of B lie within a circle of radius 1/A centered at 1/A on
the real axis. Assuming that A can be made as small as necessary, a
necessary and sufficient condition for iterative convergence 18 that all

IMAGINARY AXIS

REAL
AXIS

(=]

Fig. 8 — Necessary relation of A to location of eigenvalue in complex plane.
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eigenvalues of B should have a positive real part. If this condition is
not satisfied, (I—AB)" will diverge, and even if the initial error vector
€@ is very small, the final error vector will grow without bound.

The italicized condition above, coupled with the root location con-
dition of equation (46), guarantees convergence to a good solution.
Certain other more restrictive sufficient (but not necessary) condi-
tions can be derived. These conditions may be easier to check for a
channel impulse response.

6.1 Necessary and Sufficient Condition for Monotonic Convergence.

The convergence of the iterative process will be called monotonic
if for any starting error vector «(®), the following inequalities hold (a
superseript ¢ indicates the transpose of a matrix),

e N> A1e N> e N> > e[ > [ ] > -

(57
N
e || = e = 3 (e (58)
Since
Y = (I — AB)e™, (59)
it follows that
| €0 || = 0D Z YT AR — AB)e®
= "¢ 4 A’[Be](Be”] — Ae”'[B' + B
= [ €7 [| + 4% || B || — A¢'[B* + Ble™. (60)

Thus, equation (57) will be satisfied for all possible initial error vee-
tors if an only if

¢[B' + Ble > A || Be|| = A(Be)'(Be). (61)

Since the right side of the inequality is always positive, the inequality
can be satisfied for all possible nonzero e only if [B* + B] is positive-
definite. If this is true and

. €'[B' 4+ Ble
T Be ||

then equation (61) will be satisfied for all ¢ and the iterative process
will be monotonically convergent.

> A (62)
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If [Bt + B] is not positive-definite, convergence can still occur.
However, stating the conditions for convergence becomes more dif-
ficult. For example, if [B'+B] is not positive-definite then for some
vector, say ™1,

VB + BTN <0 (63)
and
H E(r-l) IL < H E(r) H . (64)
But if fore = "V
(Bo'[B' + BB > -

o

(A" || B || + 247 || Be ||

+ A" || [B' + Ble || — 24¢'[B* + Ble} (65)
then

e 0 > e (66)
Very roughly speaking, equations such as (65) which can be developed
indicate that [Bt*+B] should yield a predominantly positive quadratic
form in order to have convergence. What we mean by this can best
be illustrated graphically, as in Fig. 9.

6.2 Further Sufficient Conditions for Monotonic Convergence

The positive-definiteness of [B'+B] is a necessary and sufficient
condition for monotonic convergence. Being somewhat more restric-
tive will yield other sufficient (but not necessary) conditions. We
notice that [B* + B] is a Toeplitz matrix, that is,

[B' 4+ B] = [by], by = biimii = Bu-n + Bii-n - (67)

i

E‘t(Bt+ B) €

~ — NEGATIVE REGION

VARIATION IN DIRECTION OF VECTOR € WITH
ITS MAGNITUDE ||€|| HELD CONSTANT

Fig. 9 — Illustrating a predominately positive quadratic form.
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Thus, it has some of the necessary attributes of a correlation matrix.
A correlation matrix is positive-definite, so if we can show that
[B{4+B] is a correlation matrix, then this is sufficient for positive-
definiteness. If [B' + B] is a correlation matrix then the polynomial
B(z) + Bt(z) = P(2), where

B(z) = Buz""™ 4+ -+ + B_.,
B'(z) = B_.2"" + -+ + Buz" " (68)

must have no odd order roots on the unit circle. Root locus methods
may be applied here, that is, the loci of

B(z) _
B'z)
must not eross the unit circle. Notice that this is a necessary condi-
tion that [B' + B] be a correlation matrix and it is sufficient but not
necessary for [B! + B| being positive-definite.
A more restrictive condition leads to another sufficiency condition.
If (Lucky condition, Ref. 5)

By > 2. | B |, thatis, D, <1 (70)
k=0

—k (69)

then it is easy to see that B?(z) + B(z) has no roots on the unit
circle and thus [B' + B] is a correlation matrix and positive-definite.
Notice that equation (70) is not a necessary condition for [B* + B]
being a correlation matrix.

The various conditions discussed above are summarized in Fig. 10.

_— SPACE OF ALL B MATRICES
P

,’ /’,30 SATISFIES ROOT-LOCATION CRITERION, Eq.(46)
¥ /
k — 4 — CONVERGENT REGION
- WHERE Re (A) >0

__—— - — MONOTONIC CONVERGENCE
- WHERE (Bt+B) IS
POSITIVE — DEFINITE

—|-|— (B'+B)IS CORRELATION
MATRIX

~ —INITIAL ABSOLUTE DISTORTION Dg <1

IFig. 10 — Illustrating the different convergence regions.
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VII. MODIFIED ITERATION PROCESSES

In the sample iteration process which has been discussed to this
point, the change in tap weight «; depends only on the output sam-
ple value y;. Let us generalize so that the change depends on a linear
combination of output samples.

Ba(r) — _Yfr) l
€ =" —u=Ba" — up- (71)
@™ =o' — ATV J,
That is to say, the (» + 1)st value of tap j is
ai™ =al” — A LE Ve . (72)

Manipulation of equations (71) leads to a result similar to equation
(54)

¢” = [I — ABVT ™. (73)

Consequently, all the sufficient and necessary conditions which have
been developed on the previous pages can now be applied to the
matrix BV. Now, however, we have considerably more latitude since
we are free to specify V.

As an example, let us suppose that V is chosen to equal Bf. Then

BV = BB' = positive-definite (74)

and monotonic convergence is guaranteed. This is a particularly ap-
pealing way of selecting V since the sample weighting can be deter-
mined directly from the initial channel impulse response.

Vie = Vix = By . (75)

It is very interesting that the weighting suggested above is very
nearly equivalent to inserting a tapped-delay-line matched filter
ahead of the equalizer. A matched filter, whose tap weights are equal
to the g values in reverse order, will yield an output whose samples
will form a B matrix which is a correlation matrix. Thus, the itera-
tive search will be monotonically convergent in this case also. The
weighting suggested above yields the same matrix except for “edge
effects.”

This can be illustrated by the following example. Suppose there
are just three g values: 83 =1, 8o = 2, 1 = —2. Then, with V set
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equal to B!, and assuming a six-tap equalizer so that B is a 6 X 6
matrix, we obtain

5 —2 —2 0 0 0]
-2 9 -2 -2 0 0
-2 -2 9 -2 -2 0]
0 —2 -2 9 —2 -2
0 0 —2 —2 9 =2
Lo o o0 —2 —2 8]

BV = BB' = (76)

On the other hand, the modified B matrix following a matched
filter would be

B, = (77)

0 0 —2 -2 9 -2
[ 0 0 0 -2 -2 9

Setting V = B! will guarantee monotonic convergence. However,
sinee in most eases B is such that [B? + B] is close to being positive-
definite, it is probable that a less extensive V would be sufficient to
guarantee monotonic convergence. As an example, suppose that V
is chosen to be a small deviation on the standard iteration of equa-
tion (58)

V=1I+38B, &>0. (78)
Now,
BV = B + 3BB' (79)

will have a quadratic form which is greater for every vector ¢ than
the quadratic form for the matrix B alone. Thus, if the negative re-
gion such as is illustrated in Fig. 8 is small, then BV can become posi-
tive-definite for relatively small 8.

Perhaps a more reasonable way of selecting a ¥V which approximates
B! is to modify equation (75) in the following manner.
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Vip = Vo = {-Bi-.k if | By | = L. 50
0 if |n6kﬁ1' \ < L

Thus, only the more signifieant values of 8 are used in weighting the
errors. In general such a V will force B towards positive-definiteness.
However, there seems to be no general rule for selecting the eritical
value of L, that is the maximum L which will just permit positive-
definiteness.

VIII. CONCLUDING REMARKS

Virtually all input pulses are equalizable in the sense that there
exist tap-weight adjustments which will force the output samples in
the adjustment interval to zero while the output samples out of the
adjustment interval remain small. Furthermore, the residual samples
outside of the adjustment interval will become smaller as the number
of taps (length of transversal filter) is increased.

There are just two necessary conditions in order for the preceding
statement to hold. The first is that the polynomial representing the
input pulse have no roots on the unit cirele. Although the singular
case where roots are exactly on the unit circle is highly improbable,
roots very near the unit circle lead to relatively larger residual er-
rors and greater potential for instability.

The second necessary condition is that the selection of the central
sample value must be such that equation (46) is satisfied.

Although a pulse may be equalizable, the simple first-order itera-
tive search for the proper tap weights given by equations (51) and
(52) may not be convergent. If it is convergent, and assuming the
two conditions above are satisfied, it will converge to the proper tap-
weight settings. If it is not convergent, it will be divergent with in-
creasing errors in the adjustment interval. The convergence or diver-
gence is independent of the initial tap settings. Thus, even though
the tap weights might be set to optimum initially, if the system is in
the iterative search mode and is divergent, it will eventually diverge.

The necessary and sufficient condition for convergenee is given in
Seetion VI along with a hierarchy of more stringent sufficient condi-
tions. In general, convergence will be dependent upon the absolute
timing of the sampling. Consequently, a particular pulse which 1is
equalizable for two different timings might be convergent for one
timing and divergent for the other.

If the first-order iterative procedure is divergent, a more complex
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weighting of the output errors in adjusting the tap weights ean im-
prove the situation. At least one weighting given by equation (75)
will guarantee convergence.
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